
The Volcano Optimizer 

Generator: 

Extensibility and 

Efficient Search
Original Slides by:

Presentation: Alfred Pang

Discussion: Kati Radkhah

Modified by: 

Rachel Pottinger



The Volcano Optimizer 

Generator

 Object-oriented and scientific 

database systems

 Allowing query optimization to be 

more tuned towards the application = 

higher performance

 (Expert) User optimize



Discussion:

 Many of you noticed that Volcano allowed 

for different data models other than just 

relational, but claimed to work for any. 

When writing a paper, you can either be 

generic w.r.t. established choices vs. 

trends or stick to one paradigm for the 

system/algorithm/whatever. What are the 

benefits and drawbacks of being more or 

less general?



- If you over generalize, you miss everything
- If you're too specific, the industry might move, and you miss
- 2% of the data is the most popular, so even if you generalize, 
it's good enough. You can have a more generic approach in part 
of the paper. It's better to say that you're going for one chunk, 
but go after it and have a good reason
- It depends on the maturity of the area. Start, generalized, then 
more specific
- Compare with commercial software. Has a ton of features that 
almost no one uses, but but can put a lot of resources to only 
one area, can be a lot of development in one area. The 
organization does the large piece, but develop in the small. 
- Not really a choice. Based on the nature of the insights.



The Generator Paradigm



Optimizer Generator

 This is not the first time for this 

approach (EXODUS).

 Volcano improves on the work of 

EXODUS: ease of use, 

expressiveness.



Volcano Requirements

 Useable as standalone tool

 Efficient

 Support physical properties

 Expressive – heuristics, directed 

search, cost functions



Design Principles

 Relational algebra (logical and 
physical), especially to support OO

 Rules-based => modularization

 Map queries to same algebraic equiv 
as Volcano’s input

 Rule compilation rather than 
interpretation

 Dynamic programming



General Optimizer: 

Input/Output

 Input: User Query => Logical algebra 

expression

 Output: Algorithms to access physical 

storage => Physical algebra 

expression



Volcano: Input/Output

 Input:
⚫ Set of logical operators

⚫ Algebraic transformation rules (logical -> 
physical)

⚫ Algorithms and enforcers

⚫ Implementation rules (operators to algorithms)

⚫ Cost functions

⚫ Applicability function for each algorithm and 
enforcer

⚫ Etc.

 Output: Generated optimizer



Volcano Plan Search Engine

 Search engine is same for all 

generated optimizers

 Directed dynamic programming; goal-

oriented (driven by needs rather than 

by possibilities)

 Find costs of promising moves 

(transform, algorithm, or enforcer)



Volcano Plan Search Engine

 EXODUS did not consider logical 

expressions together with physical 

properties in optimization cost. (Volcano 

does)

 In OO systems, this can be used to more 

properly cost access of complex objects.

 Volcano algorithm is top-down (lower levels 

are explored only when warranted).



Comparison to Starburst

 Starburst has a hierarchy of 

intermediate levels; harder to see 

interactions. Volcano uses an 

algebraic approach which paper 

claims to be easier to understand.



Comparison to Starburst

 Query rewrites in Starburst do not 

include cost estimates. (Heuristic)

 Although paper is critical of this, 

Volcano does allow for heuristic 

transformations to be specified.



How good was it?

 Comparison between Volcano and 

EXODUS.

 Example used a small data model, 

consisting of relational select and join 

operators only.

 As similar data model descriptions as 

possible were specified for Volcano 

and EXODUS.



How good was it?

 Volcano took less time to optimize.

 EXODUS optimizer generator 

measurements were quite volatile and 

took a lot of memory.

 EXODUS’s generated optimizer and 

search engine do not explore and 

exploit physical properties and 

interesting orderings.



Summary

 Tools not just relational databases, but 

also object-oriented and scientific 

databases.

 Extensibility using optimizer 

generator.

 Separation of logical and physical 

algebras.



Summary

 When and how to use heuristic 

transforms vs. cost-sensitive 

optimizations

 Physical properties considered 

throughout the optimization, rather 

than considered after all logical 

transforms.



Discussion

Nalin: What is considered Software 
Engineering, and what constitutes 
research? Some plumbing code is 
required for research, but what is the 
actual difference between developing 
features vs solving a research problem? 
Has the distinction become more hazy 
over the years?


