
The Volcano Optimizer 

Generator: 

Extensibility and 

Efficient Search
Original Slides by:

Presentation: Alfred Pang

Discussion: Kati Radkhah

Modified by: 

Rachel Pottinger



The Volcano Optimizer 

Generator

 Object-oriented and scientific 

database systems

 Allowing query optimization to be 

more tuned towards the application = 

higher performance

 (Expert) User optimize



Discussion:

 Many of you noticed that Volcano allowed 

for different data models other than just 

relational, but claimed to work for any. 

When writing a paper, you can either be 

generic w.r.t. established choices vs. 

trends or stick to one paradigm for the 

system/algorithm/whatever. What are the 

benefits and drawbacks of being more or 

less general?



- If you over generalize, you miss everything
- If you're too specific, the industry might move, and you miss
- 2% of the data is the most popular, so even if you generalize, 
it's good enough. You can have a more generic approach in part 
of the paper. It's better to say that you're going for one chunk, 
but go after it and have a good reason
- It depends on the maturity of the area. Start, generalized, then 
more specific
- Compare with commercial software. Has a ton of features that 
almost no one uses, but but can put a lot of resources to only 
one area, can be a lot of development in one area. The 
organization does the large piece, but develop in the small. 
- Not really a choice. Based on the nature of the insights.



The Generator Paradigm



Optimizer Generator

 This is not the first time for this 

approach (EXODUS).

 Volcano improves on the work of 

EXODUS: ease of use, 

expressiveness.



Volcano Requirements

 Useable as standalone tool

 Efficient

 Support physical properties

 Expressive – heuristics, directed 

search, cost functions



Design Principles

 Relational algebra (logical and 
physical), especially to support OO

 Rules-based => modularization

 Map queries to same algebraic equiv 
as Volcano’s input

 Rule compilation rather than 
interpretation

 Dynamic programming



General Optimizer: 

Input/Output

 Input: User Query => Logical algebra 

expression

 Output: Algorithms to access physical 

storage => Physical algebra 

expression



Volcano: Input/Output

 Input:
⚫ Set of logical operators

⚫ Algebraic transformation rules (logical -> 
physical)

⚫ Algorithms and enforcers

⚫ Implementation rules (operators to algorithms)

⚫ Cost functions

⚫ Applicability function for each algorithm and 
enforcer

⚫ Etc.

 Output: Generated optimizer



Volcano Plan Search Engine

 Search engine is same for all 

generated optimizers

 Directed dynamic programming; goal-

oriented (driven by needs rather than 

by possibilities)

 Find costs of promising moves 

(transform, algorithm, or enforcer)



Volcano Plan Search Engine

 EXODUS did not consider logical 

expressions together with physical 

properties in optimization cost. (Volcano 

does)

 In OO systems, this can be used to more 

properly cost access of complex objects.

 Volcano algorithm is top-down (lower levels 

are explored only when warranted).



Comparison to Starburst

 Starburst has a hierarchy of 

intermediate levels; harder to see 

interactions. Volcano uses an 

algebraic approach which paper 

claims to be easier to understand.



Comparison to Starburst

 Query rewrites in Starburst do not 

include cost estimates. (Heuristic)

 Although paper is critical of this, 

Volcano does allow for heuristic 

transformations to be specified.



How good was it?

 Comparison between Volcano and 

EXODUS.

 Example used a small data model, 

consisting of relational select and join 

operators only.

 As similar data model descriptions as 

possible were specified for Volcano 

and EXODUS.



How good was it?

 Volcano took less time to optimize.

 EXODUS optimizer generator 

measurements were quite volatile and 

took a lot of memory.

 EXODUS’s generated optimizer and 

search engine do not explore and 

exploit physical properties and 

interesting orderings.



Summary

 Tools not just relational databases, but 

also object-oriented and scientific 

databases.

 Extensibility using optimizer 

generator.

 Separation of logical and physical 

algebras.



Summary

 When and how to use heuristic 

transforms vs. cost-sensitive 

optimizations

 Physical properties considered 

throughout the optimization, rather 

than considered after all logical 

transforms.



Discussion

Nalin: What is considered Software 
Engineering, and what constitutes 
research? Some plumbing code is 
required for research, but what is the 
actual difference between developing 
features vs solving a research problem? 
Has the distinction become more hazy 
over the years?


