
Aries: A Transaction
Recovery Method

Slides modified by Rachel Pottinger
from slides from “Database
Management Systems” by
Ramakrishnan and Gehrke

2

ACID Properties

Atomicity: Either all actions in the Xact
occur, or none occur.

Consistency: If each Xact is consistent, and
the DB starts in a consistent state, then the
DB ends up being consistent.

Isolation: The execution of one Xact is
isolated from that of other Xacts.

Durability: If a Xact commits, then its
effects persist.

Discussion
Variation of Nalin's question: As we've
discussed, there are many different cases
where people store data than there used to
be. In some cases, ACID may be overkill.
What are some examples where you need it
and what are some where you don't?

3

4

- What if there's only one or a small number of users?
(Personal data management)
- OLTP vs OLAP - depends on the workflow
- read or write applications
- orchestration tool - Qubenetics? - certain commands that
you can replay
- Independent computing systems. Something where you
shut off where things are completed
- Cloud applications have different issues
- A lot of modern (NoSQL/New SQL) databases don't keep
conistency

5

What happens if the system fails?
The goal of transaction recovery is to resurrect
the db if this happens
Aries is one example of such a system
A key tenant of Aries is fine granularity locking
for 4 reasons
1. OO systems make users think in small objects
2. “Object-oriented system users may tend to have

many terminal interactions during …”
3. More system use  more hotspots  need less

tuning
4. Metadata is accessed often; cannot all be locked at

once

6

The 9 Goals of Aries
1. Simplicity

2. Operation Logging

3. Flexible storage management

4. Partial rollbacks

5. Flexible buffer management

6. Recovery independence

7. Logical undo

8. Parallelism and fast recovery

9. Minimal overhead

Operation logging
“let one transaction modify the same data
that was modified earlier by another
transaction which has not yet committed,
when the two transactions’ actions are
semantically compatible”

7

Partial rollbacks
Support save points and rollbacks to save
points in order to be user friendly

8

Handling the Buffer Pool

Force every write to disk?
Poor response time.

But provides durability.

Steal buffer-pool frames
from uncommitted Xacts?
(resulting in write to disk)

If not, poor throughput.

If so, how can we ensure
atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

Transactions modify pages in memory buffers

Writing to disk is more permanent

When should updated pages be written to disk?

Flexible buffer management
Make the least number of restrictive
assumptions about buffer management
policies

10

Recovery independence
“The recovery of one object should not force
the concurrent or lock-step recovery of
another object”

11

12

Group Discussion on the 9 Goals
Rank the goals from 1 to 9 where 1 is the most important and 9 is the
least important

• Simplicity

• Operation Logging

• Flexible storage management

• Partial rollbacks

• Flexible buffer management

• Recovery independence

• Logical undo

• Parallelism and fast recovery

• Minimal overhead

Basic Idea: Logging

Record REDO and UNDO information, for every
update, in a log.

Sequential writes to log (put it on a separate disk).

Minimal info (diff) written to log, so multiple updates fit
in a single log page.

Log: An ordered list of REDO/UNDO actions
Log record contains:

<XID, pageID, offset, length, old data, new data>

and additional control info (which we’ll see soon).

Write-Ahead Logging (WAL)

The Write-Ahead Logging Protocol:
1. Must force log record for an update before

the corresponding data page gets to disk.

2. Must write all log records for a Xact before
commit.

#1 guarantees Atomicity.

#2 guarantees Durability.

WAL &
the Log
Each log record has a unique Log
Sequence Number (LSN).

LSNs always increasing.

Each data page contains a pageLSN.
The LSN of the most recent log record
for an update to that page.

System keeps track of flushedLSN.
The max LSN flushed so far.

WAL: Before a page is written,
pageLSN flushedLSN

LSNs pageLSNs flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM

DB

oldest

newest

RAM

I.e., the latest thing on disk must
also be written to disk on the log

16

Log Records

Possible log record types:

Update

Commit

Abort

End (signifies end of
commit or abort)

Compensation Log
Records (CLRs)

for UNDO actions

prevLSN
transID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

before and after image are the data before and after the
update.

17

Creating Log Entries

Update :
Inserted when modifying a page.
Contains all the fields.
pageLSN of that page is set to the LSN of the record (i.e., page
updated)

Commit :
When Xact commits a record is written in the log and is forcibly
written to stable storage.

Abort :
created when Xact is aborted

End :
created when Xact has completed all work (after commit or abort)

Compensation Log Records (CLR) :
Inserted before undoing an action described by an update log record
It happens during aborting or recovery.
Contains undoNextLSN field: LSN of next log record to be undone.

18

Other Log-Related Structures

Transaction manager also maintains the following tables
Transaction Table:

Maintained by transaction manager
Has one entry per active Xact
Contains tranID, status (running/committed/aborted), and
lastLSN (LSN of most recent log record for it)
Xact removed from table when end record is inserted in the log

Dirty Page Table:
Maintained by buffer manager
Has one entry per dirty page in buffer pool
Contains recLSN -- LSN of action which first made the page dirty
Entry is removed when page is written to the disk

Both tables must be reconstructed during recovery.

19

The Big Picture: What’s Stored Where

DB

Data pages
each
with a
pageLSN

Xact Table
lastLSN
status

Dirty Page Table
recLSN

RAM

prevLSN
transID
type

length
pageID

offset
before-image
after-image

LogRecords

master record

LOG

Part of DBMS, but
not in db (too slow)

First thing made it dirtyLast to update page

20

Checkpoints

Periodicallycheckpoint, to minimize recovery time
in system crash. Write to log:

begin_checkpoint record: when checkpoint began
end_checkpoint record: current Xact table and dirty
page table.

Aries uses a ‘fuzzy checkpoint’:
Xacts continue to run; so these tables are accurate
only as of time of begin_checkpoint
Dirty pages are not forced to disk;

Store LSN of checkpoint record in a safe place (master
record).

When system starts after a crash:
Locate the most recent checkpoint
Restore Xact table and dirty page table from there.

21

Crash Recovery: Big Picture

 Start from a checkpoint (found
via master record)

 Three phases. Need to:
– Figure out which Xacts

committed since checkpoint,
which failed (Analysis)

– REDO all actions
 (repeat history)

– UNDO effects of failed Xacts

Oldest log
rec. of Xact’s
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

LOGOldest

Newest Go back far because “fuzzy” checkpoint

First thing to
dirty a page

22

Recovery: The Analysis Phase
Goals:

Determine log record that Redo has to start at
Determine pages that were dirty at crash
Identify Xact’s active at crash

Reconstruct state at checkpoint
reconstruct Xact & dirty page tables using end_checkpoint record

Scan log forward from checkpoint
End record: Remove Xact from Xact table
Other bookkeeping happens

23

Recovery: The REDO Phase

We repeat history to reconstruct state at crash:
Reapply all updates (even of aborted Xacts), redo CLRs

Scan forward from log record containing smallest recLSN
in DPT. For each CLR or update log record, REDO the action
unless it’s clear that it’s already been recorded (details
omitted)
To REDO an action:

Reapply logged action
Set pageLSN to LSN.
No additional logging is required!

At the end of REDO, and End record is inserted in the log
for each transaction with status C which is removed from
Xact table.

Know it’s done – eventually written

24

Recovery: The UNDO Phase
Loser Xact’s = Xact active at the crash
Need to undo all records of loser Xact’s in reverse order
ToUndo = set of all lastLSN values of all loser Xact’s

Algorithm:
Repeat:

Choose largest LSN among ToUndo
If this LSN is a CLR and undonextLSN==NULL

write an End record for this Xact.
remove record from ToUndo set

If this LSN is a CLR, and undonextLSN != NULL
add undonextLSN to ToUndo

Else this LSN is an update.
undo the update, write a CLR,
remove record from toUndo
add prevLSN of this record to ToUndo.

Until ToUndo is empty

All undone

Make sure you undo it

Undo, log

Those are the trans. we must undo

We’ve done it
Undo next for trans.

25

Discussion Questions
If you are designing a system for transaction

processing,
would you redo “loser” transactions?

would you use selective redo?

would you do a checkpoint after the analysis
phase?

Why or why not?

26

Example of Recovery

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

05

10

20

30

40

45

50

60

transaction Table
T# lastLSN

Dirty Page Table
T# recLSN

ToUndo

FlushedLSN

PrevLSNs

RAM

first made dirty
Check prev lsn, undo

Delete from transaction table

Assume flush at checkpoint

Max log flushed

27

Example: Crash During Restart!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10

20

30

40,45

50

60

70

80,85

90

undonextLSN

RAM

Still assume flush at checkpoint

transaction Table
T# lastLSN

Dirty Page Table
T# recLSN

ToUndo

FlushedLSN

28

Example: Crash During Restart!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10

20

30

40,45

50

60

70

80,85

90

undonextLSN

RAM

Still assume flush at checkpoint

Still maybe not on disk

transaction Table
T# lastLSN

Dirty Page Table
T# recLSN

ToUndo

FlushedLSN

Discussion
Modified from Sarah’s response: The paper
mentions it makes some assumptions; how
do we decide which assumptions to make
without constraining the problem too much?

29

30

Today’s Recovery Algorithms
Most popular are like ARIES:

maintain a log

use WAL

Some Redo phases are different:
they don’t repeat the whole history

they only redo the non-loser transactions –
“selective redo”

Can lead to trouble because must log undos (for
media recovery), then would attempt to redo undo

