
Relational Databases and XML

Sepehr Jalalian and Matt Oddo - UBC CPSC 504 - 2023.02.16

● Both HTML and XML are subsets of SGML, itself a
successor of IBM’s Generalized Markup Language
(GML) from the 1960s.

● In HTML </tags> have the primary purpose of
displaying data.

● In XML </tags> describe data itself, and also the
data’s organizational hierarchy.

● Introduced in 1996, XML quickly became the
standard format to transmit information through
the World Wide Web.

● The most up-to-date version of XML is from 2006.

What is XML?

Relational Databases for Querying XML Documents

WHAT WAS HAPPENING THEN?

● A semi-structured query language was traditionally used to query over
semi-structured data sets in XML format, but very cumbersome and slow.

● Examples listed are XML-QL, Lorel, UnQL, and XQL (from Microsoft).

THE NEW IDEA

● Convert XML to relational table, query it with mature relation model tools,
and convert the output back to XML.

Relational Databases for Querying XML Documents

EXECUTION IN FOUR STEPS

1. Process a Document Type Description (DTD) to generate
a relational schema.

2. Parse XML documents conforming to DTDs and load
them into tuples of relational tables in a standard
commercial DBMS.

3. Translate semi-structured queries over XML documents
into SQL queries over the corresponding relational data.

4. Convert the results back to XML.

A Document Type Descriptor
(DTD) specification

An XML document that
conforms to this DTD

Relational Databases for Querying XML Documents

● Note that the DTD comes from the document community, so lacks the
expressive power that database people wanted - simultaneously making it
computationally intractable.

○ The XML Schema Description (XSD) standard was created by W3C to fix
this and make document definitions more powerful.

○ While it granted tons of expressive power, XSD was severely criticised
because it is impossible to understand.

DISCUSSION (Groups of 3-4)

The authors demonstrate using the traditional relational
database engines for processing XML documents. On the
other hand, XML databases and query languages were under
development at that time.

● Would you rather create an XML database and
query processing system from scratch, or use a relational
backend. Why? If it depends, what does it depend on?

● In a more broad sense, what are the pros and cons of
leveraging mature technology to solve a different problem
versus providing a dedicated solution to the new problem
from scratch? (Jianhao)

Relational Databases for Querying XML Documents

Relational Databases for Querying XML Documents

[STEP 1] Process a DTD to generate a relational schema:

● It is tempting to map XML DTD to relations.

○ However, there is no correspondence with ER diagram model,
so schema conversion (inlining algorithm) is required.

● But first, DTDs are actually problematic because they can be very complex,
so the authors describe three initial simplification transformations.

○ Without DTD simplification you have direct mapping elements to
relations, which can lead to excessive fragmentation of the document (too
many joins!).

FLATTENING

Convert a nested
definition into a flat

representation
(e.g. binary operators

“,” and “|” do not appear
inside any operator).

SIMPLIFICATION

Reduce many unary
operators to a single

unary operator.

GROUPING

Groups subelements
having the same name

(e.g. two a* subelements
are grouped into one

a* subelement)

Also authors further simplify DTDs by making all “+” operators into “*” operators.

With simplified DTDs in place, the authors propose three inlining
algorithms to convert XML/DTD into Relational Model

BASIC
INLINING

TECHNIQUE

SHARED
INLINING

TECHNIQUE

HYBRID
INLINING

TECHNIQUE

Relational Databases for Querying XML Documents

[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of
relational tables in a standard commercial DBMS.

● BASIC INLINING TECHNIQUE - Relations for every element inline with the
element's descendants, flat structure.

● Good for certain queries:
○ “List all authors of a book”

● But bad for:
○ “List all authors having first name Jack” (union of 5 queries!)
○ Large number of relations
○ Complicated to handle DTD recursion
○ Separated schema for each root element
○ High resource consumption for schema translation

A graph of the DTD specification shown
before, note cycle.

Tree graph from the editor
node, note recursion.

Relational Databases for Querying XML Documents

[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of
relational tables in a standard commercial DBMS.

● SHARED INLINING TECHNIQUE

○ Inspired by BASIC, first ensures an element node is represented in
exactly one relation.

○ Identifies element nodes which are represented in multiple relations in
BASIC and shares between them by creating separating relations.

○ Results in a surprisingly small number of relations!

BASIC
INLINING

TECHNIQUE

SHARED
INLINING

TECHNIQUE

Relational Databases for Querying XML Documents

[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of
relational tables in a standard commercial DBMS.

● SHARED INLINING TECHNIQUE - Identify nodes in multiple relations and share
them by creating separate relations (nodes with in-degree greater than one).

● Good for certain queries:
○ Reduced relations through shared element.
○ Reduced joins “List all authors having first name Jack”.

● But bad for:
○ Less relations, more joins
○ Inefficient when comparing to BASIC.
○ Increased number of joins starting at a particular node.

Relational Databases for Querying XML Documents

[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of
relational tables in a standard commercial DBMS.

● HYBRID INLINING TECHNIQUE - Inlines elements with in-degree greater
than one that are not recursive or reached through a “*” node.

○ Combines the join reduction properties of BASIC with the sharing
features of SHARED.

○ Reduces number of joins but increases number of SQL queries, and the
number of joins scales linearly with the path length (qualitative eval).

DISCUSSION (Groups of 3 or class-wide)

Their evaluation metric (given in section 3.6.1) is:

"the average number of SQL joins required to process path expressions
of a certain length N"

● This metric can be measured as the product of the average
number of SQL queries generated for path expressions of
length N and the average number of joins in each SQL query
for path expressions of length N.

● Do you think this is a good idea? What about the two partial
metrics above?
Why or why not?

Relational Databases for Querying XML Documents

Relational Databases for Querying XML Documents

[STEP 3] Translate semi-structured queries over XML documents into SQL queries
over the corresponding relational data.

● Simple path expressions - add the relations corresponding to the start of the
root path expression and translate path expressions to joins.

● Simple recursive path expressions - determine the initialization of the recursion
and the actual recursive path expression.

● Arbitrary path expressions - translate them into possibly many simple
(recursive) path expressions.

Relational Databases for Querying XML Documents

[STEP 4] Finally, convert query results back into XML (using XML-QL)

● Simple Structuring - each tuple gets XML tags.
Very simple indeed, and follows what is expected.

● However for tag variables and grouping, results get increasingly unexpected. The
idea breaks down further considering complex element construction and
heterogenous results.

CONCLUSION - Converting XML to relational for query processing has some
limitations. Kudos for trying though!

Simple Structuring

Tag Variable

Grouping

Indexing XML Data Stored in a Relational Database

It’s 2004 and XMLs are all over the place! I want to have them stored somewhere
where I can efficiently fetch them. But how?

● Microsoft SQL Server offers a special column that stores your XML document as
a byte sequence (BLOB). Then for good query performance, you must index this
XML BLOB.

● Conversion into relational model, or shredding into INFOSET (XML as relational
data), allows indexing using B+trees and query capabilities:

○ Unlocks ability to manage and query the data
○ Works best if your XML has a well-defined structure

● However, shredding arbitrary XML into a relational table is very difficult.
You may need an overwhelming amount of joins, which is very expensive!

Indexing XML Data Stored in a Relational Database

The Primary XML index:

● ORDPATH labels all nodes in XML tree:

○ Nodes behaves like a primary key in the INFOSET
○ Mechanism for labeling nodes in an XML tree
○ Preserves XML structural fidelity
○ Allows insertion of nodes anywhere without re-labeling
○ Independent of XML schemas typing XML instances
○ Encodes the parent-child relationship

● An advantage is ORDPATH allows full power of the relational engine,
however XML is hierarchical and can have recursive structure.

Indexing XML Data Stored in a Relational Database

● Node labels
in ORDPATH

DISCUSSION (In pairs)

● We have seen two approaches in processing XML data:

○ Decomposing XML into relational tables
○ Storing XML as BLOBs

● Can you think of an application in which either of these
methods is more suitable over the other?

Indexing XML Data Stored in a Relational Database

Indexing XML Data Stored in a Relational Database

The Secondary XML indexes:

● Provided on top of ORDPATH (additional columns) to improve query performance
for each special type of queries, helps with bottom-up evaluation:

○ PATH
○ PATH_VALUE
○ PROPERTY
○ VALUE
○ CONTENT

● Qualifying nodes in the secondary XML indexes conduct a back-join with
ORDPATH to enable continuation of query execution with those nodes.

● Significant performance gains.

Indexing XML Data Stored in a Relational Database

Authors ran an experimental evaluation XMark, an XML query benchmark that models
an auction scenario.

● Four query results at 30 scale factor:

○ Q1 Performs extremely well (595.3) with PATH_VALUE index
○ Q5 No changes (execution time gain always under 2).
○ Q15 PATH_VALUE index gain (18.3)
○ Q16 PATH_VALUE index gain (48.2)

● Performance gains overall due to parsing XML BLOB multiple times (all indexes)
● PATH and PATH_VALUE contribute the most gain of the secondary indexes.

● Overall no figures to show experimental results, only tables. Suspicious.

DISCUSSION (groups of 4)

● Does the emphasis on indexing surprise you?

● What are disadvantages of having several indexes?

● Does this seem like it would be more or less of an issue
than for OO? What about join processing?

Indexing XML Data Stored in a Relational Database

