
Answering queries 
using views

Paper by Alon Halevy

Presentation by Jeffrey Niu
adapted from Rachel Pottinger

Discussion by Nalin Munshi



Background

• A view is a stored query

• e.g. in SQL:

Product(Name, Price, Category, Manufacturer)

Company(Cname, StockPrice, Country)

CREATE VIEW JapaneseProducts AS

SELECT Name, Price, Category, Manufacturer

FROM Product, Company

WHERE Product.Manufacturer=Company.Cname AND 
Company.Country = 'Japan'

2



Background

• Datalog query example:
q(code) :- Airport(code, city),

Feature(city, "Beach")

Find all airport codes of cities that have 
beaches

3



Answering queries using views 
– basic definition

• Answer a query using views rather than using 
the underlying relations

• Query: q(code) :- Airport(code, city), 
Feature(city, POI)

• View:
feature-code(code, POI) :- Airport(code, city),

Feature(city, POI)

• Rewriting using views:
q(code) :- feature-code(code, POI)

4



AQUV – two problems

• Query optimization

• Data integration

• Physical data independence

5



Query optimization goals

• Use views alongside base relations to answer 
query

• Optimize query speed

• Query rewrite with views needs to provide 
exact same answers
• Sound and complete

• i.e. an equivalent rewriting

6



Query Optimization using 
Views: Discussion
• What are the advantages and disadvantages of 

using views for query optimization? Is it only for 
certain kinds of queries?

7



Closed world assumption

• Views are sound and complete – all valid 
answers to the view query are present, no 
extraneous answers

• Like "if and only if"

• feature-code(code, POI) :- Airport(code, city)
Feature(city, "Beach")

Retrieves all airport codes for cities w/ beaches

• Cannot tell whether this assumption holds from 
the view definition

8



Equivalent rewritings

• Equivalent example:
Query: q(code) :- Airport(code, city), Feature(city, POI)
View: feature-code(code, POI) :- Airport(code, city),

Feature(city, POI)
Equivalent rewriting: q(code) :- feature-code(code, POI)

• Non-equivalent example:
Same query
View: Beach-code(code) :- Airport(code, city),

Feature(city, "Beach")
Non-equivalent rewriting:

q(code) :- Beach-code(code)

9



General algorithm

• Fold views into System-R style optimizer

• Views are another access path
• Filter for views relevant to query

• Table name in view from clause also present in query

• Apply same join & selection predicates or apply logically 
weaker selection

• Not project out any attributes needed in selection

• Optimal plan need not use the views
• Consider indices available on views & base relations

10



Data integration

• Goal: "to provide a uniform query interface to 
a multitude of autonomous data sources, which 
may reside within an enterprise or the World-
Wide Web"

11



Data integration
Example: planning a beach 
vacation

12



Data integration architecture:
Local-As-View (LAV)

13



Local-As-View (LAV)

• LAV: local source is materialized view over 
mediated schema

Mediated schema:
Airport(code, city)
Feature(city, attraction)

Local sources/views:
Expedia-Air(code, city) :- Airport(code, city)
Beaches(code) :- Airport(code, city),

Feature(city, "Beach")

• Adding new sources is easy

• Rewriting queries is NP-complete 14



Data integration assumptions

• Open world assumption:
• Each source only has some of the tuples

• Like "if → then"

• LonelyPlanet(city, POI) :- Feature(city, POI)
LonelyPlanet has some Features

• This is an assumption – can't tell from view definition

• Can't access base relations
• May not be able to find an equivalent rewriting

15



Open-world vs Closed-world 
assumption: Discussion
• Jianhao - Are there applications where it is more 

suitable to apply the open-world assumption, and 
the same for closed-world assumption?

16



Maximally contained rewritings

• Query:
Dest(code) :- Airport(code, city), Feature(city, "Beach")

• Sources/Views:
Expedia-Air(code, city) :- Airport(code, city)
LonelyPlanet(city, POI) :- Feature(city, POI)

• Rewriting:
Dest(code) :- Expedia-Air(code, city),

LonelyPlanet(city, "Beach")

• Maximally contained rewriting: all answers to Query are a 
subset of those of Rewriting, and Rewriting contains all 
possible answers given local sources

17



Maximally contained rewritings

• New source Sun-Surf(city) :- Feature(city, "Beach")
was added

• Sources/Views:
Expedia-Air(code, city) :- Airport(code, city)
LonelyPlanet(city, POI) :- Feature(city, POI)
Sun-Surf(city) :- Feature(city, "Beach")

• Rewriting:
Dest(code) :- Expedia-Air(code, city), LonelyPlanet(code, city)

∪
Dest(code) :- Expedia-Air(code, city), Sun-Surf(city)

• This extends to taking the Cartesian product of all 
ways of covering view subgoals

18



Maximally contained 
rewritings: Discussion
• What factors can influence the effectiveness and 

efficiency of maximally contained rewritings?

• What are some other use cases of maximally 
contained rewritings apart from data integration?

19



How to find maximally 
contained rewritings

• Bucket algorithm

• Minicon

• Inverse rules algorithm

20



Naïve solution: bucket 
algorithm

• Create a bucket for each query subgoal, place all 
relevant views into the bucket

• For each element in cross-product of the buckets, 
check for containment (check that answers 
contained in original query)
• Containment check is - complete

21



Naïve solution: bucket 
algorithm

22

• Query:

Dest(code) :- Airport(code, city), Feature(city, "Beach")

• Sources/Views:
Expedia-Air(code, city) :- Airport(code, city)
LonelyPlanet(city, POI) :- Feature(city, POI)
Sun-Surf(city) :- Feature(city, "Beach")



Subgoal interaction

• Bucket algorithm doesn’t recognize interactions

• Query:
Dest(code) :- Airport(code, city), Feature(city, "Beach")

• Sources/Views:
Travelocity(code) :- Airport(code, city)
Beaches(code) :- Airport(code, city), Feature(city, "Beach")
Frommers(city, POI) :- Feature(city, POI)

• Bucket would check:
Dest'(code) :- Travelocity(code), Frommers(city, "Beach")
equivalent to:
Dest'(code) :- Airport(code, __), Frommers(city, "Beach")

• Dest' not contained in Dest
23



MiniCon phase one

• Query:
Dest(code) :- Airport(code, city), Feature(city, "Beach")

• Source/Views:
Travelocity(code) :- Airport(code, city)
Beaches(code) :- Airport(code, city), Feature(city, "Beach")

• Rewriting:
Dest(code) :- Beaches(code)

Create MiniCon Descriptions (MCD): view subgoals linked by 
existential variables must be mapped together

24



MiniCon phase two

• Combine MCDs with non-overlapping subgoals

• Query:
Dest(code) :- Airport(code, city), Feature(city, "Beach"),

Flight("YVR", code, airline, number)

• Sources/Views:
Travelocity(code) :- Airport(code, city)
Beaches(code) :- Airport(code, city), Feature(city, "Beach")
Expedia(orig, dest) :- Flight(orig, dest, airline, number)

• Rewriting:
Dest(code) :- Beaches(code), Expedia("YVR", code)

25



MiniCon advantages

• Fewer combinations to perform Cartesian product

• No explicit containment check
• Careful construction of MCDs and only combining MCDs 

covering disjoint sets of subgoals avoids check

26



Maximally contained Rewriting 
Algorithms: Discussion
• Rank the three algorithms – Bucket and MiniCon on 

the basis of the following parameters (1 being the 
best):

• While solving an optimization problem what trade-
offs should be kept in, for example, speed 
vs optimality, heuristic vs algorithm vs ML etc?

27

Algorithm Compute Memory Parallelism

Bucket

MiniCon


