
An Adaptive Query Execution
Engine for Data Integration

Zachary Ives, Daniela Florescu, Marc
Friedman, Alon Levy, Daniel S. Weld

University of Washington

Slides by Peng Li, Modified by Rachel Pottinger

Presentation: Rachel Pottinger

Discussion: Jason Hall

Outline
Tukwila Architecture

Interleaving of planning and execution

Adaptive Query Operators

Collector & Double Pipelined Join

Performance

The main challenges of the design of DISs:

Query Reformulation

The construction of wrapper programs

Query optimizers and efficient query
execution engines

Motivations:

 Little information for cost estimates

 Unpredictable data transfer rates

 Unreliable, overlapping sources

 Want initial results quickly
 Network bandwidth generally constrains

the data sources to be “small”

System needs to be adaptive

Discussion in Pairs

Tukwila and its double-pipelined hash join emphasize early
data return over faster and complete data return. Why do
we “want initial results quickly?”
Why would this be important with data integration
Where else could it be beneficial?

Tukwila Architecture

Novel Features of Tukwila
Interleaving of planning and execution

Compensates for lack of information

Handle event-condition-action rules
When and how to modify the implementation of
certain operators at runtime if needed.

Detect opportunities for re-optimization.

Manages overlapping data sources (collectors)

Tolerant of latency (double-pipelined join)
Returns initial results quickly

Discussion in Pairs
Credit to Carol & Nalin

Tukwila manages overlapping data sources, without really
explaining why it matters.
What problems could overlapping data introduce?
What could be some potential ways to handle it?

Interleaving of planning and execution

Novel characteristics of Tukwila:
The optimizer can create a partial plan if
essential statistics are missing or uncertain

The optimizer generates both operator trees
and appropriate event-condition-action rules.

Optimizer conserves the state of its search
space when it calls the execution engine.

Overview of the query plan structure

A plan includes a partially-ordered set of
fragments and a set of global rules

A fragment consists of a fully pipelined
tree of physical operators and a set of
local rules.

The fragment is the key mechanism for
implementing the adaptive property: at the
end of each fragment, the rest of the plan
can be re-optimized or rescheduled

Rules
Re-optimization

The optimizer’s cardinality estimate for the fragment’s
result is significantly different from the actual size  re-
invoke optimizer

Contingent planning

The execution engine checks properties of the result to
select the next fragment

Rescheduling

Reschedule if a source times out

Adaptive operators

Rule format

When event if condition then actions

When closed(frag1)

if card(join1)>2*est_card(join1)

then replan

An event triggers a rule, coursing it to
check its condition. If the condition is true,
the rule fires, executing the action(s).

Group Discussion
For one of the following motivating situations of Tukwila

Absence of statistics
Unpredictable data arrival characteristics
Overlap and redundancy among sources
Optimizing the time to initial answers

Q1: Can you give some examples where the chosen
topic matters?
Q2: If you are a member of Tukwila team, what rules
or policy would you have to deal with the problem?

To help discussion, more specific situations will be given
But you may assume any problem or situation

Discussion
Form 8 groups (3~4 person per group, two teams per topic)
Discuss Q1 and Q2 for one topic (5 ~ 7 minutes)

Examples

Orders

UPS

JoinOrders.TrackNo = UPS.TrackNo (Orders, UPS)

OrderNo
1234
1235
1399
1500

TrackNo
01-23-45
02-90-85
02-90-85
03-99-10

Status
In Transit
Delivered
Delivered
Delivered

OrderNo
1234
1235
1399
1500

TrackNo
01-23-45
02-90-85
02-90-85
03-99-10

TrackNo
01-23-45
02-90-85
03-99-10
04-08-30

Status
In Transit
Delivered
Delivered
Undeliverable

Query Plan Execution

Query plan represented as data-flow tree:

Control flow

Iterator (top-down)

Most common database
model

Easier to implement

Data-driven (bottom-up)

Threads or external
scheduling

Better concurrency

SelectStatus = “Delivered”

JoinOrders.TrackNo = UPS.TrackNo

Read
Orders

Read
UPS

“Show which orders have
been delivered”

Tukwila Plans & Execution

Multiple fragments ending
at materialization points

Rules triggered by events

Re-optimize remainder if
necessary

Return statistics

When(closed(1)):
if size_of(Orders) > 1000
then reoptimize {2, 3}

SelectStatus = “Delivered”

JoinOrders.TrackNo = UPS.TrackNo

Read
Orders

Read
UPS

(1) (2)

(3)

Adaptive Query Operators
Double Pipelined Join
Conventional Joins

Sort merge joins &indexed joins
---can not be pipelined
Nested loops joins and hash joins
---Follow an asymmetric execution model

For Nested loops joins, we must wait for the entire inner
table to be transmitted initially before pipelining begins

For hash joins, we must load the entire inner relation
into a hash table before we can pipeline.

Double Pipelined Hash Join

Proposed for parallel main-memory databases
(Wilschut 1990)

Hash table per source
As a tuple comes in, add to hash table and probe
opposite table

Evaluation:
Results as soon as tuples received
Symmetric
Requires memory for two hash tables

But data-driven!

UPS

OrderNo
1234
1235
1399
……

TrackNo
01-23-45
02-90-85
02-90-85

……

TrackNo
01-23-45
02-90-85
03-99-10

……

Status
In Transit
Delivered
Delivered

……

Orders

Hash Table
(Orders)
01-23-45

Hash Table
(UPS)

01-23-45

JoinOrders.TrackNo = UPS.TrackNo (Orders, UPS)

Example

Double-Pipelined Join
Adapted to Iterator Model

Use multiple threads with queues

Each child (A or B) reads tuples until full,
then sleeps & awakens parent

Join sleeps until awakened, then:

Joins tuples from QA or QB, returning all
matches as output

Wakes owner of queue

Join

A B

QA QB

Insufficient Memory?
May not be able to fit hash tables in RAM

Strategy for standard hash join

Swap some buckets to overflow files

As new tuples arrive for those buckets, write to files

After current phase, clear memory, repeat join on
overflow files

Conclusions

General Tukwila architecture

Non-conventional characters of Tukwila

Interleaving of optimization and execution

Double pipelined hash join

Group Discussion
Groups of 3-4

Credit to Ehsan

Would the adaptive behaviour of Tukwila be beneficial in
general database systems?
Would it boost efficiency?
What could be some advantages and disadvantages of
applying the same methods to general database
systems?

