
The Gamma Database Machine Project
David DeWitt, Shahram Ghandeharizadeh, Donovan Schcheider,

Allan Bricker, Hui-i Hsiao, and Rick Rasmussen

Slides adopted from those of Deepak Bastakoty,
and Ghandeharizadeh and DeWitt

Presenter: Jianhao Cao
Discussion Leader: Jeffrey Niu
UBC CPSC 504 – 2023.03.07

Outline
•Motivation
• Hardware Architecture
• Software Architecture
• Query Processing
• Transaction and Failure Management
• Performance
• Conclusion

Motivation

q Why parallel databases?
•Obtain faster response time
• Increase query throughput
• Improve robustness to failure
•Reduce processor workload
• Enable scalability

Motivation

q DIRECT
• Early parallel database project
• Shared memory
•Centralized control of parallel algorithms

Motivation

q DIRECT
• Early parallel database project
• Shared memory
•Centralized control of parallel algorithms

Impossible to scale the architecture

to hundreds of processors!

Motivation

q Share-nothing
• Each processor has it own memory or disk(s)

q Hash-based parallel algorithms
• No centralized control

Motivation

q Horizontal partitioning (declustering)
• Tuples of a relation distributed over multiple disks.
• Round robin; hashed; range partitioned

Hardware Architecture

q GAMMA 1.0
• 17 VAX 11/750 processors, each with 2 MB memory
• Another VAX as the host machine
• An 80 Mb/s token ring to connect processors
• 8 processors attached with 333 MB disk drivers

q Problems
• The token ring network packet size is too small (2K bytes)
• The bandwidth mismatch between the token ring and the Unibus on the 11/750
• Insufficient memory for each processor

Hardware Architecture

q GAMMA 2.0
• 32 processor iPSC/2 hypercube from Intel
• 386 CPU, 8 MB memory
• 330 MB MAXTOR 4380 disk drive with a 45 KB RAM buffer
• Custom VLSI routing modules for network communication
• NOSE (Gamma’s OS) run as a thread package inside a process

Discussion

Did the experience with VAX, iPSC/2 and the bugs they found to
strengthen the paper, weaken it, or didn’t impact it? (Sid)

Software Architecture

Horizontally partitioned data:
round robin; hashed;
range partitioned

One for each active
Gamma user

One for each
multisite query

Software Architecture
The split table defines a mapping of values to a set of destination processes.

The Parallel Simple Hash Join

Data flow Control flow

Query Processing

q Selection
• Selection on the partitioning attribute

• Direct the selection to a subset of nodes if hash or range partitioned.
• Initiate the selection on all nodes if round-robin partitioned.

q Join
• Partition relations into disjoint subsets (buckets) by hashing on the join attribute.
• Four types of parallel joins: sort-merge, Grace, Simple, Hybrid.
• The Hybrid hash join almost always provides the best performance.

Query Processing Algorithms

q Aggregate functions
• Each processor computes a partial results on its partition.
• The processors redistribute the results on hashing on the “group by” attribute.

q Update operators
• Most operators are implemented with standard techniques.
• A replace operator will send a tuple to the partition to which it belongs.

Ideal Parallelism
q Speedup

Given a system with 1 node, does adding n nodes speed it up with a factor of n ?

q Scaleup
Given a system with 1 node, does the response time remain the same with n nodes ?

Conclusion

q Three key ideas that enable Gamma to
be scaled to hundreds of processors:

• Horizontally partitioning
• Extensive use of hash-based parallel algorithms
• Dataflow scheduling techniques for multioperator queries

Discussion

What are the similarities and differences between parallel
databases and data integration?
• Problem setup (motivation, what/where data is available)
• Goals (what does the system aim for?)

MapReduce: Simplified
Data Processing on Large

Clusters
Jeff Dean, Sanjay Ghemawat

Google, OSDI 2004

Slides based on those by authors and other online sources

Presenter: Jianhao Cao

Discussion Leader: Jeffrey Niu

UBC CPSC 504 – 2023.03.07

Motivation

• Large scale data processing
• Using hundreds or thousands of machines but without the hassle of

management

• MapReduce benefits
• Automatic parallelization & distribution
• Fault tolerance
• I/O scheduling
• Monitoring & status updates

Programming model

• Input & Output: each a set of key/value pairs
• Programmer specifies two functions:

map(in_key, in_value) -> list(out_key, intermediate_value)

• Processes each input key/value pair
• Produces set of intermediate pairs

reduce(out_key, list(intermediate_value)) -> list(out_value)

• Combines all intermediate values for a particular key
• Produces a set of merged output values (usually just one)

• Inspired by similar primitives in LISP and other functional languages

Example: Count word occurrences

• Input: (URL, content) pairs
• map(key=URL, value=content):
• for each word w in content, output (w, 1)

• reduce(key=word, values=uniq_counts_list)
• sum all 1’s in uniq_counts_list
• output(word, sum)

Word count example illustrated
map(key=url, val=content):

For each word w in contents, emit (w, “1”)
reduce(key=word, values=uniq_counts_list):

Sum all “1”s in values list
Emit result “(word, sum)”

see bob throw
see spot run

see 1
bob 1
run 1
see 1
spot 1
throw 1

bob 1
run 1
see 2
spot 1
throw 1

MapReduce model widely applicable

• MapReduce programs in Google source tree (2003-04)

Examples
distributed grep distributed sort web link-graph reversal
term-vector / host web access log stats inverted index construction

document clustering machine learning statistical machine
translation

...

Implementation overview

• Typical cluster:
• 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
• Limited bisection bandwidth
• Storage is on local IDE disks
• GFS: distributed file system manages data (SOSP'03)
• Job scheduling system: jobs made up of tasks, scheduler assigns tasks to

machines

• Implementation as C++ library linked into user programs

Discussion

The implementation hardware is quite impressive.
• Is it helpful for entities like Google to release papers on projects that

are out of scope for most others? (Jason)
• If you were in a less resourceful setting, how would you approach a

research topic like this? How would the research be different (e.g.
evaluation)? (Michael)

Overall execution workflow

Fault-tolerance via re-execution

• On worker failure:
• Detect failure via periodic heartbeats
• Re-execute completed and in-progress map tasks

• Output stored on the local disk becomes inaccessible
• Re-execute in progress reduce tasks

• Output stored in a global file system
• Task completion committed through master

• Master failure:
• Left unhandled as considered unlikely
• Abort the MapReduce computation

• Robust: lost 1600 of 1800 machines, but finished fine

Refinement: Locality Optimization

• Master scheduling policy:
• Asks GFS for locations of replicas of input file blocks
• Map tasks typically split into 64MB (== GFS block size)
• Map tasks scheduled so GFS input block replica are on same machine or same

rack

• Effect: Thousands of machines read input at local disk speed
• Without this, rack switches limit read rate

Refinement: Task Granularity
• Fine granularity tasks: map tasks >> machines

• Minimizes time for fault recovery
• Can pipeline shuffling with map execution
• Better dynamic load balancing

• Often use 200K map and 5000 reduce tasks running on
2000 machines

Refinement: Backup Execution

• Slow workers significantly lengthen completion time
• Other jobs consuming resources on machine
• Bad disks with soft errors transfer data very slowly
• Weird things: processor caches disabled (!!)

• Solution: Near end of phase, start backup task copies
• Whichever one finishes first "wins"

• Benefit: Dramatically shortens job completion time

Refinement: Skipping Bad Records

• Map/Reduce functions sometimes fail for particular inputs
• Best solution is to debug & fix, but not always possible

• On segmentation fault:
• Send UDP packet to master from the signal handler
• Include sequence number of record being processed

• If master sees two failures for the same record:
• Next worker is told to skip the record

• Effect: Can work around bugs in third-party libraries

Other Refinements

• Sorting guarantees within each reduce partition
• Compression of intermediate data
• Combiner: useful for saving network bandwidth
• Local sequential execution for debugging/testing
• User-defined counters

Google Experience: Rewrite of
Production Indexing System
• Rewrote Google's production indexing system using

MapReduce
• New code is simpler, easier to understand
• MapReduce takes care of failures, slow machines
• Easy to make indexing faster by adding more machines

Conclusions

• MapReduce has proven to be a useful abstraction.
• Network bandwidth is a scarce resource.
• Redundant execution can reduce the impact of slow machines and

machine failures.

Discussion

• In 2008, David DeWitt (author on the Gamma paper) and Michael
Stonebraker (author on What Goes Around Comes Around) wrote a
scathing review of MapReduce, calling it "a major step backwards".
• In it, they lament that MapReduce ignores lessons from 40 years of

database technology and that schools are even teaching MapReduce
to first-year students.

Discussion

In the article, they present five criticisms of MapReduce:
1. MapReduce is a step backward in database access
• MapReduce doesn’t have schemas, data independence, and high-level

access languages
• No different than CODASYL

2. MapReduce is a poor implementation
• No indices, essentially brute-force sequential search
• No experimental evaluation to prove it scales

3. MapReduce is not novel
• Concepts have been introduced 20 years ago
• MapReduce no different from user-defined aggregate functions

Discussion

4. MapReduce is missing features
• Indices, updates to change data in database, transactions, integrity

constraints

5. MapReduce incompatible with DBMS tools
• Report writers (prepare reports for human visualization)
• Data mining (discovery of structure in large datasets)
• Database design tools (assist user in constructing database)
• Hard to use MapReduce in end-to-end task without these tools

Discussion

1. MapReduce is a step backward in database access
2. MapReduce is a poor implementation
3. MapReduce is not novel
4. MapReduce is missing features
5. MapReduce incompatible with existing DBMS tools

Are these criticisms valid, invalid, or irrelevant?
✔ = valid
X = invalid
O = irrelevant

