
Overview of Query Optimization

in Relational Systems

Original slides by

Presenter: Albert Wong

Discussion: Stephen Ingram

Modified by Rachel Pottinger

Overview of Query Optimization in

Relational Systems

• An overview of current query optimization

techniques

• Gives fundamentals of query optimization

Introduction

• 2 key components for query evaluation in

a SQL database system

– Query optimizer

– Query execution engine

Query Execution Engine

• Implements a set of physical operators

• A physical operator takes as input one or more

data streams and produces an output data

stream

– Ex. (external) sort, sequential scan, index scan,

nested loop join, sort-merge join

– pieces of code used as building blocks to execute

SQL queries

– responsible for execution of operator tree (execution

plan) that generates answers to the query

Example Operator Tree

Query Optimizer

• Input: parsed representation of SQL query

• Output: an efficient execution plan for the

given SQL query from the space of

possible execution plans

– Input to Query Execution Engine

The Key Idea: Query Optimization

as a Search Problem

• To solve problem, we need to provide:

– Search space

– Cost estimation technique to assign a cost to

each plan in the search space

– Enumeration algorithm to search through the

execution space

• Search for the best (or not the worst) plan

Search Space

• Depends on:

– Equivalence performing algebraic
transformations

– Physical operators supported in an optimizer

• Transformations may not reduce cost and
therefore must be applied in a cost-based
manner to ensure a positive benefit

• Can’t explore all options

Commuting Between Operators

• Generalized Join Sequencing

• Outer Join and Join

– Join(R, S LOJ T) = Join(R, S) LOJ T

• Group-By and Join

Quick Discussion

This all seems like a bit of a black art. And
yet it largely works. Does this surprise you?
Why or why not?

Pair and then come back together.

Multi-Block Query to Single-Block

• Merging Views

– Q = Join(R,V)

– View V = Join(S,T)

– Q = Join(R,Join(S,T)

• Merging Nested

Subqueries

Statistics and Cost Estimation

• Cost estimation must be accurate because

optimization is only as good as its cost estimates

• Must be efficient as it is repeatedly invoked by

the optimizer

• Basic estimation framework

– collect statistical summaries of data stored

– given an operator and statistical summaries of its

input streams, determine

• statistical summary of output data stream

• estimated cost of executing the operation

Statistical Summaries of Data

• Ex.: # tuples in table, # physical pages used by

table, statistical information on columns (e.g.,

histograms)

• Can use sampling to determine histograms that

are accurate for a large class of queries

– estimating distinct values is provably error prone

• Statistics must be propagated from base data to

be useful

– Can be difficult as assumptions must be made when

propagating statistical summaries

A Statistical Discussion

• Some estimated statistics are provably

erroneous. Is it then worth estimating? If

so, what sort of strategy should we adopt

when using estimates with known

problems?

Cost Computation

• Costs:

– CPU

– I/O

– communication costs (parallel & distributed)

• Difficult to determine best cost estimator

• Statistical summary propagation and

accurate cost estimation are difficult open

issues in query optimization

Enumeration Architectures

• Enumeration algorithm explores search

space to pick cheap execution plan

• Enumerators concentrate on linear join

sequences rather than bushy join

sequences due to the size of the search

space including bushy join sequences

Linear and Bushy Joins

Extensible Optimizers

• Want enumerator to adapt to changes in search
space
– New transformations

– Addition of new physical operators

– Changes in cost estimation techniques

• Solutions:
– Use generalized cost functions and physical

properties with operator nodes

– Use rule engine that allows transformations to modify
the query expression or the operator trees

– Expose “knobs” to tune behavior of system

– Ex. Starburst and Volcano/Cascades (coming up)

Materialized Views

• Views cached by database system

• Query can take advantage of materialized views

to reduce the cost of executing the query

• Problems

– Reformulating query to take advantage of

materialized views (general problem is undecidable)

– Determining effective sufficient conditions is nontrivial

Summary of Chaudhuri’s Paper

• Query optimization as a search problem
whose solution requires:

– a search space

– cost estimation technique,

– an enumeration algorithm

• Query optimization can be considered an
art

• No one knows what the best execution
plan for a given query is

The most asked question

(paraphrased)
Couldn’t we just do all this with ML?

• Get into 4 groups

• Divide those who have had ML experience and those
have not

• Talk over:
– What about query optimization would lend itself well to being

solved with ML

– What about query optimization would lend itself poorly?

