Answering queries
using views

Paper by Alon Halevy

Presentation by Jeffrey Niu
adapted from Rachel Pottinger

Discussion by Nalin Munshi



Background

A view is a stored query
« e.g. in SQL:

Product(Name, Price, Category, Manufacturer)
Company(Cname, StockPrice, Country)

CREATE VIEW JapaneseProducts AS
SELECT Name, Price, Category, Manufacturer
FROM Product, Company

WHERE Product.Manufacturer=Company.Cname AND
Company.Country = 'Japan'



Background

 Datalog query example:
g(code) :- Airport(code, city),
Feature(city, "Beach")

Find all airport codes of cities that have
beaches



Answering gueries using views
— basic definition

« Answer a query using views rather than using
the underlying relations

« Query: g(code) :- Airport(code, city),
Feature(city, POI)
* View:
feature-code(code, POI) :- Airport(code, city),
Feature(city, POI)
» Rewriting using views:
g(code) :- feature-code(code, POI)



AQUV — two problems

* Query optimization
 Data integration



Query optimization goals

 Use views alongside base relations to answer
query
» Optimize query speed

 Query rewrite with views needs to provide
exact same answers

« Sound and complete
* i.e. an equivalent rewriting



Query Optimization using
Views: Discussion

* What are the advantages and disadvantages of
using views for query optimization? Is it only for
certain kinds of queries?



Closed world assumption

* Views are sound and complete — all valid
answers to the view query are present, no
extraneous answers

« Like "if and only if"

- feature-code(code, POI) :- Airport(code, city)
Feature(city, "Beach")
Retrieves a// airport codes for cities w/ beaches

 Cannot tell whether this assumption holds from
the view definition



Equivalent rewritings

» Equivalent example:
Query: g(code) :- Airport(code, city), Feature(city, POI)
View: feature-code(code, POI) :- Airport(code, city),
Feature(city, POI)
Equivalent rewriting: g(code) :- feature-code(code, POI)

» Non-equivalent example:
Same query
View: Beach-code(code) :- Airport(code, city),
Feature(city, "Beach")
Non-equivalent rewriting:
g(code) :- Beach-code(code)



General algorithm

* Fold views into System-R style optimizer

* Views are another access path

» Filter for views relevant to query
« Table name in view from clause also present in query

« Apply same join & selection predicates or apply logically
weaker selection

« Not project out any attributes needed in selection

« Optimal plan need not use the views
» Consider indices available on views & base relations



Data integration

« Goal: "to provide a uniform query interface to
a multitude of autonomous data sources, which
may reside within an enterprise or the World-
Wide Web"



Data integration
Example: planning a beach
vacation

-

‘ accu
weather

12



Data integration architecture:
Local-As-View (LAV)

< User Query

Mediated
Schema

Local Schema 1 Local Schema N

Local Local
Database 1 Database N

Travelocity Expedia
Local sources are views on mediated schema 13




Local-As-View (LAV)

e LAV: local source is materialized view over
mediated schema

Mediated schema:
Airport(code, city)
Feature(city, attraction) ia-Ai Beaches

Local sources/views:

Expedia-Air(code, city) :- Airport(code, city)
Beaches(code) :- Airport(code, city),
Feature(city, "Beach")
« Adding new sources is easy

» Rewriting queries is NP-complete 14

Mediated
Schema




Data integration assumptions

« Open world assumption:
 Each source only has some of the tuples
* Like "if — then"

 LonelyPlanet(city, POI) :- Feature(city, POI)
LonelyPlanet has some Features

 This is an assumption — can't tell from view definition

» Can't access base relations
« May not be able to find an equivalent rewriting



Open-world vs Closed-world
assumption: Discussion

* Jianhao - Are there applications where it is more
suitable to apply the open-world assumption, and
the same for closed-world assumption?



Maximally contained rewritings

* Query:
Dest(code) :- Airport(code, city), Feature(city, "Beach")

« Sources/Views:
Expedia-Air(code, city) :- Airport(code, city)
LonelyPlanet(city, POI) :- Feature(city, POI)

* Rewriting:
Dest(code) :- Expedia-Air(code, city),
LonelyPlanet(city, "Beach")

« Maximally contained rewriting: all answers to Query are a
subset of those of Rewriting, and Rewriting contains all
possible answers given local sources

17



Maximally contained rewritings

« New source Sun-Surf(city) :- Feature(city, "Beach")
was added

e Sources/Views:
Expedia-Air(code, city) :- Airport(code, city;
LonerPIanetScity, POI) :- Feature(city, POI
Sun-Surf(city) :- Feature(city, "Beach")

» Rewriting:
Dest(code) :- Expedia-Air(code, city), LonelyPlanet(code, city)
U
Dest(code) :- Expedia-Air(code, city), Sun-Surf(city)

 This extends to taking the Cartesian product of all
ways of covering view subgoals

18



Maximally contained
rewritings: Discussion

e What factors can influence the effectiveness and
efficiency of maximally contained rewritings?

 What are some other use cases of maximally
contained rewritings apart from data integration?



How to find maximally
contained rewritings

 Bucket algorithm
* Minicon



Naive solution: bucket
algorithm

» Create a bucket for each query subgoal, place all
relevant views into the bucket

X X
Q(X)- g4(x4), o Gn(Xn)

 For each element in cross-product of the buckets,
check for containment (check that answers
contained in original query)
 Containment check is Hf - complete




Naive solution: bucket
algorithm

* Query:

LonelyPlanet

Expedia-Air
P X Sun-Surf

Dest(code) :- Airport(code, city), Feature(city, "Beach")

« Sources/Views:
Expedia-Air(code, city) :- Airport(code, city)
LonelyPlanet(city, POI) :- Feature(city, POI)
Sun-Surf(city) :- Feature(city, "Beach")

22



Subgoal interaction

 Bucket algorithm doesn’t recognize interactions

* Query:
Dest(code) :- Airport(code, city), Feature(city, "Beach")

e Sources/Views:
Travelocity(code) :- Airport(code, city)
Beaches(code) :- Airport(code, city), Feature(city, "Beach")
Frommers(city, POI) :- Feature(city, POI)

 Bucket would check:
Dest'(code) :- Travelocity(code), Frommers(city, "Beach")
equivalent to:
Dest'(code) :- Airport(code, __), Frommers(city, "Beach")

* Dest' not contained in Dest

23



MiniCon phase one

* Query:
Dest(code) :- Airport(code, city), Feature(city, "Beach")

e Source/Views:
Travelocity(code) :- Airport(code, city)
Beaches(code) :- Airport(code, city), Feature(city, "Beach")

* Rewriting:
Dest(code) :- Beaches(code)

Create MiniCon Descriptions (MCD): view subgoals linked by
existential variables must be mapped together

24



MiniCon phase two

« Combine MCDs with non-overlapping subgoals

 Query:
Dest(code) :- Airport(code, city), Feature(city, "Beach"),
Flight("YVR", code, airline, number)

e Sources/Views:
Beaches(code) :- Airport(code, city), Feature(city, "Beach")
Expedia(orig, dest) :- Flight(orig, dest, airline, number)

* Rewriting:
Dest(code) :- Beaches(code), Expedia("YVR", code)

25



MiniCon advantages

* Fewer combinations to perform Cartesian product

* No explicit containment check

» Careful construction of MCDs and only combining MCDs
covering disjoint sets of subgoals avoids check



Maximally contained Rewriting
Algorithms: Discussion

* Rank the three algorithms — Bucket and MiniCon on
the basis of the following parameters (1 being the
best):

Bucket
MiniCon

* While solving an optimization problem what trade-
offs should be kept in, for example, speed
vs optimality, heuristic vs algorithm vs ML etc?

27



