
Hierarchical (IMS) (late 60s-70s)

+ facilitates simple data manipulation
language (DL/I)

- Information is repeated
- Existence depends on parents
- no physical data independence (can’t tune

physical level without tuning app)
- Not much logical data independence either

(can’t tune schema without changing app
(think views))

Lessons from hierarchical:

Lesson 1. Physical and logical data
independence are highly desirable

Lesson 2. Tree structured data models are
very restrictive

Lesson 3. It’s a challenge to provide
sophisticated logical reorganizations of
tree structured data

Lesson 4. Record-at-a-time user interface
forces manual query optimization (hard!)

Directed graph (CODASYL) (70s)

+Yeah! Graphs, not trees!
+ Can model many-to-many relationships
- Still no physical data independence
- Much more complex than IMS
- Lesson 5: Directed graphs are more

flexible than hierarchies, but more
complex

- Lesson 6: Loading and recovering directed
graphs is more complex than hierarchies

Relational (70s-early 80s)

1. Store the data in a simple data structure (tables)

2. Access it through a high level set-at-a-time DML

3. No need for a physical storage proposal

• Lots of good arguing by various sides “the great
debate”

• Non-technical factor: CODASYL systems were
not portable  not porting to first
microprocessors (VAX) (whoops)

Lessons from Relational:

Lesson 7: Set-at-a-time languages are good; offer
improved physical data independence

Lesson 8: logical data independence is easier with
a simple data model than with a complex one

Lesson 9: Technical debates are usually settled by
the elephants of the marketplace, and often for
reasons having little to do with the technology

Lesson 10: query optimizers can beat all but the
best record at a time DBMS application
programmers

Discussion Questions

• (Michael) How could this rift between
theoretical academics and practical
implementations be addressed from a
research perspective? (i.e. how can
academics prove that their work is worthy
of industry’s funding?)

ER (70s)

• Response to normalization

• Standard wisdom: create table, then
normalize. Problems for DBAs:
– 1. Where do I get initial tables

– 2. can’t understand functional dependences

• Lesson 11: Functional dependencies are
too difficult for mere mortals to
understand. Another reason for KISS

Extended Relational (80s)

• How many features must relational
databases have…
– Set valued attributes
– Aggregation
– Generalization
– And many, many more

Lesson 12: unless there is a big
performance or functionality advantage,
new constructs will go nowhere

Semantic (late 70’s and 80’s)
(SDM)

• Similar ideas, but more radical; change
whole model to be semantically richer.

- Lots of machinery, little benefit. Died
without a trace.

Object-oriented (late 80’s and early
90’s)

+Support OO languages

- market failure: no leverage, no standards,
some versions had reliance on C++

Lesson 13: Packages will not sell to users
unless they are in “major pain”

Lesson 14: Persistent languages will go
nowhere without support of PL community

Discussion Questions

• (Michael) Limitations in practicality
(hardware) prevented ideas from coming
to fruition. What other aspects or
challenges may cause a great idea to be
proposed or explored “in the wrong era”?

Object-relational (late 80s and early
90s)

• OO + R
+ Some commercial success
+ put some code in DBMS
- no standards
Lesson 14: OR puts code in DB which

makes for fast adaptability
Lesson 15: Widespread adoption of new

technology requires either standards
and/or an elephant pushing hard

Discussion Questions

• (Sarah/Sid) How do we decide which
research is worth revisiting?
– Who makes these decisions? Industry or

academia

– What spurs these types of decisions?

– Is it worth it?

XML (late 90s to - ?)

• Semantic heterogeneity
• Schema later: best for semi-structured… authors

claim there aren’t that many of these
• XML Schema:

– Can be hierarchical, as in IMS
– Can have links to other records as in CODASYL &

SDM
– Can have set-based attributes as in SDM
– Can inherit from other records, as in SDM
– Even more complexity!

Three visions of the future of XML
Schema:

• XML schema fails because of excessive complexity
• A “data-oriented” subset of XML Schema will be

proposed that is vastly simpler
• “It will become popular. Within a decade, all problem

with IMS and CODASYL that motivated Codd to invent
the relational model will resurface. At that time some
enterprising researcher, call him Y, will ‘dust off’ Codd’s
original paper, and there will be a replay of ‘the Great
Debate’ Presumably it will end the same way as the last
one. Moreover, Codd won the Turing award in 1981 for
his contribution. In this scenario, Y will win the Turing
award circa 2015”.

Lessons from XML

Lesson 16: Schema-later is probably a niche
market

Lesson 17: XQuery is pretty much OR SQL
with a different syntax

Lesson 18: XML will not solve semantic
heterogeneity either inside or outside the
enterprise

Discussion Questions

• (Rachel) The authors claim that XML still doesn't solve the
semantic heterogeneity problem. So What's the semantic
heterogeneity problem (in plain terms) and what is missing from
the XML approach?

• (Rachel) In the future, which of the following do you think will
occur:

1)XML Schema will fail because of its complexity

2) A “data-oriented” subset of XML Schema will be
proposed that is vastly simpler

3) XML will become popular and replay of the “Great
Debate”

Debate

• One side represents academia

• One side represents industry

• Rachel is a new investor who is interested
in propelling database research into the
future

• Convince her that your side deserves the
funding
– Try to work arguments from the paper into

your explanation

