Access Path Selection In a
Relational DBMS

Original Slides by
Presentation: Stephen Ingram
Modified by: Rachel Pottinger



Why bother to optimize?

* Queries must be executed and execution
takes time

* There are multiple execution plans for
most queries

« Some plans cost less than others



Simple Example

SELECT * FROM A,B,C WHERE A.n =
BhANDB.m=C.m

A = 100 tuples

B = 50 tuples

C = 2 tuples

Which plan is cheaper?
—Join( C, Join(A,B))
—Join( A, Join( B, C))



N

How did we find the right one?

Measure the cost of each query
Enumerate possibilities
Pick the least expensive one

Is that all?



But the search space Is too big

 Just for this simple join example, we have
a factorial search space ( n!)

« Just to remind you,
— 20! =2,432,902,008,176,640,000

« So now what do we do?



Use Statistics

* For each relation keep track of
— Cardinality of tuples
— Cardinality of pages
ol = (0

* Use these statistics in conjunction with
— Predicates
— Interesting Orders



Predicates

e Predicates like =, >, NOT, etc. reduce the
number of tuples

« THUS: Evaluate predicates as early as
possible



Interesting Orders

« GROUP BY and ORDER BY or sort-merge
joins generate Interesting orders

* We must consider WHEN we generate the
Interesting order into the cost of a plan

* Ordering It first may be cheaper than
sorting later even though it is initially
cheaper to leave it unsorted



But...

 Statistics alone cannot save us
— Expensive to compute
— Can't keep track of all joint statistics

« Compromise on statistics
— Periodically update stats for each relation

« Compromise on search
— Dynamic programming approach



Dynamic programming (Wikipedia)

Optimal substructure means that optimal
solutions of subproblems can be used to find
the optimal solutions of the overall problem.

1. Break the problem into smaller subproblems.

2. Solve these problems optimally using this
three-step process recursively.

3. Use these optimal solutions to construct an
optimal solution for the original problem.



Optimal Substructure in Joins

An N-Join is really just a sequence of 2-Joins
— 2-join becomes a single composite relation

Important fact: The method to join the composite
IS Independent of the ordering of the composite

Find the cheapest join of a subset of the N
tables and store (memoization)

This costs 2", which Is << n!



From the Top

 Enumerate access paths to each relation
— Sequential scans
— Interesting orders

 Enumerate access paths to join a second
relation to these results (if there is a predicate to
do so)
— Nested loop (unordered)
— Merge (interesting order)

« Compare with equivalent solutions found so far
but only keep the cheapest



Example Schema

CLERK
TYPIST
SALES
MECHANIC




Example Query

SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB

WHERE TITLE="CLERK’

AND LOC="DENVER’

AND EMP.DNO=DEPT.DND
AND EMP.JOB=JOB.JOB




Example Initial Access Paths

EMP; .
index indec segment
EMP.DNO EMP.JOB scan on
EMP

N, N, N,
CIEMP.DND) CIEMP JORB) C{EMP seq. scan)

}{ prunad

DEPT: T . .

index Segment
DEPT.ONO SCan on

DEPT
N Ny
F?DEFT.EH-D} CIDEPT sag. scan|
x pruned

JOB:
index ST
JOBJORB SCai O
JOB

N, M
C{JOB.JOB} EEIDH s8g, scan)




Example Search Tree

| ndex
EMPJ08

Ny Ny
CIEMP.ONO) C{EM® IOR|
Ol order JORB arder

s DEPT

Indax Irdex
(OEPFT.ONG JOBIDE

CIDEPT.ONOI  CLIODBJOB1
DN order JUIE Qo

CEMOB 583 scan)|
wnpreiered




2 Relations Nested Loop

{EMP, DEPT)

I e
EMP.DMNOD

I e
DEFT.DNO

v b

i

CIE.DND)
&
DMO order

[l

DEPT.DNO

Endex
EME.JORE

My

4
C{E.JOB)]

+

N, Cg(D.DNO)

JOB order

(EMP, JOB)

Trvdes
EMP.OMND

N

Irnchea
JOB.JOB

Ng

CIE.DNQO}
+

ONQ order

N, C¢(J.J0B)

My

Index
JOB.JOB

b

CIE.JOB)
+

N, Cg J.JOB]
JOB order

index
DEPT.ONO

Ny #

index
EMP.DND

N, ®

CiD.DNO)

N
D

.'.
CplE.DNO]
EH:I- order

(DEFT, EMP)

| ndex
JOB.JOB

Index
EMP.JOB

Ng #

+

Ci{J.JOB)

N4C (E.JOB)
JOB order

(JOB, EMF)

segment
scan
JOB

Ny

Index
EMP.JOB

N4, (E.JOB)
unorderad




2 Relations Merge Join

[EMP, JOB| ' (DEPT, EMP] (JOB, EMP)

| rachex
E.JO8

D.ODND

H‘Jl Ny ® Wy ® Ng
DNO arder DONO order JOB order JOB grder
* 1 £ * 0+ 0 3 o+ 0

i [ { ;7 i i i it
- = m . v E R L L &
m = i im m o 0 i o pr

2 5 * S S ¥ 2 e 2 ] m §
! : & = = ?

2 5 » A | r m i S B
2 & = 2 g Co=
=] =




Prune and 3 Relations

[EMP, DEPT] (EMP, JOB)

Lart JOB sag scan
by JOB into L

i

[ PNDyg-3 M
+
e Y e

"By
+{uwms Bax gor 2y
+[Mg-3)" % =

morr T ™y

PR M e—

lona-a =™

a7 Ve ¢ R | '




Major Contributions of Paper

» Cost based optimization
— Statistics
— CPU utilization (for sorts, etc.)

* Dynamic programming approach
* Interesting Orders



Discussion from Canvas
(modified from question from Ryan)

System R was revolutionary. If an industrial
team created such an amazing piece of
technology today, would they document their
achievements in a series of papers?



Pytorch, Amazon, Google, Meta, release information of their
products, but after 6 years in production

The tuning part is not going to be there
But the overall structure is there

-Patents help. After 20 years, probably already out of date. So
by sharing, not as big

You have to have a PhD on the team who wants to write a
paper. Recruitment technique

Might publish things that are on the fringe, or that could help
the bottom line. Blogs are good for that.

The culture matters, seem to publish pretty often pretty
rapidly, don’t want to get scooped.

Open Al: how do they work. Why are they doing that? The
whole system is Microsoft, they are paying Azure.






