
Dremel
Original slides: Matt Tolton
Modified by: Sarah Chen
Presenter: Sarah Chen
Discussion Leader: Matt Oddo

Large-scale data analysis
 Data analysis is lifeblood of many companies

 Parallel database systems
◦ Not designed for extreme scale

 MapReduce [Dean, Ghemawat ’04]
◦ Fault-tolerant data processing

 Can be used to execute queries!
◦ Not designed for low latency (coding, batch jobs)

2

Dremel: data analysis tool, ad-hoc query processing system

Interactive response time required for good data analysis

Dremel

3

Key Features
 Interactive speed at very large scale

 Nested data model with SQL-like language

 Interoperates with Google’s data management tools

Applications
 Use in complement with MapReduce

 1. Run MapReduce to do some data analysis

 2. Use Dremel to query resulting output

 3. Feed results of query to another MapReduce pipeline or serving system

Widely used inside Google
 Analysis of crawled web documents

 Tracking install data for applications
on Android Market

 Crash reporting for Google products

 OCR results from Google Books

 Spam analysis

 Debugging of map tiles on Google
Maps

 Tablet migrations in managed
Bigtable instances

 Results of tests run on Google's
distributed build system

 Disk I/O statistics for hundreds of
thousands of disks

 Resource monitoring for jobs run in
Google's data centers

 Symbols and dependencies in
Google's codebase

6

10s/1000s-node instances in several data centers

Nested columnar
storage
(columnio)

7

Discussion

“The data used in web and scientific computing is non-relational”

This applies to us as researchers. In your own work, what shape
does the data come in, and how would you evaluate tradeoffs

(e.g. in developer overhead, data loading, etc.) [Michael]

Per group, please share one or two concrete examples of
attempts at fitting your data into a relational paradigm.

Nested data model

 Records vs. columns
A

B

C D

E
*

*

*

. . .

. . .r
1

r
2

r
1

r
2

r
1

r
2

r
1

r
2

10

Challenge: preserve structure, reconstruct from a subset of fields

Read less,
cheaper
decompression

Nested data model

11

message Document {
 required int64 DocId; [1,1]
 optional group Links {
 repeated int64 Backward; [0,*]
 repeated int64 Forward;
 }
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country; [0,1]
 }
 optional string Url;
 }
}

DocId: 10
Links
 Forward: 20
 Forward: 40
 Forward: 60
Name
 Language
 Code: 'en-us'
 Country: 'us'
 Language
 Code: 'en'
 Url: 'http://A'
Name
 Url: 'http://B'
Name
 Language
 Code: 'en-gb'
 Country: 'gb'

r1 DocId: 20
Links
 Backward: 10
 Backward: 30
 Forward: 80
Name
 Url: 'http://C'

r2multiplicity:

value r d
10 0 0
20 0 0

DocId
value r d

http://A 0 2
http://B 1 2
NULL 1 1

http://C 0 2

Name.Url

value r d
en-us 0 2

en 2 2
NULL 1 1
en-gb 1 2
NULL 0 1

Name.Language.Code Name.Language.Country

Links.BackwardLinks.Forward

value r d
us 0 3

NULL 2 2
NULL 1 1

gb 1 3
NULL 0 1

value r d
20 0 2
40 1 2
60 1 2
80 0 2

value r d
NULL 0 1

10 0 2
30 1 2

ColumnIO representation

value r d
en-us 0 2

en 2 2
NULL 1 1
en-gb 1 2
NULL 0 1

Name.Language.Code

r1.Name1.Language1.Code: 'en-us'
r1.Name1.Language2.Code: 'en'
r1.Name2

r1.Name3.Language1.Code: 'en-gb'
r2.Name1

: common prefix

Repetition and
definition levels

DocId: 10
Links
 Forward: 20
 Forward: 40
 Forward: 60
Name
 Language
 Code: 'en-us'
 Country: 'us'
 Language
 Code: 'en'
 Url: 'http://A'
Name
 Url: 'http://B'
Name
 Language
 Code: 'en-gb'
 Country: 'gb'

DocId: 20
Links
 Backward: 10
 Backward: 30
 Forward: 80
Name
 Url: 'http://C'

r: which repeated field has repeated
d: how many fields which could be NULL are present

Record assembly FSM

14

Name.Language.CountryName.Language.Code

Links.Backward Links.Forward

Name.Url

DocId

1

0

1
0

0,1,2

2

0,11
0

0

For record-oriented data processing (e.g., MapReduce)

Transitions
labeled with
repetition levels

Reading two fields

15

DocId

Name.Language.Country1,2

0

0

DocId: 10
Name
 Language
 Country: 'us'
 Language
Name
Name
 Language
 Country: 'gb'

DocId: 20
Name

s1

s2
• Structure of parent fields is preserved.

Both Dremel and
MapReduce can read same
columnar data

Hierarchical query
processing

16

Query processing architecture
 Optimized for select-project-aggregate

◦ Very common class of interactive queries

◦ Single scan

◦ Within-record and cross-record aggregation

 Unit of storage: tablet
◦ Self-contained horizontal partition of a table

 Unit of execution: slot
◦ Thread on a server

◦ E.g., 3K servers × 8 threads = 24K slots

17

Schema Metadata Data
keys, order, ranges, … C1 … Cn

Serving tree

18

storage layer (e.g., GFS)

. . .

. . .
. . .leaf servers

(with local
 storage)

intermediate
servers

root server

client

•Parallelizes scheduling
and aggregation

•Fault tolerance
•Stragglers
•Designed for "small"
results (<1M records)

[Dean WSDM'09]

Example: count()
SELECT A, COUNT(B) FROM T
GROUP BY A
T = {/gfs/1, /gfs/2, …, /gfs/100000}

SELECT A, SUM(c)
FROM (R11 UNION ALL R110)
GROUP BY A

SELECT A, COUNT(B) AS c
FROM T11 GROUP BY A
T11 = {/gfs/1, …, /gfs/10000}

SELECT A, COUNT(B) AS c
FROM T12 GROUP BY A
T12 = {/gfs/10001, …, /gfs/20000}

SELECT A, COUNT(B) AS c
FROM T31 GROUP BY A
T31 = {/gfs/1}

. . .

0

1

3

19

R11 R12

Data access ops

. . .

. . .

Dremel: A Decade of
Interactive SQL Analysis
at Web Scale
Presenter: Sarah Chen
Discussion: Matt Oddo

Dremel
Many key ideas and architectural principles introduced by Dremel have become trends or best
practices

1. SQL

2. Disaggregated compute and storage

3. Columnar storage

4. In situ data analysis

5. Serverless computing

Dremel also dealt with latency

Moving Away from SQL- Google
 Early 2000s- Big Data era at Google

 “SQL doesn’t scale”

 Turned to NoSQL systems

 Gained scalability, lost ease of use and ability to iterate quickly

Coming back to SQL- Google
 Dremel brought SQL back

 Faster and simpler to write SQL queries to perform data analysis

 Elsewhere at Google, F1 project and other OLTP-focused applications

 New challenge- Each system had own dialect

 Solution- GoogleSQL project resulting in one SQL dialect, but still issue across industries

Coming back to SQL- Open source
world
 Followed similar journey

 Left SQL due to issues of scalability and cost as data grew

 Came back due to challenges of complexity and slow iteration

 E.g., HiveSQL, SparkSQL, and Presto

Disaggregation- Storage
 Initially, servers with local disks directly attached

 Motivation: Scalability

 Shifted to Borg and replicated storage organization

 Still had some issues

 Solution- Use GFS for storage

 Time consuming to get there due to latency, will discuss in more detail later

Disaggregation- Memory
Motivation- Implementing distributed join through shuffle primitive, using local RAM and disks
for intermediate storage but could not scale
Result- Shuffle implementation where RAM and storage managed separately
Allowed for in-memory query execution
Big influence on architecture

Disaggregation
 Major trend

 Can provision resources independently from one another

 Better cost-performance and elasticity

Columnar storage for nested data
Early 2000s- Many semi-structured data with flexible schemas as opposed to relational schema

2000s-2010s- Column based storage one of other trends in DBMS research, e.g., Vertica

Dremel proposed columnar storage for semistructured data

Other companies influenced by this such as Twitter and Cloudera, Facebook and Hortonworks,
and the Apache Foundation

Columnar storage for nested data

Dremel paper ORC proposed by Facebook and Hortonworks

Columnar storage for nested data
New columnar format- Capacitor

Extensions

1. Efficient filtering
2. Can reorder rows
3. Support for more complex schemas

Discussion

“Table row-store is a legacy paradigm, the future is columnar-store!”

Agree? Disagree?

In situ data analysis
Access data in place without data loading and transformation

Initially, like other DBMSs, Dremel stored data in proprietary format inaccessible to other tools

When transferred to GFS, switched to “open-sourced” self-describing columnar format

Allows other tools and SQL queries to operate on data

In situ data analysis
Built on in two ways

1. Added different file formats
2. Federation, can do in situ analysis with other file systems

In situ data analysis
Drawbacks

● Have to manage data yourself

Need for both in situ data analysis but also managed storage systems

Serverless Computing
Serverless computing- Elastic, multi-tenant, on-demand service

Three key ideas that enabled serverless computing

1. Disaggregation

2. Fault tolerance and responsibility
● Designed with idea that compute resources unreliable so workers are unreliable as well
● Enabled easy adjusting of resources

3. Virtual scheduling units

Evolution of Serverless Computing
1. Centralized scheduling

● Previously, query dispatcher for each server node
● Now, scheduler that uses entire cluster state

2. Shuffle persistence layer
● Stores results of shuffle
● Scheduler can adjust number of workers based on result

Evolution of Serverless Computing
3. Flexible Execution DAGs

● Query coordinator first receives query
● Workers are pool without predefined structure

Evolution of Serverless Computing
4. Dynamic Query Execution

● As execute query plan, can update query execution tree based on statistics
● Ability to do this due to shuffle persistence layer and centralized query coordinator

Latency
Need low latency for Dremel but some design principles work against latency

Dremel uses many techniques to handle this

● Stand-by server pool
● Speculative execution
● Multi-level execution tree
● Column-oriented schema representation
● Balancing CPU and I/O with lightweight compression
● Approximate results
● Query latency tiers
● Reuse of file operations
● Guaranteed capacity
● Adaptive query scaling

Conclusion
Overall, Dremel got many things right

● Disaggregated compute and storage
● Serverless computing
● Columnar storage for semi-structured data
● In situ data analysis

Also a few things missed

● Shuffle layer
● Managed data option required in addition to in situ
● SQL standards

Discussion

What kind of provisions can be made in the case
that instead of the scale of data changes, it is the
structure of the data itself that changes? [Nalin]

