
Relational Roots

Rachel Pottinger

Administrative notes
Homework 1 due Tuesday

On paper responses:

Make sure that discussion questions are good for discussion – questions with
a “right” or “wrong” answer make for bad discussion

Also, make sure that you give a discussion question that isn’t something
where *I* am the only who can answer it!

If you haven’t signed up for presentation/discussion leading by the end
of drop/add, I will assign you topics. Make your own choices! (note: I
tend to grade easier on the first few people who go)

A few words on the project

Project proposal nominally due the 31st

Goal: to make sure you’re on the right track – or at least picked a group

Check website for sample projects

Goals of the day:

To cover the first two papers

To give an idea about how I would suggest

presenting/leading discussion

I’ll be wearing at least three hats:

Presenter

Discusser

Me

Overview: Two papers
E.F. Codd. A Relational Model of Data for Large Shared Data
Banks. CACM 13(6), 1970, pp. 377-387

Donald D. Chamberlin, Morton M. Astrahan, Mike W. Blasgen,
Jim Gray, W. Frank King III, Bruce G. Lindsay, Raymond A. Lorie,
James W. Mehl, Thomas G. Price, Gianfranco R. Putzolu,
Patricia G. Selinger, Mario Schkolnick, Donald R. Slutz, Irving L.
Traiger, Bradford W. Wade, Robert A. Yost: A History and
Evaluation of System R. CACM 24(10): 632-646 (1981).

http://www.cs.ubc.ca/~rap/teaching/504/2005/readings/p377-codd.pdf
http://www.cs.ubc.ca/~rap/teaching/504/2005/readings/history-of-system-r.pdf

Codd paper: (presenter hat)

The paper that introduced relational databases – a real

paradigm shift

Interesting from at least three perspectives:

More detailed overview than what I gave ;)

Describing the new system – and it’s comparison with prior

work

What was retained, and what changed

The Key Idea: Physical Data Independence

As stated in overview, not previously true

Seen through some of the examples:

“… existing systems … require … data … stored in at least one

total ordering … associated with the hardware-determined

ordering of addresses”

“can application[s]… remain invariant as indices come and

go”? (not always obvious)

Secondary idea: Removing Access Path Dependency

Previous work had more complicated data structures

If in hierarchical model, need to decide on the hierarchy

Three problems (at least): (more detail on each coming)

Design problem

Access path problem

Failure when a change in structure is necessary

Design problem

In the relational model, everything’s just a relation

Don’t need to a priori decide how things are related

Worth noting two exceptions to this:

Normalizing

Foreign keys and other constraints

Access path problem

An access path is the way that we actually access the

data, i.e., the bits on the disk

In Codd’s relational model, this is just the relations or

indices on them

In previous data models querying required knowing the

indexes

Access was also restricted by the hierarchy of the data

Failure when a change in structure is necessary

When the structure is changed, this means all

applications are obsolete

This is still somewhat true even with physical data

independence

Still have to redo all queries (they’re just a lot shorter now)

Relational view:

A mathematical relation

Sets rather than bags

Table only viewed as a vehicle for exposition

Could have multiple attributes with same name (domain)

Necessitates more complicated “relationships” in model

If you read the paper closely, you’ll see Codd ties himself over

knots over details caused by this →

No wonder it was dropped

Overview discussion (discussion hat)

Form a group of 3-4 and discuss:

Why do you think this was the right time for relational databases?
Bigger data sets? Something else?

Normal form (presenter hat)

Key idea: not quite the current notion of normal form –

goal is to rid “non-simple domains” – implied hierarchy

Now:

No longer have the same notion of simple domains; just have

simple foreign keys

This kind of normalization comes for free with ER → Relational

translation

Lots of other normal forms considered in 70s

Operators
Goal for designers not users

Permutation: permute the order of the columns, (for performance?).
(discussion hat) Why would this be relevant? Is it just a holdover from
mathematics?

Projection: same as today

Join: same as today. (discussion hat) today we usually describe as a cross
product followed by selection. He describes it straight out. Why?

Composition & Restriction: basically combinations of projection and join

Key point: some things he got, some things he didn’t.

Summary of Codd’s paper

The introduction of relational databases

Total paradigm change

Still using not only concepts but terms

Some things he got wrong (chiefly query language)

Worth noting, it’s in CACM

Ending discussion for Codd paper (discussion hat)

This paper had no implementation or evaluation. Thus it

would be rejected from almost every conference today.

What does this say about our metrics today? What does

this say about chances for paradigm change?

System R
Basically started where Codd’s paper left off

Major research system that pioneered relational databases

including:

SQL (not covered)

Query optimization (up next)

Done at IBM San Jose (now Almaden)

Was one of two first real relational database systems

Other was Ingres from Berkeley

Many other papers gave deep evaluation; this is just a summary

A brief over view of their goals
High level interface

Support different uses, e.g., pre-programmed queries, reports,
and ad-hoc

Allow changing database (e.g., tables and views) without
stopping system

Allow many users

Recovery

Allow different views (query and updates)

Achieve speed of previous systems

Discussion hat: how impressive was this?

Three phases of the project

Phase zero: prototype

Phase one: re-design

Phase two: evaluation in usage

Phase zero

Always planned to throw one away

Discussion hat: Now common systems maxim, what are pluses

and minuses?

Space of problem:

Only single user

No joins!

Underlying system XRM
Don’t worry about the details

Main points

assumed unique (separate) tuple id

No data actually in base tuple (inversions)

Basically, everything is an index

Worked horribly!

TID

Hardest part: optimizing queries

Much more on this next week

One key point: original cost model was # of tuples

fetched. Discovered not main factor.

Phase One: multiple users
First up, ditch the storage system (XRM) move to a new one
(RSS)

Have a locking sub-system that “ensures that each data value is
accessed, by only one user at a time”. (Discussion hat) Does this
allow enough concurrency? Is it restrictive enough? (small
groups, some with db background, some not). Goal, talk things
over

Allowed querying from both PL/I and Cobol

Compilation

Includes parsing and checking validity – nowadays, never

talked about

They followed their previous work and changed the cost

model to minimize I/Os

More on optimization next week

Join Methods (still used today)

Nested loops:

Scan over a qualifying row in table A. For each row, fetch

matching row of table B

Greatly speeded if index on table B

Sort-Merge

Sort table A. Sort Table B. Merge using matching values

Key advantage: when you’re done, it’s sorted

More on these when we get to evaluation

Join Discussion

Only appreciated joins after user study. Why is this a

surprise, especially because they were in Codd’s paper?

Security model

Very limited

Recovery & locking
Media failure discussion

Nowadays usually handled by RAID. We won’t go into this

Locking: same notion as today, though exact lock types
are different

They locked predicates, not the same as our locking
today

We’ll look more at this when we get to ARIES (warning –
that paper is LONG)

Phase Two (evaluation)

Generally good

Interesting to look at what is implied for prior systems:

“several user sites reported that they were able to install

the system, design and load a database, and put some

application programs within a matter of days” Discussion:

would this fly now? Why or why not?

Discussion:

“User sites also reported that it was possible to tune the

system performance after data was loaded by creating

and dropping indexes [sic] without impacting end users or

application programs” Hard to imagine this is a surprise.

What does it mean about impact of this work?

SQL
SQL generally successful

Major point, since not part of Codd’s model

One advantage cited: only need one language for
different contexts – applications, ad hoc, and declaring
views

Huge, huge win

SQL creep begins

“exists”

“like”

Security lessons

Wanted a “group” of users. This is now standard practice

Note that they comment that they get rid of the notion of

“shadow pages” and just use a log. This is what is

typically done now.

Summary of System R

One (of 2) first real implementations of relational model

Great methodology, huge amount of progress

Many things they got right

A few things they got wrong

Overall discussion:

“It is always true for new ways of doing things that it might

not be performant on day one but might give other

benefits. As a community, how do we judge such works

so that they are not dismissed purely on the basis of

performance?” -- Sid

Meta comments

Discussion

Don’t leave it until the very end of a paper, but can be batched

or not

Can be related to both papers

Didn’t discuss all details – even left some big chunks out

I’ll give you a list of things to be sure not to skip

