Fast Algorithms for Mining Association Rules

Rakesh Agrawal Ramakrishnan Srikant IBM Almaden Research Center VLDB 1994

Slides adopted from Dan Li, Sudeepa Roy Presenter: Yingfeng Lu Discussion Leader: Jianhao Cao CPSC 504 Data mining is the exploration and analysis of large quantities of data in order to discover valid, novel, potentially useful, and ultimately understandable patterns in data.

- Valid: The patterns hold in general.
- Novel: We did not know the pattern beforehand.
- Useful: We can devise actions from the patterns (business intelligence).
- Understandable: We can interpret and comprehend the patterns

Characteristics of Data Mining

- Key Characteristics
 - Large, multidimensional datasets
 - Efficient algorithms to "discover" knowledge
- What's the connection with database systems?
 - Managing the data
 - Extract, Transform, and Load
 - There may be many distributed, heterogeneous sources.
 - Large numbers of records; many dimensions
 - Heavy emphasis on I/Os
 - Query evaluation and optimization considerations

Association Rules

- One type of data mining rules is Association Rules
- An example rule is "people who buy diapers tend to buy beer"
- This is useful for stores because they can improve stock
- They've also been used in many areas, including medical diagnoses, protein sequence composition, health insurance claim analysis and census data

- Stores keep track of all the items that people bought at a time
- By looking at all of the different purchases, we can figure out which items were bought at the same time
- Then we can figure out which one was the "cause" and which one was the "effect"

Notations & Sample Data

- Notations:
 - Items: $I = \{i_1, i_2, ..., i_m\}$
 - D: a set of transactions
 - A transaction: $T, T \subseteq I$, with a unique identifier TID
- Each row is a *transaction* one person's grocery order
- So in T2 the person bought Sushi and Bread

T1	Sushi, Chicken, Milk
T2	Sushi, Bread
Т3	Bread, Vegetables
T4	Sushi, Chicken, Bread
T5	Sushi, Chicken, Ramen, Bread, Milk
Т6	Chicken, Ramen, Milk
T7	Chicken, Milk, Ramen

 Now we need to decide whether there are any items that people tend to buy when they buy other items. We refer to this as a rule

Support

- Informally: support measures if items appear together a lot of times
- Formally: A rule X→Y holds with support s if s% of transactions contain X AND Y.

T1	Sushi, Chicken, Milk	
Т2	Sushi, Bread	
Т3	Bread, Vegetables	
T4	Sushi, Chicken, Bread	
T5	Sushi, Chicken, Ramen, Bread, Milk	
Т6	Chicken, Ramen, Milk	
Τ7	Chicken, Milk, Ramen	

• For example, {Chicken, Ramen, Milk} occurs with 3/7= 42% support

CPSC 504

Confidence

- Informally: confidence measures which items suggest the others will be there, too.
- Formally: A rule X→Y holds with confidence c if c% of transactions that contain X also contain Y

T1	Sushi, Chicken, Milk
T2	Sushi, Bread
Т3	Bread, Vegetables
T4	Sushi, Chicken, Bread
T5	Sushi, Chicken, Ramen, Bread, Milk
T6	Chicken, Ramen, Milk
Τ7	Chicken, Milk, Ramen

Ramen \rightarrow Milk, Chicken [conf = 3/3 = 100%] Ramen, Chicken \rightarrow Milk [conf = 3/3 = 100%] A rule is valid if its support is above a given threshold (minimum support) and its confidence is over another given threshold (minimum confidence).

A frequent itemset (or large itemset) is a set of items that has at least minimum support

T1	Sushi, Chicken, Milk
Т2	Sushi, Bread
Т3	Bread, Vegetables
Τ4	Sushi, Chicken, Bread
T5	Sushi, Chicken, Ramen, Bread, Milk
Т6	Chicken, Ramen, Milk
T7	Chicken, Milk, Ramen

In this example, {chicken, milk, ramen} is a frequent itemset if the minimum support is less than 3/7.

The problem of discovering all association rules can be decomposed into two subproblems:

- 1. Find all sets of items (itemsets) that have transaction support above minimum support.
 - Two algorithms: Apriori and AprioriTid
- 2. Use the large itemsets to generate the desired rules.

The paper focuses on subproblem 1.

Calculating association rules on terabytes of data can be slooowww. The slowest part is *counting the support*.

The Apriori algorithm speeds things up based on the observation that each subset of a frequent itemset must *also* be a frequent itemset

For example, since rice only appears one time, it can't appear 2 or times with anything else.

Transaction	Items
T1	apple, dates, <mark>rice</mark> , corn
T2	corn, dates, tuna
Т3	apple, corn, dates, tuna
T4	corn, tuna

Intuition: any subset of a large itemset must be large.

Algorithms for discovering large itemsets make multiple passes over the data.

- In the first pass, determine which individual item is large.
- In each sequent pass,
 - Previous large itemsets are used to generate candidate itemsets.
 - Count actual support for the candidate itemsets.
 - Determine which are the real large itemsets.
- This process continues until no new large itemsets are found.

Algorithm Apriori

1) $L_1 = \{ \text{large 1-itemsets} \};$ 2)for $(k = 2; L_{k-1} \neq \emptyset; k++)$ do begin 3) $C_k = \operatorname{apriori-gen}(L_{k-1}); // \operatorname{New candidates}$ 4)forall transactions $t \in \mathcal{D}$ do begin 5) $C_t = \text{subset}(C_k, t); // \text{Candidates contained in } t$ 6) forall candidates $c \in C_t$ do $7) \\ 8)$ c.count++;end 9) $L_k = \{ c \in C_k \mid c.\text{count} \ge \text{minsup} \}$ 10) end 11) Answer = $\bigcup_k L_k;$

Input: large itemsets L_{k-1} Output: New candidate itemsets C_k

- The apriori-gen function has two steps:
 - Join
 - Prune

Start by finding the support of all itemsets of size 1

Support:

$$\{apple\} = 2/4$$

 $\{corn\} = 4/4$
 $\{dates\} = 3/4$
 $\{rice\} = 1/4$
 $\{tuna\} = 3/4$

Transaction	Items
T1	apple, dates, rice, corn
T2	corn, dates, tuna
Т3	apple, corn, dates, tuna
T4	corn, tuna

All possible itemsets of size 2:

{apple, corn}
{apple, dates}
{apple, rice}
{apple, tuna}
{corn, dates}
{corn, rice}
{corn, tuna}
{dates, rice}
{dates, tuna}
{rice, tuna}

Transaction	Items
T1	apple, dates, rice, corn
T2	corn, dates, tuna
Т3	apple, corn, dates, tuna
T4	corn, tuna

Minimum support = 50%

Because {rice} only occurs once, anything including {rice} can't occur 2 or more times, so we can ignore itemsets including {rice}.

All possible itemsets of size 2:

{apple, corn}
{apple, dates}
{apple, tuna}
{corn, dates}
{corn, tuna}
{dates, tuna}

Transaction	Items
T1	apple, dates, rice, corn
T2	corn, dates, tuna
Т3	apple, corn, dates, tuna
T4	corn, tuna

Minimum support = 50%

Because {rice} is not frequent, anything including {rice} is not frequent, so we can ignore itemsets including {rice}.

All possible itemsets of size 2:

{apple, corn} {apple, dates}

{apple, tuna}
{corn, dates}
{corn, tuna}
{dates, tuna}

Transaction	Items
T1	apple, dates, rice, corn
T2	corn, dates, tuna
Т3	apple, corn, dates, tuna
T4	corn, tuna

Support for all possible itemsets of size 2: {apple, corn} = 2/4 {apple, dates} = 2/4 {apple, tuna} = 1/4 {corn, dates} = 3/4

{corn, tuna} = 3/4

dates, needates, tuna = 2/4

rice, tuna}

Transaction	Items
T1	apple, dates, rice, corn
T2	corn, dates, tuna
Т3	apple, corn, dates, tuna
T4	corn, tuna

All frequent itemsets of size 2:

{apple, corn}
{apple, dates}
{corn, dates}
{corn, tuna}
{dates, tuna}

Transaction	Items
T1	apple, dates, rice, corn
T2	corn, dates, tuna
Т3	apple, corn, dates, tuna
T4	corn, tuna

Given frequent itemsets of size 2

{apple, corn}
{apple, dates}
{corn, dates}
{corn, tuna}
{dates, tuna}

Transaction	Items
T1	apple, dates, rice, corn
T2	corn, dates, tuna
Т3	apple, corn, dates, tuna
T4	corn, tuna

Minimum support = 50%

Find out all the possible frequent itemsets of size 3:

{apple, corn, dates} {corn, dates, tuna}

Now count support for the remaining itemsets

{apple, corn, dates} = 2/4 {corn, dates, tuna} = 2/4

Transaction	Items
T1	apple, dates, rice, corn
T2	corn, dates, tuna
Т3	apple, corn, dates, tuna
Τ4	corn, tuna

Minimum support = 50%

Since 2/4 = 50%, both are frequent

Apriori example: Done!

```
The whole list of large
itemsets for this example is:
{apple}
{corn}
{dates}
{tuna}
{apple, corn}
{apple, dates}
{corn, dates}
{corn, tuna}
{dates, tuna}
{apple, corn, dates}
{corn, dates, tuna}
```

Transaction	Items
T1	apple, dates, rice, corn
T2	corn, dates, tuna
Т3	apple, corn, dates, tuna
T4	corn, tuna

Algorithm AprioriTid

- Also uses the apriori-gen function
- Generate $\overline{C_k}$ to replace database D for calculating support

1)
$$L_1 = \{ \text{large 1-itemsets} \};$$

2) $\overline{C}_1 = \text{database } \mathcal{D};$
3) for $(k = 2; L_{k-1} \neq \emptyset; k++)$ do begin
4) $C_k = \text{apriori-gen}(L_{k-1});$ // New candidates
5) $\overline{C}_k = \emptyset;$
6) forall entries $t \in \overline{C}_{k-1}$ do begin
7) // determine candidate itemsets in C_k contained
// in the transaction with identifier $t.\text{TID}$
 $C_t = \{c \in C_k \mid (c - c[k]) \in t.\text{set-of-itemsets} \land$
 $(c - c[k-1]) \in t.\text{set-of-itemsets} \};$
8) forall candidates $c \in C_t$ do
9) $c.\text{count}++;$
10) if $(C_t \neq \emptyset)$ then $\overline{C}_k += \langle t.\text{TID}, C_t \rangle;$
11) end
12) $L_k = \{c \in C_k \mid c.\text{count} \geq \text{minsup} \}$
13) end
14) Answer $= \bigcup_k L_k;$

• Step 1: generate L_1 and $\overline{C_1}$

L_1	
Itemset	Support
$\{1\}$	2
$\{2\}$	3
$\{3\}$	3
$\{5\}$	3

Datab	ase
-------	-----

TID	Items
100	$1 \ 3 \ 4$
200	$2 \ 3 \ 5$
300	$1 \ 2 \ 3 \ 5$
400	25

• Step 2.1: generate C_2 and $\overline{C_2}$

\overline{C}_1		
TID	Set-of-Itemsets	
100	$\{ \{1\}, \{3\}, \{4\} \}$	
200	$\{ \{2\}, \{3\}, \{5\} \}$	
300	$\{ \{1\}, \{2\}, \{3\}, \{5\} \}$	
400	$\{ \{2\}, \{5\} \}$	

Database	
TID	Items
100	$1 \ 3 \ 4$
200	$2 \ 3 \ 5$
300	$1\ 2\ 3\ 5$
400	25

C_2		
Itemset	Support	
$\{1 \ 2\}$	1	
$\{1 \ 3\}$	2	
$\{1 \ 5\}$	1	
$\{2\ 3\}$	2	
$\{2\ 5\}$	3	
$\{3 5\}$	2	

 \overline{C}_2		
TID	Set-of-Itemsets	
100	$\{ \{1 \ 3\} \}$	
200	$\{ \{2 \ 3\}, \{2 \ 5\}, \{3 \ 5\} \}$	
300	$\{ \{1 \ 2\}, \{1 \ 3\}, \{1 \ 5\}, $	
	$\{2\ 3\},\ \{2\ 5\},\ \{3\ 5\}\ \}$	
400	$\{ \{2 5\} \}$	

• Step 2.2: calculate *L*₂

\overline{C}_2		
TID	Set-of-Itemsets	
100	$\{ \{1 \ 3\} \}$	
200	$\{ \{2 \ 3\}, \{2 \ 5\}, \{3 \ 5\} \}$	
300	$\{ \{1 \ 2\}, \{1 \ 3\}, \{1 \ 5\}, $	
	$\{2\ 3\},\ \{2\ 5\},\ \{3\ 5\}\ \}$	
400	$\{ \{2 5\} \}$	

Datal	base
-------	------

TID	Items
100	$1 \ 3 \ 4$
200	$2 \ 3 \ 5$
300	$1 \ 2 \ 3 \ 5$
400	25

Step 3.1: generate C_3 and $\overline{C_3}$ •

\overline{C}_2				
TID	Set-of-Itemsets			
100	$\{ \{1 \ 3\} \}$			
200	$\{ \{2 \ 3\}, \{2 \ 5\}, \{3 \ 5\} \}$			
300	$\{ \{1 \ 2\}, \{1 \ 3\}, \{1 \ 5\}, $			
	$\{2\ 3\},\ \{2\ 5\},\ \{3\ 5\}\ \}$			
400	$\{ \{2 5\} \}$			

Database						
TID Items						
100	$1 \ 3 \ 4$					
200	$2 \ 3 \ 5$					
300	$1 \ 2 \ 3 \ 5$					
400	25					

\overline{C}_3				
TID	Set-of-Itemsets			
200	$\{ \{2 \ 3 \ 5\} \}$			
300	$\{ \{2 \ 3 \ 5\} \}$			

• 3.2: calculate L_3

TID	Items			
100	$1 \ 3 \ 4$			
200	$2 \ 3 \ 5$			
300	$1 \ 2 \ 3 \ 5$			
400	25			

A question from many of you!

What should we consider when evaluating an algorithm to provide a fair and comprehensive comparison with other work?

Performance - dataset

- Generate synthetic transactions to evaluate the performance
- Parameter setting:

Name	T	I	D	Size in Megabytes
T5.I2.D100K	5	2	$100\mathrm{K}$	2.4
T10.I2.D100K	10	2	$100\mathrm{K}$	4.4
T10.I4.D100K	10	4	$100\mathrm{K}$	
T20.I2.D100K	20	2	$100\mathrm{K}$	8.4
T20.I4.D100K	20	4	$100 \mathrm{K}$	
T20.I6.D100K	20	6	$100\mathrm{K}$	

Performance - Execution times

- Minimum support decrease => execution times increase
- Apriori outperforms AIS and SETM
- AprioriTiD is Slower for larger problems

Performance – per pass

- AprioriTid beats Apriori in later passes
 - The size of $\overline{C_k}$ becomes smaller in later passes

Figure 6: Per pass execution times of Apriori and AprioriTid (T10.I4.D100K, minsup = 0.75%)

Performance – AprioriHybrid

- Uses Apriori in the initial passes
- Switches to AprioriTid when $\overline{C_k}$ is expected to fit in memory

- Two new algorithms, Apriori and AprioriTid are discussed.
- These algorithms outperform AIS and SETM.
- Apriori and AprioriTid can be combined into AprioriHybird.
- AprioriHybrid matches Apriori and AprioriTid when either one wins.

Discussion (Groups of 3-4)

- The Apriori algorithm was motivated by a very particular business task. But this paper is highly cited (28816 citations in Google Scholar). What do you think are the causes?
 - ✤ Is it the research topic?
 - ✤ The algorithm?
 - The approach to designing and evaluating a solution?
 - Something else?

Bias in OLAP Queries: Detection, Explanation, and Removal (Or Think Twice About Your AVG-Query)

Babak Salimi Johannes Gehrke Dan Suciu University of Washington Microsoft SIGMOD 2018

> Slides adopted from Babak Salimi Presenter: Yingfeng Lu Discussion Leader: Jianhao Cao CPSC 504

- OLAP tools enable complex calculations, analyses, and sophisticated data modeling
- However, inexperienced workers can easily write queries that are biased for decision making
- Answers to OLAP queries can be biased and lead to wrong decisions

Example

Suppose a company wants to choose between the business travel programs offered by *American* (AA) and *United* (UA)
 Q: Which airline has a better on-time performance?

Delay by Airport

CPSC 504

Example

Q: Which airline has a better on-time performance?

• Wrong decision because AA has a higher average delay than UA

at each of the four airports

Example

Q: Which airline has a better on-time performance?

• Wrong decision because AA has a higher average delay than UA

at each of the four airports

Simpson's paradox: a trend appears in several groups of data but disappears or reverses when the groups are combined.

Have you ever seen bias in the data you work on, or in your research area?

What are the bias examples or causes?

- No causal analysis tools exist for OLAP systems.
 - Still use the simplest group-by queries
- Covariate: core of any causal analysis
 - Needs to be controlled to eliminate bias
 - E.g., Airport
- Causal DAG (Directed Acyclic Graph)
 - Edge: a potential cause-effect relationship between attributes
 - Is not given in the paper's setting
 - Inapplicable to compute

HypDB's novelty

- Covariate discovery: explores only the subset relevant to the current query
- A powerful optimization to significantly speed up the Monte Carlo permutation test
- Explain its findings, and rank the explanations

Background

Listing 1: An OLAP query Q.

```
SELECT T, X, avg(Y_1), \ldots, avg(Y_e)
FROM D
WHERE C
GROUP BY T, X
```

- set of attributes: *X*
- treatment variable: $T \in \{t_0, t_1\}$
- outcome variable: $Y \in \{0,1\}$
- context for the query *Q*: $\Gamma_i \stackrel{\text{def}}{=} C \wedge (X = x_i)$
- a set of covariates: Z

Biased OLAP Queries – Detecting bias

- Definition of balanced query:
 - The query Q is balanced w.r.t. a set of variables V iff $(T \perp V | \Gamma_i)$
- Detect biased query by checking $(T \perp \mathbf{V} | \Gamma_i)$

Two ways to find ranked explanations for the bias

- Coarse-grained: rank the variables V in terms of their responsibilities for the bias
 - Calculate *Degree of Responsibility* for each *V*
- Fine-Grained: compute the contribution of the triples(*t*, *y*, *z*) that explains the confounding relationships between the ground levels.

Rewrite the query to remove the bias

- Partition the data into blocks that are homogeneous on Z
- Compute the average of each Y ∈ Y Group by T, X, in each block
- Aggregate the block's averages by taking their weighted average

Given a treatment variable T, compute its parents PA_T in the causal DAG and sets $Z = PA_T$

- Intuition: Z,W are parents of T if T is a common descendant of Z and W
- **CD** algorithm:
 - Phase I: find all parents of T and possibly parents of its children
 - Phase II: keep only parents of T

Efficient Independence Test

- Monte-Carlo permutation test
 - needs to be performed a sufficiently large number of times
 - requires permuting the entire database
- Permutation test using contingency tables
 - draw random permutations directly from the distribution of all contingency tables with fixed marginals
- Mutual Information Test (MIT): a non-parametric test for significance of conditional mutual information

Other Optimizations

- Materializing contingency tables
- Caching entropy
- Hybrid independent test

Address four questions:

- Q1: Avoiding false discoveries
 - 50M entries in the FlightData
- Q2: End-to-end results
- Q3: Quality comparison
 - Run on five datasets
- Q4: Efficacy of the optimization techniques
 - need ground truth, generate RandomData

• Q1: Avoiding false discoveries

a) The effect of query rewriting on FlightData.

• End-to-end results

Dataset	Columns [#]	Rows[#]	Det.	Exp.	Res.
AdultData [22]	15	48842	65	<1	<1
StaplesData [49]	6	988871	5	<1	<1
BerkeleyData [3]	3	4428	2	<1	<1
CancerData [15]	12	2000	<1	<1	<1
FlightData [42]	101	43853	20	<1	<1

Table 1: Runtime in seconds for experiments in Sec. 7.3.

• Quality comparison

b) Quality comparison.

• Efficacy of the optimization techniques

b) Efficacy of the optimizations proposed for independence tests.

Summary

- Show that biased queries can be perplexing and lead to statistical anomalies
- Propose HypDB to detect, explain, and to resolve bias in decision-support queries
- Developed an automated method for rewriting the query into an unbiased query

As computer scientists, what could we do to help to reduce bias in computer science?

- Pick any perspective that interests you.
 - ✤ Academia or industry researchers
 - Software engineers
 - Teaching professors