Overview of Query Optimization
INn Relational Systems

Original slides by
Presenter: Albert Wong
Discussion: Stephen Ingram
Modified by Rachel Pottinger



Overview of Query Optimization In
Relational Systems

* An overview of current query optimization
techniques

» Gives fundamentals of query optimization



Introduction

« 2 key components for query evaluation in
a SQL database system

— Query optimizer
— Query execution engine



Query Execution Engine

* Implements a set of physical operators

* A physical operator takes as input one or more
data streams and produces an output data
stream

— EX. (external) sort, sequential scan, index scan,
nested loop join, sort-merge join

— pieces of code used as building blocks to execute
SQL queries

— responsible for execution of operator tree (execution
plan) that generates answers to the query



Example Operator Tree

Index Nested Loop

(A.X = C.x)
Merge-Join Index Scan C
(A.x=B.x)
Sort Sort

Table Scan A Table Scan B



Query Optimizer

 Input: parsed representation of SQL query

« Qutput: an efficient execution plan for the
given SQL query from the space of
possible execution plans
— Input to Query Execution Engine



The Key Idea: Query Optimization
as a Search Problem

* To solve problem, we need to provide:
— Search space

— Cost estimation technigue to assign a cost to
each plan in the search space

— Enumeration algorithm to search through the
execution space

« Search for the best (or not the worst) plan



Search Space

* Depends on:

— Equivalence performing algebraic
transformations

— Physical operators supported in an optimizer

* Transformations may not reduce cost and
therefore must be applied in a cost-based
manner to ensure a positive benefit

« Can't explore all options



Commuting Between Operators

* Generalized Join Sequencing

e Quter Join and Join
— Join(R, SLOJT)=Join(R, S)LOJT
« Group-By and Join

| /\
/Join\\ Gll Ra
R Ra



Quick Discussion

This all seems like a bit of a black art. And
yet it largely works. Does this surprise you?
Why or why not?

Pair and then come back together.



Multi-Block Query to Single-Block

* Merging Views
— Q =Join(R,V)
— View V = Join(S,T)
— Q = Join(R,Join(S,T)
« Merging Nested
Subqueries

SELECT Emp.Name
FROM Emp

WHERE Emp.Dept# 1IN
SELECT Dept.Dept# FROM Dept

WHERE Dept.Loc='Denver’
AND Emp.Emp# = Dept.Mgr

SRLECT E, Name

PROM Emp E, Dept D

HERE E,Dept# = D.Dept#

AND D.Lo¢ = 'Denver' AND E.Empk = D.Mgr



Statistics and Cost Estimation

« Cost estimation must be accurate because
optimization is only as good as its cost estimates

« Must be efficient as it is repeatedly invoked by
the optimizer

 Basic estimation framework
— collect statistical summaries of data stored

— given an operator and statistical summaries of its
Input streams, determine
« statistical summary of output data stream
« estimated cost of executing the operation



Statistical Summaries of Data

« EX.: #tuples in table, # physical pages used by
table, statistical information on columns (e.g.,
histograms)

« Can use sampling to determine histograms that
are accurate for a large class of queries
— estimating distinct values is provably error prone

 Statistics must be propagated from base data to
be useful

— Can be difficult as assumptions must be made when
propagating statistical summaries



A Statistical Discussion

* Some estimated statistics are provably
erroneous. Is it then worth estimating? |If

so, what sort of strategy should we adopt
when using estimates with known

problems?



Cost Computation

* Costs:
- CPU
—1/0
— communication costs (parallel & distributed)

* Difficult to determine best cost estimator

 Statistical summary propagation and
accurate cost estimation are difficult open

ISSues In query optimization



Enumeration Architectures

 Enumeration algorithm explores search
space to pick cheap execution plan

 Enumerators concentrate on linear join
seguences rather than bushy join
sequences due to the size of the search
space including bushy join sequences



Linear and Bushy Joins

Join(C,D)

Join(B,C)

(a) (b)



Extensible Optimizers

« Want enumerator to adapt to changes in search
space
— New transformations
— Addition of new physical operators
— Changes in cost estimation techniques

e Solutions:

— Use generalized cost functions and physical
properties with operator nodes

— Use rule engine that allows transformations to modify
the query expression or the operator trees

— Expose “knobs” to tune behavior of system
— EXx. Starburst and Volcano/Cascades (coming up)



Materialized Views

* Views cached by database system

* Query can take advantage of materialized views
to reduce the cost of executing the query

* Problems

— Reformulating query to take advantage of
materialized views (general problem is undecidable)

— Determining effective sufficient conditions is nontrivial



Summary of Chaudhuri’'s Paper

* Query optimization as a search problem
whose solution requires:

— a search space
— cost estimation technique,
— an enumeration algorithm

* Query optimization can be considered an
art

* No one knows what the best execution
plan for a given query Is



The most asked question
(paraphrased)

Couldn’t we just do all this with ML?
« Getinto 4 groups

* Divide those who have had ML experience and those
have not

 Talk over:

— What about query optimization would lend itself well to being
solved with ML

— What about query optimization would lend itself poorly?



