
Extensible Query Processing in 
Starburst

Original Slides
Presentation: Kati

Discussion: Andrew
Modified by: Rachel Pottinger



Outline

◼ Motivation

◼ Solution: Extensible DBMS

◼ Language Processing

◼ Query Graph Model

◼ Query rewrite

◼ Summary



Motivation

◼ DBMSs inability to support other 
applications than administrative ones

◼ No sufficient support for the 
functions and data types needed by 
the engineering’s applications

→ additional functions and data 
types needed



Starburst Project

◼ Extensibility

◼ Language extensions

◼ Internal processing extensions

◼ Data management extensions

◼ Worth noting the time when it 
came up 

◼ Object-oriented phase



Two major components

◼ Corona: the query language 
processor

◼ Core: data manager



Starburst’s Language: Hydrogen

◼ Based on SQL

◼ Orthogonal

◼ Extensible

◼ Table expression

◼ Table function

→very complex queries possible



Language processing

◼ Two stages: compilation and 
execution



Query Graph Model

• Vertices

• Edges

• boxes



Discussion (pair & share)

◼ Jason: The ability of DBCs to 
"influence" internal processing (section 
4) seems counter to the declarative 
approach of query optimizers while the 
QGM still makes cost estimates to 
choose cheaper plans (section 6). What 
would be the advantages/disadvantages 
of allowing a query optimizer to be 
influenced from the user level on how it 
makes decisions?



- From a user point of view, still very declarative
- Could allow the user to specify the techniques
- People who know nothing vs. know everything - looking at 
the know everythings.
- Better to have things that are related to the machine
- See that this is the way that people are creating queries, 
optimize for that, abstraction
- the ability to add extensions affects stability
- if it is optional, they don't *have* do it
- having domain knowledge might be a benefit.



Query Rewrite 

◼ A form of optimization and a big 
challenge

◼ New tranformations required

◼ Rule-based approach

→ Creation of new rule system

→ Greater scope of optimization 

and improved execution plan



Rule-based Approach

◼ Rule language is C

◼ Two parts: condition and action, 
each written a C function

◼ Consistency

◼ Rule classes → Modularization



Rules- three classes

◼ Predicate migration

◼ Projection push-down

◼ Operation merging



No(!?) cost-based query-
rewrite

◼ All alternatives are generated 

◼ At the plan level cost-based

◼ BUT interaction desired

◼ SINCE number of alternatives 
grows tremendously 



Cost-based optimization

◼ Plan generation

◼ Plan costing

◼ Search strategy

◼ Designed to be orthogonal



Plan generator

◼ Strategy alternative rules (STARs)

◼ A general-purpose STAR evaluator

◼ A search strategy that chooses the next 
STAR to evaluate

◼ An array of STARs



Summary

◼ Starburst: extensible DBMS

◼ Extensions to the language, the 
language processing and the data 
manager

◼ Table expressions allow 
orthogonality

◼ Orthogonality & Extensibility →
complex queries possible



Summary

◼ Query internally a QGM

◼ QGM simplifies the DBC’s task, 
give him a great deal of flexibility 
and power

◼ Rule-based query rewrite

◼ Grammar-like rules to generate 
plans



Discussion (group)

◼ Sepher: Under what business models 
does it make sense to make one 
particular DBMS extensible like that? 
What skills would a Database 
Customizer (DBC) have to have? Who 
would they be?



◼ System assumes that you have such a person, but 
then what if that person leaves? (maintainability)

◼ Salesforce has a special position to customize the 
ERM. Whether they’ll have regular work is 
problematic

◼ People have it in their resumes. But not very
general.

◼ Very applied skill set. Need domain knowledge. But 
consultants could help, especially for an industry

◼ Education is important. Especially for people in 
other domains.




