
Access Path Selection in a

Relational DBMS

Original Slides by

Presentation: Stephen Ingram

Modified by: Rachel Pottinger

Why bother to optimize?

• Queries must be executed and execution

takes time

• There are multiple execution plans for

most queries

• Some plans cost less than others

Simple Example

• SELECT * FROM A,B,C WHERE A.n =

B.n AND B.m = C.m

• A = 100 tuples

• B = 50 tuples

• C = 2 tuples

• Which plan is cheaper?

– Join(C, Join(A, B))

– Join(A, Join(B, C))

How did we find the right one?

1. Measure the cost of each query

2. Enumerate possibilities

3. Pick the least expensive one

• Is that all?

But the search space is too big

• Just for this simple join example, we have

a factorial search space (n!)

• Just to remind you,

– 20! = 2,432,902,008,176,640,000

• So now what do we do?

Use Statistics

• For each relation keep track of

– Cardinality of tuples

– Cardinality of pages

– Etc.

• Use these statistics in conjunction with

– Predicates

– Interesting Orders

Predicates

• Predicates like =, >, NOT, etc. reduce the

number of tuples

• THUS: Evaluate predicates as early as

possible

Interesting Orders

• GROUP BY and ORDER BY or sort-merge
joins generate interesting orders

• We must consider WHEN we generate the
interesting order into the cost of a plan

• Ordering it first may be cheaper than
sorting later even though it is initially
cheaper to leave it unsorted

But…

• Statistics alone cannot save us

– Expensive to compute

– Can’t keep track of all joint statistics

• Compromise on statistics

– Periodically update stats for each relation

• Compromise on search

– Dynamic programming approach

Dynamic programming (Wikipedia)

• Optimal substructure means that optimal

solutions of subproblems can be used to find

the optimal solutions of the overall problem.

1. Break the problem into smaller subproblems.

2. Solve these problems optimally using this

three-step process recursively.

3. Use these optimal solutions to construct an

optimal solution for the original problem.

Optimal Substructure in Joins

• An N-Join is really just a sequence of 2-Joins
– 2-join becomes a single composite relation

• Important fact: The method to join the composite
is independent of the ordering of the composite

• Find the cheapest join of a subset of the N
tables and store (memoization)

• This costs 2n , which is << n!

From the Top

• Enumerate access paths to each relation
– Sequential scans

– Interesting orders

• Enumerate access paths to join a second
relation to these results (if there is a predicate to
do so)
– Nested loop (unordered)

– Merge (interesting order)

• Compare with equivalent solutions found so far
but only keep the cheapest

Example Schema

Example Query

Example Initial Access Paths

Example Search Tree

2 Relations Nested Loop

2 Relations Merge Join

Prune and 3 Relations

Major Contributions of Paper

• Cost based optimization

– Statistics

– CPU utilization (for sorts, etc.)

• Dynamic programming approach

• Interesting Orders

Discussion from Canvas
(modified from question from Ryan)

System R was revolutionary. If an industrial

team created such an amazing piece of

technology today, would they document their

achievements in a series of papers?

• Pytorch, Amazon, Google, Meta, release information of their
products, but after 6 years in production

• The tuning part is not going to be there

• But the overall structure is there

• -Patents help. After 20 years, probably already out of date. So
by sharing, not as big

• You have to have a PhD on the team who wants to write a
paper. Recruitment technique

• Might publish things that are on the fringe, or that could help
the bottom line. Blogs are good for that.

• The culture matters, seem to publish pretty often pretty
rapidly, don’t want to get scooped.

• Open AI: how do they work. Why are they doing that? The
whole system is Microsoft, they are paying Azure.

