*x

x
*

Relational Databases and XML

Sepehr Jalalian and Matt Oddo - UBC CPSC 504 - 2023.02.16



XML (standard)

Extensible Markup Language

What is XML?

Both HTML and XML are subsets of SGML, itself a
successor of IBM’s Generalized Markup Language
(GML) from the 1960s.

Abbreviation

Status

Year started

*

XML

Published, W3C
recommendation

1996; 27 years ago

In HTML </ tags> have the primary purpose of ;L’::ished :gez'”a’ym’ HEEEL D e
d|$p|ay|ng data- Latest 1.1 (2nd ed.)

In XML </ tags> describe dataitself, and also the
data’s organizational hierarchy.

version

Organization

September 29, 2006; 16 years
ago

World Wide Web Consortium
(W3C)

. . Editors Tim Bray, Jean Paoli, Michael
Introduced in 1996, XML quickly became the e e L B
standard format to transmit information through O
o W.
the World Wide Web. onan
Base SGML
. . standards
The most up-to-date version of XML is from 2006. Related  W3C XML Schema
standards
Domain Serialization
Website www.w3.org/xml i



-

Relational Databases for Querying XML Documents:
Limitations and Opportunities

Jayavel Shanmugasundaram  Kristin Tufte
Chun Zhang David DeWitt

Gang He
Jeffrey Naughton

Department of Computer Sciences
University of Wisconsin-Madison
{jai, tufte, czhang, dewitt, naughton}@cs.wisc.edu, ganghe@microsoft.com

Abstract

XML is fast emerging as the dominant standard
for representing data in the World Wide Web.
Sophisticated query engines that allow users to
effectively tap the data stored in XML
documents will be crucial to exploiting the full
power of XML. While there has been a great deal
of activity recently proposing new semi-
structured data models and query languages for
this purpose, this paper explores the more
conservative approach of using traditional

model that would make it more appropriate for
processing queries over XML documents.

1. Introduction

Extensible Markup Language (XML) is fast emerging as
the dominant standard for representing data on the
Internet. Like HTML, XML is a subset of SGML.
However, whereas HTML tags serve the primary purpose
of describing how to display a data item, XML tags
describe the data itself. The importance of this simple
distinction cannot be underestimated — because XML data

relational database engines for ing XML
documents conforming to Document Type
Descriptors (DTDs). To this end, we have

and i a
prototype system that converts XML documents
to relational tuples, translates semi-structured
queries over XML documents to SQL queries
over tables, and converts the results to XML. We
have qualitatively evaluated this approach using
several real DTDs drawn from diverse domains.
It turns out that the relational approach can
handle most (but not all) of the semantics of
semi-structured queries over XML data, but is
likely to be effective only in some cases. We
identify the causes for these limitations and
propose certain extensions to the relational

Permission to copy without fee all or part of this material
xv granxed provided that the capxes are not made or
d for direct the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment
Proceedings of the 25th VLDB C

is self- it is possible for programs to interpret
the data. This means that a program receiving an XML
document can interpret it in multiple ways, can filter the
document based upon its content, can restructure it to suit
the application’s needs, and so forth.

The initial impetus for XML may have been primarily
to enhance this ability of remote applications to interpret
and operate on documents fetched over the Internet.
However, from a database point of view, XML raises a
different exciting possibility: with data stored in XML
documents, it should be possible to query the contents of
these documents. One should be able to issue queries over
sots of XML documents to extract, synthesize, and
analyze their contents. But what is the best way to provide
this query capability over XML documents?

At first glance the answer is obvious. Since an XML
document is an example of a semi-structured data set (it is
tree-structured, with each node in the tree described by a
label), why not use semi-structured query languages and
query evaluation techniques? This is indeed a viable
approach, and there is considerable activity in the semi-
structured data community focussed upon exploiting this
approach [5,14]. While semi-structured techniques will
clearly work, in this paper we ask the question of whether
this s the only or the besl approach to take. The downside

Edinburgh, Scotland, 1999.

of using tructy is that this approach
turns its back on 20 years of work invested in relational

~

-

Indexing XML Data Stored in a Relational Database

Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo Giakoumakis, Vasili Zolotov

Microsoft Corporation
One Microsoft Way
Redmond WA 98052
USA
{shankarp, istvanc, oliverse, gideons, leogia, vasilizo} @microsoft.com

Abstract
As XML usage grows for both data-centric and
o eontie A s A

native support for XML data in relational
databases brings significant benefits. It provides
a more mature platform for the XML data model
and serves as the basis for interoperability
between relational and XML data. Whereas
query processing on XML data shredded into one
or more relational tables is well understood, it
provides limited support for the XML data
model. XML data can be persisted as a byte
sequence (BLOB) in columns of tables to
support me XML model uees fmthfu]ly This

such as the abl]lty to mdcx the XML blob for
good query performance. This paper reports
novel techniques for indexing XML data in the
upcoming version of Microsoft® SQL Server™,
and how it ties into the relational framework for
query processing.

1. Introduction

Introducing XML [3] support in relational databases has
been of keen interest in the industry in the past few years.
One solution is to generate XML from a set of tables
based on an XML schema definition and to decompose
XML instances into such tables [2][5][11] [16][20]. Once
shredded into tables, the full power of the relational
engine, such as indexing using B'trees and query
capabilities, can be used to manage and query the data.

The shredding approach is suitable for XML data with
a well-defined structure. It depends on the existence of a
schema describing the XML data and a mapping of XML
data between the relational and XML forms.

The XML data model, however, has characteristics
that make it very hard if not practically impossible to map
to the relational data model in the general case. XML data
is hierarchical and may have a recursive structure;
relational databases provide weak support for hierarchical
data (modeled as foreign key relationships). Document
order is an inherent property of XML instances and must
be preserved in query results. This is in contrast with
relational data, which is unordered, and order must be
enforced with additional ordering columns. On the query
front, a large number of joins are required to re-assemble
the result for realistic schemas. Even with co-located
indexes, the reassembly cost of an XML subtree can be
prohibitively expensive.

XML is being increasingly used in enterprise
applications  for modeling  semi-structured  and
unstructured data, and for data whose structure is highly
variable or not known a priori. This has motivated the
need for native XML support within relational databases.

Microsoft SQL Server 2005 introduces a native data
type called XML [12]. A user can create a table T with
one or more columns of type XML besides relational
columns. XML values are stored in the XML column as
large binary objects (BLOB). This preserves the XML
data model faithfully, and the query processor enforces
XML semantics during query execution. The underlying
relational infrastructure is used extensively for this
purpose. This approach supports interoperability between
relational and XML data within the same database making

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
\permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment

Proceedings of the 30" VLDB Conference,

Toronto, Canada, 2004

‘way for more adoption of the XML features.

XQuery expressions [19] embedded within SQL
statements are used to query into XML data type values.
Query execution processes each XML instance at runtime;
this becomes cxpcnslvc whenever the instance is large in
size or the query is evaluated on a large number of rows
in the table. Consequently, an indexing mechanism is
required to speed up queries on XML blobs.

J




Relational Databases for Querying XML Documents

WHAT WAS HAPPENING THEN?

e A semi-structured query language was traditionally used to query over
semi-structured data sets in XML format, but very cumbersome and slow.

e Examples listed are XML-QL, Lorel, UnQL, and XQL (from Microsoft).

THE NEW IDEA

e Convert XML to relational table, query it with mature relation model tools,
and convert the output back to XML.



Relational Databases for Querying XML Documents

EXECUTION IN FOUR STEPS

1. Process a Document Type Description (DTD) to generate
arelational schema.

2. Parse XML documents conforming to DTDs and load
them into tuples of relational tables in a standard
commercial DBMS.

3. Translate semi-structured queries over XML documents
into SQL queries over the corresponding relational data.

4. Converttheresults back to XML.



<!ELEMENT book (booktitle, author)
<!ELEMENT article (title, author*, contactauthor)>
<!ELEMENT contactauthor EMPTY>

<IATTLIST contactauthor authorID IDREF IMPLIED>

<!ELEMENT monograph (title, author, editor)>
<!ELEMENT editor (monograph*)>

<!ATTLIST editor name CDATA #REQUIRED>
<!ELEMENT author (name, address)>
<!ATTLIST author id ID #REQUIRED>
<!ELEMENT name (firstname?, lastname)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT address ANY>

A Document Type Descriptor
(DTD) specification

<book>
<booktitle> The Selfish Gene </booktitle>
<author id = “dawkins”>
<name>
<firstname> Richard </firsthame>
<lastname> Dawkins </lastname>
</name>
<address>
<city> Timbuktu </city>
<zip> 99999 </zip>
</address>
</author>
</book>

An XML document that
conforms to this DTD




Relational Databases for Querying XML Documents

e Note that the DTD comes from the document community, so lacks the

expressive power that database people wanted - simultaneously making it
computationally intractable.

o The XML Schema Description (XSD) standard was created by W3C to fix
this and make document definitions more powerful.

o While it granted tons of expressive power, XSD was severely criticised
because it is impossible to understand.



Relational Databases for Querying XML Documents

DISCUSSION (Groups of 3-4)

The authors demonstrate using the traditional relational
database engines for processing XML documents. On the

other hand, XML databases and query languages were under
development at that time. ‘

e Would you rather create an XML database and
query processing system from scratch, or use a relational
backend. Why? If it depends, what does it depend on?

e |namore broad sense, what are the pros and cons of
leveraging mature technology to solve a different problem
versus providing a dedicated solution to the new problem
from scratch? (Jianhao)



Relational Databases for Querying XML Documents

[STEP 1] Process a DTD to generate a relational schema:
e |tistempting to map XML DTD to relations.

o However, there is no correspondence with ER diagram model,
so schema conversion (inlining algorithm) is required.

e But first, DTDs are actually problematic because they can be very complex,
so the authors describe three initial simplification transformations.

o  Without DTD simplification you have direct mapping elements to
relations, which can lead to excessive fragmentation of the document (too
many joins!).



(e1, €2)" 2 e, €5"
(€1, €2)? > €47, €57
(e1]lez) > e4?, e,?

FLATTENING

Convert a nested
definitioninto aflat
representation
(e.g. binary operators

" and “|” do not appear
inside any operator).

e 2> e
e*? 2> e
91?* - 61*
€1?7? 2 e4?

SIMPLIFICATION

Reduce many unary
operators to asingle
unary operator.

., a% ..., at ... 2>a, ..
., aY, ..., a?, ...>a ..
g B U sy 0Ly nm ™2 By o
.,a?, .., a?, ..>a’ ..
., a,...,4a,..>a, ..

GROUPING

Groups subelements
having the same name
(e.g. two a* subelements
are grouped into one
a* subelement)

Also authors further simplify DTDs by making all “+" operatorsinto “*" operators.




With simplified DTDs in place, the authors propose three inlining
algorithms to convert XML/DTD into Relational Model

-

\_

BASIC
INLINING
TECHNIQUE

~

J

4 )
SHARED
INLINING

TECHNIQUE
- J

-

\_

HYBRID
INLINING
TECHNIQUE

~

J




Relational Databases for Querying XML Documents

[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of
relational tables in a standard commercial DBMS.

e BASICINLINING TECHNIQUE - Relations for every element inline with the
element's descendants, flat structure.

e Good for certain queries:
o “List all authors of a book”
e Butbadfor:
o “List all authors having first name Jack” (union of 5 queries!)
Large number of relations
Complicated to handle DTD recursion
Separated schema for each root element

O
O
O
o High resource consumption for schema translation



/book article monograph
booktitle I title l

*
contactauthor

authorID
author
/ \ name
/ e address authorid

A graph of the DTD specification shown

before, note cycle.

1;—————»( editor)

title

author

N

name address authorid

/?

firstname lastname

Tree graph from the editor

node, note recursion.




Relational Databases for Querying XML Documents

[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of
relational tables in a standard commercial DBMS.

e SHARED INLINING TECHNIQUE

o Inspired by BASIC, first ensures an element node is represented in
exactly one relation.

o ldentifies element nodes which are represented in multiple relations in
BASIC and shares between them by creating separating relations.

o Results in asurprisingly small number of relations!



\_

BASIC
INLINING
TECHNIQUE

~

J

r

\_

SHARED
INLINING
TECHNIQUE

~

book (bookID: integer, book.booktitle : string, book.author.name.firstname: string, book.author.name.lastname: string,
book.author.address: string, author.authorid: string)

booktitle (booktitlelD: integer, booktitle: string)
article (articlelD: integer, article.contactauthor.authorid: string, article.title: string)

article.author (article.authorlD: integer, article.author.parentID: integer, article.author.name firstname: string,
article.author.name.lastname: string, article.author.address: string, article.author.authorid: string)

contactauthor (contactauthorID: integer, contactauthor.authorid: string)
title (titlelD: integer, title: string)

monograph (monographlID: integer, monograph.parentlD: integer, monograph.title: string, monograph.editor.name: string,
monograph.author.name.firstname: string, monograph.author.name.lastname: string,
monograph.author.address: string, monograph.author.authorid: string)

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographiD: integer, editor.monograph.parentID: integer, editor.monograph.title: string,
editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string,
editor.monograph.author.address: string, editor.monograph.author.authorid: string)

author (authorlD: integer, author.name.firstname: string, author.name.lastname: string, author.address: string,
author.authorid: string)

name (namelD: integer, name firsthame: string, name.lastname: string)
firstname (firstnamelD: integer, firstname: string)

lastname (lastnamelD: integer, lastname: string)

J

address (addressID: integer, address: string)

book (booklD: integer, book.booktitle.isroot: boolean, book.booktitle : string)
article (articlelD: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string)

monograph (monographlID: integer,monograph.parentID: integer, monograph.parentCODE: integer,
monograph.editor.isroot: boolean, monograph.editor.name: string)

title (titlelD: integer, title.parentID: integer, title.parentCODE: integer, title: string)

author (authorlD: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean,
author.name.firstname.isroot: :boolean, author.name firstname: string, author.name.lastname.isroot: boolean,
author.name.lastname: string, author.address.isroot: boolean, author.address: string, author.authorid: string)



Relational Databases for Querying XML Documents

[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of
relational tables in a standard commercial DBMS.

e SHARED INLINING TECHNIQUE - Identify nodes in multiple relations and share
them by creating separate relations (nodes with in-degree greater than one).

e Good for certain queries:

o Reduced relations through shared element.

o Reduced joins “List all authors having first name Jack”.
e Butbadfor:

o Lessrelations, more joins

o Inefficient when comparing to BASIC.

o Increased number of joins starting at a particular node.



Relational Databases for Querying XML Documents

[STEP 2] Parse XML documents conforming to DTDs and load them into tuples of
relational tables in a standard commercial DBMS.

e HYBRID INLINING TECHNIQUE - Inlines elements with in-degree greater
than one that are not recursive or reached through a “*” node.

o Combines the join reduction properties of BASIC with the sharing
features of SHARED.

o Reduces number of joins but increases number of SQL queries, and the
number of joins scales linearly with the path length (qualitative eval).



Relational Databases for Querying XML Documents

DISCUSSION (Groups of 3 or class-wide)
Their evaluation metric (given in section 3.6.1) is:

"the average number of SQL joins required to process path expressions

of a certain length N" ‘

e This metric can be measured as the product of the average
number of SQL queries generated for path expressions of
length N and the average number of joins in each SQL query
for path expressions of length N.

e Do you think thisis a good idea? What about the two partial
metrics above?

Why or why not?



Relational Databases for Querying XML Documents

[STEP 3] Translate semi-structured queries over XML documents into SQL queries
over the corresponding relational data.

e Simple path expressions - add the relations corresponding to the start of the
root path expression and translate path expressions to joins.

e Simplerecursive path expressions - determine the initialization of the recursion
and the actual recursive path expression.

e Arbitrary path expressions - translate them into possibly many simple
(recursive) path expressions.



Relational Databases for Querying XML Documents

[STEP 4] Finally, convert query results back into XML (using XML-QL)

e Simple Structuring - each tuple gets XML tags.
Very simple indeed, and follows what is expected.

e However for tag variables and grouping, results get increasingly unexpected. The
idea breaks down further considering complex element construction and
heterogenous results.

CONCLUSION - Converting XML to relational for query processing has some
limitations. Kudos for trying though!



Simple Structuring

Tag Variable

Grouping

WHERE <book>
<author>
<firstname> $f </firstname>
<lastname> $| </lastname>
<[>
</>IN * CONFORMS TO pubs.dtd
CONSTRUCT <author>
<firstname> $f </firstname>
<lastname> $| </lastname>
</author>

WHERE <$p>
<author>
<firstname> $f </firstname>
<lastname> $| </lastname>
</>
</>IN * CONFORMS TO pubs.dtd
CONSTRUCT <$p>
<author>
<firstname> $f </firstname>
<lastname> $| </lastname>
</author>
</>

WHERE <$p>
<(title|booktitle)> $t </>
<author>
<lastname> $I </lastname>
</>

</>IN * CONFORMS TO pubs.dtd

(Richard, Dawkins)
(NULL, Darwin)

<author>
<firstname> Richard <ffirstname>
<lastname> Dawkins </lastname>
</author>
<author>
<lastname> Darwin </lastname>
</author>

(book, Richard, Dawkins)
(book, NULL, Darwin)
(monograph, NULL, Darwin)

<book>
<author>

<firstname> Richard </firstname>
<lastname> Dawkins </lastname>
</author>
</book>
<book>
<author>
<lastname> Darwin </lastname>
</author>
</book>
<monograph>
<author>
<lastname> Darwin </lastname>
</author>
</monograph>

CONSTRUCT <author ID=authorID($I)>
<name> $| </name>
<$p ID=pID($p)>

<title> $t </>

(Darwin, book, Origin of Species)
(Darwin, book, Descent of Man)
(Darwin, monograph, Subclass

</> Cirripedia)
</> (Dawkins, book, The Selfish Gene)

P

<author>
<name> Darwin </name>
<book>
<title> Origin of Species </title>
<title> The Descent of Man <ftitle>
</book>
<monograph>
<title> Subclass Cirripedia </title>
</monograph>
</author>
<author>
<name> Dawkins </name>
<book>
<title> The Selfish Gene <ftitle>
</book>
</author>




Indexing XML Data Stored in a Relational Database

It’'s 2004 and XMLs are all over the place! | want to have them stored somewhere
where | can efficiently fetch them. But how?

Microsoft SQL Server offers a special column that stores your XML document as
a byte sequence (BLOB). Then for good query performance, you must index this
XML BLOB.

Conversion into relational model, or shredding into INFOSET (XML as relational
data), allows indexing using B+trees and query capabilities:

o Unlocks ability to manage and query the data
o  Works best if your XML has a well-defined structure

However, shredding arbitrary XML into a relational table is very difficult.
You may need an overwhelming amount of joins, which is very expensive!



Indexing XML Data Stored in a Relational Database

The Primary XML index:
e ORDPATH labels all nodes in XML tree:

Nodes behaves like a primary key in the INFOSET
Mechanism for labeling nodes in an XML tree

Preserves XML structural fidelity

Allows insertion of nodes anywhere without re-labeling
Independent of XML schemas typing XML instances
Encodes the parent-child relationship

O O O O O O

e Anadvantage is ORDPATH allows full power of the relational engine,
however XML is hierarchical and can have recursive structure.



Indexing XML Data Stored in a Relational Database

e Node labels
in ORDPATH

1.1
ISBN

1.3.1 1.9,

@ Nobody ...

1

BOOK

1.3
SECTION

1.3.5
FIGURE

CAPTION

1.5

<BOOK ISBN=“1-55860-438-3">
<SECTION>
<TITLE>Bad Bugs</TITLE>
Nobody loves bad bugs.
<FIGURE CAPTION="Sample bug”/>
</SECTION>
<SECTION>
<TITLE>Tree Frogs</TITLE>
All right-thinking people
<BOLD> love </BOLD> tree frogs.
</SECTION>
</BOOK>

1.5.5 1.5.7

@ All right...| ( BOLD

1.3.5.1




Indexing XML Data Stored in a Relational Database

DISCUSSION (In pairs)

e We have seen two approaches in processing XML data:

o Decomposing XML into relational tables
o Storing XML as BLOBs ‘

e Canyou think of an application in which either of these
methods is more suitable over the other?




Indexing XML Data Stored in a Relational Database

The Secondary XML indexes:

e Provided on top of ORDPATH (additional columns) to improve query performance
for each special type of queries, helps with bottom-up evaluation:

PATH
PATH_VALUE
PROPERTY
VALUE
CONTENT

O O O O ©O

e Qualifying nodes in the secondary XML indexes conduct a back-join with
ORDPATH to enable continuation of query execution with those nodes.

e Significant performance gains.



Indexing XML Data Stored in a Relational Database

Authors ran an experimental evaluation XMark, an XML query benchmark that models
an auction scenario.

e Four query results at 30 scale factor:

Q1 Performs extremely well (595.3) with PATH_VALUE index
Q5 No changes (execution time gain always under 2).

Q15 PATH_VALUE index gain (18.3)

Q16 PATH_VALUE index gain (48.2)

O O O O

e Performance gains overall due to parsing XML BLOB multiple times (all indexes)
e PATH and PATH_VALUE contribute the most gain of the secondary indexes.

e Overall no figures to show experimental results, only tables. Suspicious.



Indexing XML Data Stored in a Relational Database

DISCUSSION (groups of 4)
e Does the emphasis onindexing surprise you?

e What are disadvantages of having several indexes?

e Doesthis seem like it would be more or less of an issue
than for OO? What about join processing?




