
Query Evaluation 
Techniques for large DB

Original slides by Daniela 
Stasa

Modified by Rachel Pottinger



Purpose

 To survey efficient algorithms and   
software architectures of query execution 
engines for executing complex queries
over large databases



Steps

 Translate logical query from SQL to query tree in logical 
algebra. 

 Query tree in logical algebra is translated into a physical plan
 Optimizer expands search space and finds best plan. 
 Optimal physical plan copied out of optimizer’s memory 

structure and sent to query execution engine. 
 query execution engine executes plan using relations in 

database as input, and produces output



Query execution engine

 What is it?
Collection of query execution operators and 

mechanisms for operator communication and 
synchronization

Query execution engine defines the space of 
possible plans that can be chosen by query 
optimizer.



Some of the techniques discussed

 Algorithms and their execution costs

 Sorting versus hashing

 Parallelism

 Resource allocation

 Scheduling issues

 Performance-enhancement techniques

 And more … 



Some notes

On the context
While many of the techniques were developed 

for relational database systems most are 
applicable to any data mode that allows 
queries over sets and lists.

 Type of queries
Discusses only read-only queries but mostly 

applicable to updates.



Discussion

 This paper was written some time ago. Do 
you think that in the time since then the 
issues would have gotten better or worse. 
Why?



- Hardware changes: More in the way of multi-core and 
multiprocessing, and SSD
- Changes in how the hardware is working, faster to be able to 
move data into caching for processing
- Challenges: Data has gotten much larger, more complex? 
More joins, more things, different server, different locations?
- People are willing to put more data in, because of better 
hardware, cycle.
- Basic things are pushed to hardware, that can only happen 
when the field matures



Architecture of query execution 
engines

 Focus on useful mechanisms for 
processing sets of items
Records

Tuples 

Entities

Objects



Physical Algebra

 Taken as a whole, the query processing 
algorithms form an algebra which we call 
physical algebra of a database system



Physical vs. Logical Algebra

 Equivalent but different
 Logical algebra: related to data model and 

defines what queries can be expressed in 
data model

 Physical algebra: system specific
Different systems may implement the same 

data model and the same logical algebra but 
may use different physical algebras



Physical vs. Logical Algebra

 Specific algorithms and therefore cost 
functions are associated only with physical 
operators not logical algebra operators

 Mapping logical to physical non–trivial: 
 It involves algorithm choices
Logical and physical operators not directly 

mapped
Some operators in physical algebra may 

implement multiple logical operators
etc



Iterators

 Two important features of operators
Can be combined into arbitrarily complex 

evaluation plans

Any number of operators can schedule and 
execute each other in a single process 
without assistant from underlying OS



Implementation issues

 Prepare an operator for producing data
Open

 Produce an item
next

 Perform final housekeeping
close



Observations

 Entire query plan executed within a single 
process

 Operators produce an item at a time on request
 Items never wait in a temporary file or buffer 

(pipelining)
 Efficient in time-space-product memory cost
 Iterators can schedule any type of trees 

including bushy trees
 No operator affected by the complexity of the 

whole plan



Sorting &Hashing

 The purpose of many query-processing 
algorithms is to perform some kind of matching, 
 i.e., bringing items that are “alike” together and 

performing some operation on them.

 There are two basic approaches used for this 
purpose:
 sorting 
 and hashing.

 These are the basis for many join algorithms



Design Issues

 Sorting should be implemented as an iterator
 In order to ensure that sort module interfaces well 

with the other operators, (e.g., file scan or merge-
join).

 Input to the sort module must be an iterator, and 
sort uses open, next, and close procedures to 
request its input
 therefore, sort input can come from a scan or a 

complex query plan, and sort operator can be 
inserted into a query plan at any place or at several 
places.



More on Sorting

 For sorting large data sets there are two distinct sub-
algorithm :
 One for sorting within main memory
 One for managing subsets of the data set on the disk.

 For practical reasons, e.g., ensuring that a run fits into 
main memory, the disk management algorithm typically
uses physical dividing and logical combining (merging).

 A point of practical importance is the fan-in or degree of 
merging, but this is a parameter rather than a defining 
algorithm property.



Level 0 run

 There are two 
alternative methods 
for creating initial runs
 In-memory sort 

algorithm (usually 
quick sort)

 Replacement 
Selection



Quick Sort   vs.
Replacement Selection

 Run files in RS are typically larger than memory ,as 
oppose to QS where they are the size of the memory

 Qs results in burst of reads and writes for entire memory 
loads from the input file to initial run files while RS 
alternates between individual read and write 

 In RS memory management is more complex 
 The advantage of having fewer runs must be balanced 

with the different I/0 pattern and the disadvantage of 
more complex memory management.



Hashing

 Alternative to sorting

 Expected complexity of hashing algorithms 
is O(N) rather than O( N log N) as for 
sorting.

 Hash-based query processing algorithms 
use an in-memory hash table of database 
objects to perform their matching task. 



Hashing Overflow

 When hash table is larger than memory, 
hash table overflow occurs and must be 
dealt with.

 Input divided into multiple partition files 
such that partitions can be processed 
independently from one another,

 Concatenation of results of all partitions is 
the result of the entire operation.



Hash overflow



Hashing & Sorting: similar 
issues on opposite ends

Sorting Hashing



Indices/indexes

 Goal:
 To reduce the number of accesses to secondary 

storage 

 How?
 By employing search techniques in the form of 

indices (sometimes, also materialized views, but not 
in this paper)

 Indices map key or attribute values to locator 
information with which database objects can be 
retrieved. 



Some Index Structures:

 Clustered & Un-clustered
 Clustered: order or organization of index entries 

determines order of items on disk.

 Sparse & Dense
 Sparse: Indices do not contain an entry for each data 

item in the primary file, but only one entry for each 
page of the primary file; 

 Dense: there are same number of entries in index as 
there are items in primary file.

 Non-clustering indices must always be dense



Buffer Management

 Goal: reduce I/O cost by cashing data in an I/O 
buffer.

 Design Issues
 Recovery
 Replacement policy
 performance effect of buffer allocation
 Interactions of index retrieval and buffer management 

 Implementation Issues
 Interface provided : fixing –unfixing
 Intermediate results kept in a separate buffer



Discussion (pairs)

 There are many issues that could be 
covered by either the OS or the
database. Break into groups and discuss 
some of these issues. For each 
issue, what are the pros and the cons of 
handling it in the database? 



- GPUs
- TPUs - Tensor matrix processing, hardware specific, ML
- DOJ: combining databases and OS, create a monopoly.
- OS as manager for resource allocations, works in general, 
but not great for databases,
- in general, LRU (least recently used) works great, but not 
for DB
- Database people always want more control. Turf war.
- Different for different scenarios



BINARY MATCHING OPERATIONS

 Relational join most prominent binary matching 
operation (others: intersection, union, etc)

 Set operations such as intersection and 
difference needed for any data model

 Most commercial db systems as of 1993 used 
only nested loops and merge-join. As per 
research done for SystemR, these two were 
supposed to be most efficient.

 SystemR researchers did not consider Hash join 
algorithms, which are today considered even 
better in performance.



NESTED-LOOPS JOIN ALGORITHMS: 
simple elegance

 For each item in one input, scan entire other 
input to find matches.

 Performance is really poor, because inner input 
is scanned often. (paper points this out)

 Tricks to improve performance include:
 larger input should be the outer one.

 if possible, use an index on the attribute to be 
matched in the inner input.

 Inner input can be scanned once for each ‘page’ of 
outer input.



MERGE-JOIN ALGORITHMS

 Requires both inputs sorted on the join 
attribute

 Requires keeping track of interesting 
orderings

 Hybrid join (used by IBM for DB2), uses 
elements from index nested-loop joins and 
merge join, and techniques joining sorted 
lists on index leaf entries.



HASH JOIN ALGORITHMS

 Based on in-memory hash table on one input (smaller 
one, called ‘build input’ ), and probing this table using 
items from the other input (called ‘probe input’).

 Very fast if build input fits into memory, regardless of size 
of probe input.

 overflow avoidance methods needed for larger build 
inputs.

 both inputs partitioned using same partitioning function. 
Final join result formed by concatenating join results of 
pairs of partitioning files.

 Recursive partitioning may be used for both inputs
 More effective when the two input sizes are very different 

(smaller being the build input).



CONCLUSION:

The choice of Hash based or Sort based 
should be based on relative sizes of inputs 
and the danger of performance loss due to 
skewed data or hash value distribution.



 Does the number of generally used joins 
seem large or small to you?  Why?

 Are you surprised by any of the joins that 
are used?



Discussion (adapted from Sid’s 
comments)
 Who should write survey papers? Grad 

students? Senior researchers? Why? 
What are the benefits and disadvantages 
to having people from different groups 
write them?



- More important to have a diverse selection of authors. These 
are usually single author papers.
- Supervisor could have a view at both sides, working with grad 
students, but also know the research. Academia vs. Industry? 
interns?


