The Gamma Database Machine Project

David DeWitt, Shahram Ghandeharizadeh, Donovan Schcheider, Allan Bricker, Hui-i Hsiao, and Rick Rasmussen

> Slides adopted from those of Deepak Bastakoty, and Ghandeharizadeh and DeWitt

> > Presenter: Jianhao Cao Discussion Leader: Jeffrey Niu UBC CPSC 504 – 2023.03.07

Outline

- Motivation
- Hardware Architecture
- Software Architecture
- Query Processing
- Transaction and Failure Management
- Performance
- Conclusion

Why parallel databases?

- Obtain faster response time
- Increase query throughput
- Improve robustness to failure
- Reduce processor workload
- Enable scalability

DIRECT

- Early parallel database project
- Shared memory
- Centralized control of parallel algorithms

DIRECT

- Early parallel database project
- Shared memory
- Centralized control of parallel algorithms

```
Impossible to scale the architecture
to hundreds of processors!
```

Share-nothing

• Each processor has it own memory or disk(s)

Hash-based parallel algorithms

No centralized control

Horizontal partitioning (declustering)

- Tuples of a relation distributed over multiple disks.
- Round robin; hashed; range partitioned

Hardware Architecture

GAMMA 1.0

- 17 VAX 11/750 processors, each with 2 MB memory
- Another VAX as the host machine
- An 80 Mb/s token ring to connect processors
- 8 processors attached with 333 MB disk drivers

Problems

- The token ring network packet size is too small (2K bytes)
- The bandwidth mismatch between the token ring and the Unibus on the 11/750
- Insufficient memory for each processor

Hardware Architecture

GAMMA 2.0

- 32 processor iPSC/2 hypercube from Intel
- 386 CPU, 8 MB memory
- 330 MB MAXTOR 4380 disk drive with a 45 KB RAM buffer
- Custom VLSI routing modules for network communication
- NOSE (Gamma's OS) run as a thread package inside a process

Did the experience with VAX, iPSC/2 and the bugs they found to strengthen the paper, weaken it, or didn't impact it? (Sid)

Software Architecture

Horizontally partitioned data: round robin; hashed; range partitioned

Software Architecture

The split table defines a mapping of values to a set of destination processes.

Query Processing

Selection

- Selection on the partitioning attribute
 - Direct the selection to a subset of nodes if hash or range partitioned.
 - Initiate the selection on all nodes if round-robin partitioned.

🖵 Join

- Partition relations into disjoint subsets (buckets) by hashing on the join attribute.
- Four types of parallel joins: sort-merge, Grace, Simple, Hybrid.
- The Hybrid hash join almost always provides the best performance.

Query Processing Algorithms

Aggregate functions

- Each processor computes a partial results on its partition.
- The processors redistribute the results on hashing on the "group by" attribute.

Update operators

- Most operators are implemented with standard techniques.
- A replace operator will send a tuple to the partition to which it belongs.

Ideal Parallelism

Speedup

Given a system with 1 node, does adding *n* nodes speed it up with a factor of *n* ?

Speedup = $\frac{small_system_elapsed_time}{big_system_elapsed_time}$

Scaleup

Given a system with 1 node, does the response time remain the same with *n* nodes ?

Scaleup = $\frac{small_system_elapsed_time_on_small_problem}{big_system_elapsed_time_on_big_problem}$

Conclusion

Three key ideas that enable Gamma to be scaled to hundreds of processors:

- Horizontally partitioning
- Extensive use of hash-based parallel algorithms
- Dataflow scheduling techniques for multioperator queries

What are the similarities and differences between parallel databases and data integration?

- Problem setup (motivation, what/where data is available)
- Goals (what does the system aim for?)

MapReduce: Simplified Data Processing on Large Clusters

> Jeff Dean, Sanjay Ghemawat Google, OSDI 2004

Slides based on those by authors and other online sources

Presenter: Jianhao Cao Discussion Leader: Jeffrey Niu UBC CPSC 504 – 2023.03.07

- Large scale data processing
 - Using hundreds or thousands of machines but without the hassle of management
- MapReduce benefits
 - Automatic parallelization & distribution
 - Fault tolerance
 - I/O scheduling
 - Monitoring & status updates

Programming model

- Input & Output: each a set of key/value pairs
- Programmer specifies two functions:

```
map(in_key, in_value) -> list(out_key, intermediate_value)
```

- Processes each input key/value pair
- Produces set of intermediate pairs

reduce(out_key, list(intermediate_value)) -> list(out_value)

- Combines all intermediate values for a particular key
- Produces a set of merged output values (usually just one)
- Inspired by similar primitives in LISP and other functional languages

Example: Count word occurrences

- Input: (URL, content) pairs
- map(key=URL, value=content):
 - for each word w in content, output (w, 1)
- reduce(key=word, values=uniq_counts_list)
 - sum all 1's in uniq_counts_list
 - output(word, sum)

Word count example illustrated

map(key=url, val=content):
 For each word w in contents, emit (w, "1")
 reduce(key=word, values=uniq_counts_list):
 Sum all "1"s in values list
 Emit result "(word, sum)"

MapReduce model widely applicable

Implementation overview

- Typical cluster:
 - 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
 - Limited bisection bandwidth
 - Storage is on local IDE disks
 - GFS: distributed file system manages data (SOSP'03)
 - Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines
- Implementation as C++ library linked into user programs

The implementation hardware is quite impressive.

- Is it helpful for entities like Google to release papers on projects that are out of scope for most others? (Jason)
- If you were in a less resourceful setting, how would you approach a research topic like this? How would the research be different (e.g. evaluation)? (Michael)

Overall execution workflow

Fault-tolerance via re-execution

- On worker failure:
 - Detect failure via periodic heartbeats
 - Re-execute completed and in-progress map tasks
 - Output stored on the local disk becomes inaccessible
 - Re-execute in progress *reduce* tasks
 - Output stored in a global file system
 - Task completion committed through master
- Master failure:
 - Left unhandled as considered unlikely
 - Abort the MapReduce computation
- Robust: lost 1600 of 1800 machines, but finished fine

Refinement: Locality Optimization

- Master scheduling policy:
 - Asks GFS for locations of replicas of input file blocks
 - Map tasks typically split into 64MB (== GFS block size)
 - Map tasks scheduled so GFS input block replica are on same machine or same rack
- Effect: Thousands of machines read input at local disk speed
 - Without this, rack switches limit read rate

Refinement: Task Granularity • Fine granularity tasks: map tasks >> machines

- Minimizes time for fault recovery
- Can pipeline shuffling with map execution
- Better dynamic load balancing
- Often use 200K map and 5000 reduce tasks running on 2000 machines

Process	Time>										
User Program	MapReduce()				wait						
Master	Assign tasks to worker machines										
Worker 1		Map 1	Map 3								
Worker 2		Map 2									
Worker 3			Read 1.1		Read 1.3		Read 1.2		Redu	ice 1	
Worker 4		Read 2.1				Read 2.2	Read	ł 2.3	Reduce	e 2	

Refinement: Backup Execution

- Slow workers significantly lengthen completion time
 - Other jobs consuming resources on machine
 - Bad disks with soft errors transfer data very slowly
 - Weird things: processor caches disabled (!!)
- Solution: Near end of phase, start backup task copies
 - Whichever one finishes first "wins"
- Benefit: Dramatically shortens job completion time

Refinement: Skipping Bad Records

- Map/Reduce functions sometimes fail for particular inputs
 - Best solution is to debug & fix, but not always possible
- On segmentation fault:
 - Send UDP packet to master from the signal handler
 - Include sequence number of record being processed
- If master sees two failures for the same record:
 - Next worker is told to skip the record
- Effect: Can work around bugs in third-party libraries

Other Refinements

- Sorting guarantees within each reduce partition
- Compression of intermediate data
- Combiner: useful for saving network bandwidth
- Local sequential execution for debugging/testing
- User-defined counters

Google Experience: Rewrite of Production Indexing System

- Rewrote Google's production indexing system using MapReduce
 - New code is simpler, easier to understand
 - MapReduce takes care of failures, slow machines
 - Easy to make indexing faster by adding more machines

Conclusions

- MapReduce has proven to be a useful abstraction.
- Network bandwidth is a scarce resource.
- Redundant execution can reduce the impact of slow machines and machine failures.

- In 2008, David DeWitt (author on the Gamma paper) and Michael Stonebraker (author on What Goes Around Comes Around) wrote a scathing review of MapReduce, calling it "a major step backwards".
- In it, they lament that MapReduce ignores lessons from 40 years of database technology and that schools are even teaching MapReduce to first-year students.

In the article, they present five criticisms of MapReduce:

- 1. MapReduce is a step backward in database access
 - MapReduce doesn't have schemas, data independence, and high-level access languages
 - No different than CODASYL
- 2. MapReduce is a poor implementation
 - No indices, essentially brute-force sequential search
 - No experimental evaluation to prove it scales
- 3. MapReduce is not novel
 - Concepts have been introduced 20 years ago
 - MapReduce no different from user-defined aggregate functions

- 4. MapReduce is missing features
 - Indices, updates to change data in database, transactions, integrity constraints
- 5. MapReduce incompatible with DBMS tools
 - Report writers (prepare reports for human visualization)
 - Data mining (discovery of structure in large datasets)
 - Database design tools (assist user in constructing database)
 - Hard to use MapReduce in end-to-end task without these tools

- 1. MapReduce is a step backward in database access
- 2. MapReduce is a poor implementation
- 3. MapReduce is not novel
- 4. MapReduce is missing features
- 5. MapReduce incompatible with existing DBMS tools

Are these criticisms valid, invalid, or irrelevant?

- \checkmark = valid
- **X** = invalid
- O = irrelevant