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Who’s gonna take the biggest chunk of the pie?

A  B I G Company has a need for DBMSs to control the WIDEST – HUGHEST
amount EVER seen of applications. Two options come to the plateau: one group of 
developers offering the somewhat well known Relational model and another one 
offering an object oriented approach based on Object Store. 

The B I G Company decides to hear what’s good and bad of this new approach 
before deciding in whose hands each one of its applications are going to end.



Motivation

• Impedance mismatch between application code and database code 
(eg, C++ and SQL)

• ObjectStore provides a uniform programmatic interface to both 
persistent and transient data.

Persistent = data stored in a database
Transient = data when running a program 



C++ 
• Object-oriented (OO) programming language

• Classes w/
• Abstraction, encapsulation, inheritance, polymorphism

• Pointers
• Variable the stores the memory address of an object
• Can ‘directly’ manipulate memory (more low-level than other languages)
• But! Can lead to a lot of memory mixup and errors because of empty memory 

that may not be allocated for



Goal: add persistence to C++

• Ease of learning: C++ plus a little extra.

• No translation code: persistent data is treated like transient data.

• Expressive power: general purpose language (as apposed to SQL)

• Reusability: same code can operate on persistent or transient data

• Ease of conversion: data operations are syntactically the same for persistent and transient data.

• Type checking: same static type-checking from C++ works for persistent data.

• Temporal/Spatial locality: take advantage of common access patterns.

• Fine interleaving: low overhead to allow frequent, small database operations

• Performance: do it all with good performance compared to RDBMSs



Application Interface

• Three programming interfaces: libraries for C and C++, and an 
extended C++ language. We focus on language extension.

• Keyword persistent. Used when declaring variables
• A few other keywords (inverse_member, indexable) for defining how 

objects in the DB relate.



main()

{

database *db = database::open(“/company/records”);

persistent<db> department* engineering_department;

transaction::begin();

employee *emp = new(db) employee(“Fred”);

engineering_department->add_employee(emp);

emp->salary = 1000;

transaction::commit();

}



Collections

• Similar to arrays in PL’s or tables in DBMSs

• Allow performance tuning: developers specify access patterns and an 

appropriate data structure is chosen

• Elements may be selected from collections with queries



Relationships
(this can be skimmed or skipped as needed)

• Pairs of inverse pointers which are maintained by the system.

• One-to-one, one-to-many, and many-to-many are supported.

• Syntactically, relationships are C++ data members, however, updating 

causes its inverse to be updated.



Associative Queries

• Selection predicates can be applied to collections.
• Special syntax: [: predicate :]
• Eg. 
employees [: salary >= 10000 :]

• Queries may be nested.



Approx Query example

SELECT * salary
FROM all_employees ??
WHERE salary >= 100,000

os_Set(employee*)& overpaid_employees = 
all_employees [: salary >= 100,000 :];

os_Set(employee*)> & overpaid_employees= 
all_employees->query(‘employee*’, “ [: salary >= 
100,000:]”);

C++

Extended C++

SQL



Accessing persistent data

• Overhead is a major concern.

• Once objects have been retrieved, subsequent references should be 

as fast as an ordinary pointer dereference.

• Similar goals as a virtual memory system-- use VM system in OS for 

solution



Query optimizations

Some RDBMS query optimization techniques don’t work or make sense

• Collections are not known by name

• Join optimization is less of a problem
• paths can be viewed as precomputed joins
• optimization is index selection
• “true joins” are rare

• Index maintenance is more of a problem



Discussion (from Matt)

Learning from the history of “excellent”  ideas that didn't make it - should 
we be cautious about deployment right away? How can we tell when the 
winds favor us? Is it luck, or is there something we can research/plan for?



COLD

warm



Conclusion

• Performance experiments show caching and virtual memory-mapping 
architecture work.

• Small case study shows productivity benefits 
• ObjectStore provides

• Ease of use
• Persistent C++ 
• Expressive power
• High performance due to VM mapping architecture 



Who’s gonna take the biggest chunk of the pie?

A  B I G Company has a need for DBMSs to control the WIDEST – HUGEST amount 
EVER seen of applications. Two options come to the plateau: one group of 
developers offering the somewhat well known Relational model and another one 
offering an object oriented approach based on Object Store. 

The B I G Company decides to hear what’s good and bad of this new approach 
before deciding in whose hands each one of its applications are going to end.



Of Objects and Databases: A 
decade of Turmoil

Michael J. Carey, David J. DeWitt
(1996)

Devyani McLaren 
(slides adapted from Ricardo Pedrosa, Jian Xu)

Feb 14th 2023
CPSC 504



Objects and Databases. Areas of research

• Extended relational database systems.
• Persistent programming languages.
• Object-oriented database systems.
• Database system toolkits/components.



Extended Relational Database Systems
Areas of Research 1

• Allow the additional of new, user-defined abstract data types (ADTs).
• ADTs are implemented in an external language
• After being registered with the database, ADT’s functions can be used in queries

• Projects
• Ingres
• Postgres

• Query optimizers with ADT’s properties and functions awareness
• Support for storing and querying complex data types



Persistent Programming Languages
Areas of Research 2

• Add data persistency and atomic program execution to traditional object-oriented 
programming languages

• Problems addressed:
• Impedance mismatch



Object-Oriented Database Systems
Areas of Research 3

• Combine all of the features of a modern database system with those of an 
object-oriented programming language, yielding an objected-oriented 
database (OODB) system.

• Focused on:
• Support for querying, indexing and navigation
• Addressing version management needs of engineering apps



Database system toolkits/components
Areas of Research 4

• Provide a DBMS that can be extended at almost any level and have additional 
tools that help building domain-appropriate DBMS

• Projects:
• Exodus

• Storage manager for objects
• E: a persistent programming language
• Query optimizer generator

• Starburst
• Clean architectural model that facilitates storage and indexing 

extensions
• Rule-based extensible query subsystem



Objects & Databases in 1996

What happened?

• System toolkits & persistent programming languages:

• Despite some interesting results these were a failure from a commercial POV

• OO Database systems:

• Many results from the academic POV. Not expanded commercially as expected by its 

developers

• Language-specific object wrappers for relational databases:

• New approach that appears to be important for building OO, client-side apps

• Extended relational DBS

• Renamed as Object-Relational DBMS. Appears to be a settling in terms of providing 

objects for enterprise DB apps



Causalities 

The database toolkit approach problem

• Require a lot of expertise
• End up in being inflexible awkward of incomplete
• As OO and O-Relational database systems provide enough extensibility, it’s not 

worthy to start from scratch even given a toolkit to help in the process



Causalities 

Why Exodus failed?

• The client/server architecture introduced an unwanted level of indirection when 

users tried to use EXODUS to implement their own object servers

• E programming language: Too general for skilled database implementors and too 

low-level for application-oriented programmers

• The query optimizer was inefficient and hard to use



Causalities 

Persistent Programming Languages

• No commercial implementation of such a language

• Still active as a research area in academia

• Work on this area has had a significant impact and has been transferred to OODBMS

• Navigational programming interfaces

• Persistent models

• Garbage collection schemes for persistent data



What OODBM’s must support
Object-Oriented Database Systems (OODBMS) 

• Complex objects
• Object identity
• Encapsulation
• Inheritance & substitutability

• Late binding
• Computationally complete methods
• Extensible type system
• Persistence

• Secondary storage management
• Concurrency control
• Recovery
• Ad hoc queries

What OODBM’s might support
• Multiple (vs. single) inheritance
• Static (vs. dynamic) type checking)
• Distribution
• Long transactions
• Version management



What went wrong with OODMS?
Object-Oriented Database Systems (OODBMS) 

• Lack of standards

• OODBMS products are behind RDMS in some terms (e.g. no views) 

• Painful schema evolution

• Low availability of application development tools



Standards

https://xkcd.com/927/



Standards (from Jeffrey and Carol)

• What situations/environments lend themselves well 
to standardization efforts? Which ones devolve into 
conflict and disagreement?



Main tenets for ORDBMS (aka extended DBMS)
Object-Relational Database Systems (ORDBMS)

• Provide support for richer object structures

• Subsume RDBMS

• Be open to other subsystems (tools and multi-database middleware products)

What ORDBMS should provide? 

• A rich type system, inheritance, functions, and encapsulation, optional unique 

ids and rules/triggers

• A high-level query-based interface, stored and virtual collections, updatable 

views and separation of data model and performance features



Fully integrated solution
A vision from 1996 -> 2006

• Object relational servers will provide:

• Support OO ADTs

• Inheritance among ADTs

• ADT Implementation in various programming languages

• Full OO support for row types

• Support for middle-tier and desktop applications

• Methods and queries will be run on cached data on servers or clients 

depending on where’s faster



Research Challenges
A vision from 1996 -> 2006

• Server functionality and performance
• Client integration
• Parallelization
• Legacy data sources
• Standards



Many of you, but explicitly Michael

• What determines which solution “wins” out in the 
end, if any?



Bonus discussion (Yingfeng)

What happens to an area if it lacks commercial value 
but still has academic/engineering value？
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