
Comparison of Parallel DB and MapReduce

MapReduce: A Flexible Data Processing Tool

Original Slides Author: John Kubiatowicz
Modified by: Jingxuan Huang (Carol)

Presentor: Jingxuan Huang (Carol)
Discussion Leader: Ehsan Soltan Aghai (Ehsan)

Grey Beards:“ MapReduce is a major step backwards”
Young Turks:” No, it’s because you have so many misconceptions about
MapReduce.”

MapReduce vs Parallel DB: are they comparable?

“Though it may seem that MR and parallel databases target different audiences, it is

in fact possible to write almost any parallel processing task as either a set of

database queries or a set of MapReduce jobs”

Similarity

1. “shared nothing “ architecture

2. achieve parallelism by dividing any data set to be utilized into partitions

Difference

Parallel DB MapReduce

Schema Support Yes No

Built-in Index Yes No

Programming Model Declarative (SQL) Procedural (C/ C++/ Java)

Flexibility Not as high High

Execution Strategy Push Pull

Fault Tolerance Not as good Good

Parallel DB MapReduce

Configuration Complex; one-shot Easy; for each task

Start-up Warm “Cold start”

Compression Save time and space Not improve performance

Loading Slow, many pre-processing Easy and fast

Difference

Schema Support

MapReduce

❖ No schema required

❖ Flexible, no need to predefine schema

❖ Bad if data are shared by multiple

applications. Must address data syntax,

consistency, etc.

❖ Cannot ensure integrity constraints (e.g.,

employee salaries must be non

negative); vulnerable to bad data

Parallel DBMS

❖ Relational schema required

❖ Good if data are shared by

multiple applications

Programming Model & Flexibility

MapReduce

 2 functions: Map and Reduce

 little data independence: presenting

algorithms for data access

“We argue that MR programming is

somewhat analogous to Codasyl

programming…was criticized for being

“the assembly language of DBMS

access””

 better generality

Parallel DBMS

 declarative language like SQL

 insufficient expressive prowess

 SQL can be hard to use for people

brought up programming in

procedural languages

Indexing

MapReduce

❖ No built-in indexes

❖ Programmers can implement

their own index support in

Map/ Reduce code (not easy)

❖ But hard to share the

customized indexes in multiple

applications

Parallel DBMS

❖ All modern DBMSs use Hash/b-tree indexes

to accelerate access to data

MapReduce’s Defence

 An index can be added to each database, which can be used as an input to MapReduce.

 When MR reads from Bigtable, can read only a sub-range or selected columns (to avoid full

scan)

Data Distribution

MapReduce

 need to manually compute

statistics before utilizing them

Parallel DBMS

❖ Leverage the knowledge of data

distribution to schedule and minimize

the amount data transmitted over the

network

❖ Automatic query optimization

Execution Strategy & Fault Tolerance

MapReduce

❖ Pull: seek data for computation

❖ Intermediate results are saved to local

files

 When multiple Reducers are reading

local files from Map workers, there

could be large numbers of disk seeks,

leading to poor performance.

❖ If a node fails, restart the task on an

alternative node (without aborting the

whole computation)

Parallel DBMS

❖ Push: send computation to data

❖ Avoid Intermediate results, push

across network

❖ If a single node fails, must re-run the

entire query

MapReduce’s Defence

❖ They chosed Pull model due to the fault-tolerance properties required

by Google’s developers

❖ Fault-tolerance being more important in the future

Discussion Question

Rank the following features in large-scale data analysis from the most

important one to the least:

❖ Schema support

❖ Indexing

❖ Programming model

❖ Data distribution

❖ Execution strategy

❖ Flexibility

❖ Fault tolerance

Discussion Question

G1 G2 G3 G4

Schema support 6 7 6 2

Indexing 1 2 4 7

Programming
model

5 3 5 6

Data distribution 2 6 2 4

Execution
strategy

4 4 3 3

Flexibility 7 1 7 5

Fault tolerance 3 5 1 1

Performance Benchmarks

Benchmark Environment: 100-node cluster (controversial)

Tested Systems:

● MapReduce framework: Hadoop
● Parallel DB: DBMS-X (an unidentified commercial database system), Vertica

Data Loading

Hadoop: load to HDFS as plain text (in parallel)

DBMS-X: two phases
❖ read from the local file system (sequentially)
❖ reorganize data on each node (e.g., compress data, build index) (in parallel)

Vertica: load data in parallel and automatically sorted and compressed

Data Loading

Data Inputs: (2 Data sets)

1. Scaleup: Fix the size of data per node (535MB/node), add nodes and data
2. Speedup: Fix the total data size (1TB), add nodes

Performance Benchmarks

Tasks:

● Original MR task (Grep: globally search a regular expression and print)

● Analytical Tasks (related to HTML document processing)

❖ Selection
❖ Aggregation
❖ Join
❖ User-defined-function (UDF) aggregation

For each task, Hadoop needs to do an additional Reduce job to combine the

output into a single file (which is argued unnecessary in the 2nd paper)

Grep Task Execution Performance

(Fix the size of data per node) (Fix the total data size)

MapReduce’s Defence

● High start-up overhead is due to the immature implementation, not
fundamental differences in programming models.

○ Google has started optimizing performance

Select Task Performances

❖ Find the pageURLs in the rankings table
(1GB/node) with a pageRank > threshold

SQL:

SELECT pageURL, pageRank

FROM Rankings WHERE pageRank> X;

MR:

single Map, no Reduce

MapReduce’s Defence

● To avoid a full scan, the input of MapReduce can be a database with an
index that provides efficient filtering or an indexed file structure.

○ (still rely on db to solve its own issue)

Aggregation Performances

2 versions, to test the effect of #groups on query performance

SELECT sourceIP, SUM(adRevenue)

FROM UserVisits GROUP BY sourceIP;

Join Performances

UDF Aggregation Performances

Count the number of inlinks for each document (~PageRank calculations)

MapReduce’s Defence: Why Hadoop performs so bad in
comparison paper?

❖ It used textual format as input, whereas at Google they use Protocol Buffer format to read

and write data. It will dramatically improve performance (e.g., for parsing input, 20

nanoseconds per record as compared to the 1,731 nanoseconds)

❖ Reading unnecessary data (select, aggregation, join)

❖ No need for merging results

❖ Tons of loading time wasted in parallel DBMSs

MapReduce’s Defence: Why is MapReduce better?

❖ Heterogeneous system: a mix of storage systems

❖ MR provides a simple model for analyzing data in heterogenous systems.

❖ Easy and fast loading: Especially because “Data sets are often generated,

processed once or twice, and then discarded”

❖ “it is possible to run 50 or more separate MapReduce analyses before it is possible to load

the data into a database and complete a single analysis“

❖ Supports complex functions (compared to the awkward UDF)

Discussion Question

MapReduce misconceptions:

❖ Why are there many “incorrect understandings” on MapReduce?

➢ MapReduce cannot use indices and implies a full scan of all input data.
➢ MapReduce input and outputs are always simple files in a file system.
➢ MapReduce requires the use of inefficient textual data formats.

❖ It is obvious that the comparison paper authors have internal biases toward
MapReduce. If you are a critic of a method, how can you prove your point while

maintaining a neutral stance? (Jeffrey)
❖ Since industry is not very transparent about their work and research, there will

always be miscommunication between academia and industry. What can people

do to alleviate such miscommunication? (Jianhao)

History Repeats Itself: Sensible and
NonsenSQL Aspects of the NoSQL Hoopla

-- “Human’s demand of query type is changing in web 2.0.”

-- “Not everything needs to be done differently just because it is supposedly a very
different world now!”

--- C.Mohan (who proposed ARIES)

Slides Made By: Yisheng Zhu (Ethan)
Modified by: Jingxuan Huang (Carol)
Presentor: Jingxuan Huang (Carol)
Discussion Leader: Ehsan Soltan Aghai (Ehsan)

Why RDBMSs are inadequate nowaday?

❖ Data is less structured and the structure changes a lot.

❖ To Become a master of RDBMS, you need learn SQL

❖ Response times are critical

❖ Lower consistency requirements

❖ Types of query has changed: simple data accesses but large volumes of

data

❖ Graceful ways of handling failures of individual nodes

❖ Commodity servers

In certain types of applications, typically Web 2.0 ones, for which RDBMSs were
found to be inadequate:

Observed Problems of NoSQL

❖ The importance of thinking about locking, storage management and

recovery concurrently, instead of adding these functionality later

which would be very hard (lessons from ARIES)

❖ Goodness of standards are forgotten in the context of NoSQL systems.

❖ Forgot the benefits of high level languages and data independence.

❖ Indexing should not be lost.

❖ Data model of NoSQL is not necessarily simpler. Varying data models

can be a nightmare for data migration.

❖ Not supporting ACID transaction functionality is oversimplification.

Discussion Question

❖ This paper compared similarity and new requirements of NoSQL over RDBMS
in indexing, data models, document stores and transactions. Think of other

features that NoSQL might distinct from RDBMS.
❖ In what realistic cases might the limitations in NoSQL in not applying

transactions (and its ACID functionality) come back to hurt a company?

(Michael)

	Comparison of Parallel DB and MapReduceMapReduce: A Flexible Data Processing Tool
	MapReduce vs Parallel DB: are they comparable?
	Similarity
	Difference
	Difference
	Schema Support
	Programming Model & Flexibility
	Indexing
	MapReduce’s Defence
	Data Distribution
	Execution Strategy & Fault Tolerance
	Slide Number 12
	MapReduce’s Defence
	Discussion Question
	Discussion Question
	Performance Benchmarks
	Data Loading
	Data Loading
	Performance Benchmarks
	Grep Task Execution Performance
	MapReduce’s Defence
	Select Task Performances
	MapReduce’s Defence
	Aggregation Performances
	Join Performances
	UDF Aggregation Performances
	MapReduce’s Defence: Why Hadoop performs so bad in comparison paper?
	MapReduce’s Defence: Why is MapReduce better?
	Discussion Question
	History Repeats Itself: Sensible and NonsenSQL Aspects of the NoSQL Hoopla
	Why RDBMSs are inadequate nowaday?
	Observed Problems of NoSQL
	Discussion Question

