
Relational Databases and XML

Sepehr Jalalian and Matt Oddo - UBC CPSC 504 - 2023.02.16 



● Both HTML and XML are subsets of SGML, itself a 
successor of IBM’s Generalized Markup Language 
(GML) from the 1960s.

● In HTML </tags> have the primary purpose of 
displaying data.

● In XML </tags> describe data itself, and also the 
data’s organizational hierarchy.

● Introduced in 1996, XML quickly became the 
standard format to transmit information through 
the World Wide Web.

● The most up-to-date version of XML is from 2006.

What is XML?
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WHAT WAS HAPPENING THEN?

● A semi-structured query language was traditionally used to query over 
semi-structured data sets in XML format, but very cumbersome and slow.

● Examples listed are XML-QL, Lorel, UnQL, and XQL (from Microsoft).

THE NEW IDEA

● Convert XML to relational table, query it with mature relation model tools,
and convert the output back to XML.
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EXECUTION IN FOUR STEPS

1. Process a Document Type Description (DTD) to generate 
a relational schema.

2. Parse XML documents conforming to DTDs and load 
them into tuples of relational tables in a standard 
commercial DBMS.

3. Translate semi-structured queries over XML documents 
into SQL queries over the corresponding relational data.

4. Convert the results back to XML.



A Document Type Descriptor
(DTD) specification

An XML document that
conforms to this DTD
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● Note that the DTD comes from the document community, so lacks the 
expressive power that database people wanted - simultaneously making it 
computationally intractable.

○ The XML Schema Description (XSD) standard was created by W3C to fix 
this and make document definitions more powerful.

○ While it granted tons of expressive power, XSD was severely criticised 
because it is impossible to understand.



DISCUSSION (Groups of 3-4)

The authors demonstrate using the traditional relational  
database engines for processing XML documents. On the
other hand, XML databases and query languages were under 
development at that time.

● Would you rather create an XML database and
query processing system from scratch, or use a relational 
backend. Why? If it depends, what does it depend on?

● In a more broad sense, what are the pros and cons of 
leveraging mature technology to solve a different problem 
versus providing a dedicated solution to the new problem 
from scratch? (Jianhao)

Relational Databases for Querying XML Documents
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[STEP 1] Process a DTD to generate a relational schema:

● It is tempting to map XML DTD to relations.

○ However, there is no correspondence with ER diagram model,
so schema conversion (inlining algorithm) is required.

● But first, DTDs are actually problematic because they can be very complex,
so the authors describe three initial simplification transformations.

○ Without DTD simplification you have direct mapping elements to 
relations, which can lead to excessive fragmentation of the document (too 
many joins!).



FLATTENING

Convert a nested
definition into a flat 

representation
(e.g. binary operators

“,” and “|” do not appear 
inside any operator).

SIMPLIFICATION

Reduce many unary 
operators to a single

unary operator.

GROUPING

Groups subelements
having the same name

(e.g. two a* subelements
are grouped into one

a* subelement)

Also authors further simplify DTDs by making all “+” operators into “*” operators.



With simplified DTDs in place, the authors propose three inlining
algorithms to convert XML/DTD into Relational Model

BASIC 
INLINING 

TECHNIQUE

SHARED 
INLINING 

TECHNIQUE

HYBRID 
INLINING 

TECHNIQUE
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[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of 
relational tables in a standard commercial DBMS.

● BASIC INLINING TECHNIQUE - Relations for every element inline with the 
element's descendants, flat structure.

● Good for certain queries:
○ “List all authors of a book”

● But bad for:
○ “List all authors having first name Jack” (union of 5 queries!)
○ Large number of relations
○ Complicated to handle DTD recursion
○ Separated schema for each root element
○ High resource consumption for schema translation



A graph of the DTD specification shown 
before, note cycle.

Tree graph from the editor
node, note recursion.
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[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of 
relational tables in a standard commercial DBMS.

● SHARED INLINING TECHNIQUE

○ Inspired by BASIC, first ensures an element node is represented in 
exactly one relation.

○ Identifies element nodes which are represented in multiple relations in 
BASIC and shares between them by creating separating relations.

○ Results in a surprisingly small number of relations!



BASIC 
INLINING 

TECHNIQUE

SHARED 
INLINING 

TECHNIQUE
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[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of 
relational tables in a standard commercial DBMS.

● SHARED INLINING TECHNIQUE - Identify nodes in multiple relations and share 
them by creating separate relations (nodes with in-degree greater than one).

● Good for certain queries:
○ Reduced relations through shared element.
○ Reduced joins “List all authors having first name Jack”.

● But bad for:
○ Less relations, more joins
○ Inefficient when comparing to BASIC.
○ Increased number of joins starting at a particular node.
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[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of 
relational tables in a standard commercial DBMS.

● HYBRID INLINING TECHNIQUE - Inlines elements with in-degree greater 
than one that are not recursive or reached through a “*” node.

○ Combines the join reduction properties of BASIC with the sharing 
features of SHARED.

○ Reduces number of joins but increases number of SQL queries, and the 
number of joins scales linearly with the path length (qualitative eval).



DISCUSSION (Groups of 3 or class-wide)

Their evaluation metric (given in section 3.6.1) is:

"the average number of SQL joins required to process path expressions 
of a certain length N"

● This metric can be measured as the product of the average 
number of SQL queries generated for path expressions of 
length N and the average number of joins in each SQL query 
for path expressions of length N.

● Do you think this is a good idea? What about the two partial 
metrics above?
Why or why not?

Relational Databases for Querying XML Documents
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[STEP 3] Translate semi-structured queries over XML documents into SQL queries 
over the corresponding relational data.

● Simple path expressions - add the relations corresponding to the start of the 
root path expression and translate path expressions to joins.

● Simple recursive path expressions - determine the initialization of the recursion 
and the actual recursive path expression.

● Arbitrary path expressions - translate them into possibly many simple 
(recursive) path expressions.
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[STEP 4] Finally, convert query results back into XML (using XML-QL)

● Simple Structuring - each tuple gets XML tags.
Very simple indeed, and follows what is expected.

● However for tag variables and grouping, results get increasingly unexpected. The 
idea breaks down further considering complex element construction and 
heterogenous results.

CONCLUSION - Converting XML to relational for query processing has some 
limitations. Kudos for trying though!



Simple Structuring

Tag Variable

Grouping
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It’s 2004 and XMLs are all over the place! I want to have them stored somewhere 
where I can efficiently fetch them. But how?

● Microsoft SQL Server offers a special column that stores your XML document as 
a byte sequence (BLOB). Then for good query performance, you must index this 
XML BLOB.

● Conversion into relational model, or shredding into INFOSET (XML as relational 
data), allows indexing using B+trees and query capabilities:

○ Unlocks ability to manage and query the data
○ Works best if your XML has a well-defined structure

● However, shredding arbitrary XML into a relational table is very difficult.
You may need an overwhelming amount of joins, which is very expensive!



Indexing XML Data Stored in a Relational Database

The Primary XML index:

● ORDPATH labels all nodes in XML tree:

○ Nodes behaves like a primary key in the INFOSET
○ Mechanism for labeling nodes in an XML tree
○ Preserves XML structural fidelity
○ Allows insertion of nodes anywhere without re-labeling
○ Independent of XML schemas typing XML instances
○ Encodes the parent-child relationship

● An advantage is ORDPATH allows full power of the relational engine,
however XML is hierarchical and can have recursive structure.
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● Node labels
in ORDPATH 



DISCUSSION (In pairs)

● We have seen two approaches in processing XML data: 

○ Decomposing XML into relational tables
○ Storing XML as BLOBs

● Can you think of an application in which either of these 
methods is more suitable over the other?

Indexing XML Data Stored in a Relational Database
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The Secondary XML indexes:

● Provided on top of ORDPATH (additional columns) to improve query performance 
for each special type of queries, helps with bottom-up evaluation:

○ PATH 
○ PATH_VALUE 
○ PROPERTY
○ VALUE
○ CONTENT

● Qualifying nodes in the secondary XML indexes conduct a back-join with 
ORDPATH to enable continuation of query execution with those nodes.

● Significant performance gains.
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Authors ran an experimental evaluation XMark, an XML query benchmark that models 
an auction scenario.

● Four query results at 30 scale factor:

○ Q1 Performs extremely well (595.3) with PATH_VALUE index
○ Q5 No changes (execution time gain always under 2).
○ Q15 PATH_VALUE index gain (18.3)
○ Q16 PATH_VALUE index gain (48.2)

● Performance gains overall due to parsing XML BLOB multiple times (all indexes)
● PATH and PATH_VALUE contribute the most gain of the secondary indexes.

● Overall no figures to show experimental results, only tables. Suspicious.



DISCUSSION (groups of 4)

● Does the emphasis on indexing surprise you?

● What are disadvantages of having several indexes?

● Does this seem like it would be more or less of an issue 
than for OO? What about join processing?

Indexing XML Data Stored in a Relational Database


