
Eddies: Continuously 
Adaptive Query Processing

Ran Avnur, Jesepth M. Hellestein

University of California, Berkeley

CPSC 504 Data Management
Presented by Hongrae Lee



Outline

Introduction

Reordability of plans

Rivers and Eddies

Routing tuples in Eddies

Summary



Static Query Processing

Traditional query processing scheme
1. Optimizing a query

2. Executing a static query plan

This traditional scheme is not appropriate for
Large scale widely-distributed information resources or
Massively parallel database systems !



New Requirements

Increased complexity in large-scale system

– Hardware and workload

– Data

– User interface

We want query execution plans

– To be reoptimized regularly during query processing

– To allow system to adapt dynamically to 
fluctuations in computing resources, data 
characteristics, and user preferences



Group Discussion
(~4 per group)

(Credit to Jianhao)

What are pros and cons of centralized query 
execution vs sending partial queries to the data 
sources? (Assuming query execution capability.)

For example, data sources may have the stats for 
query optimization.

(Credit to Sid)

Conversely, what if the stats about the data were also 
sent from the data sources? What are some potential 
pitfalls of such an approach?



Eddy



Two Challenges for This Scheme

How can we reorder operators?

– Reorderability of plans

How should we route tuples?

– Routing tuples in Eddies



A Brief Review on Join

R ⋈ S

…

…
…

Basic nested loop join Grid view of nested loop join

R S R

S

▷◁

▷◁

R S

T

…

Pipelining



Reorderability of Plans

Synchronization Barriers

– One task waits for other tasks to be finished

Moments of Symmetry

– The barrier where the order of the inputs to 
a join can be changed without modifying 
any state in the join 



Reordering of Inputs Using 
Moments on Symmetry

Moments on symmetry 
– Allow reordering of the inputs to a 

single binary operator

R ⋈ S ↔ S ⋈ R

Generalization
– N-ary join view

– (R ⋈ 1S) ⋈ 2T → (R ⋈ 2T) ⋈ 1S

 → (T ⋈ 2R) ⋈ 1S 

Commutativity + moments of 
symmetry → aggressive 
reordering of a plan is possible



Join Algorithms and Reordering

Constraints on reordering
– Unindexed join input is ordered before the indexed input

– Preserving the ordered inputs

– Some join algorithms work only for equijoins

Join algorithms in Eddy
– We favor join algorithms with

Frequent moments of symmetry

Adaptive or nonexistent barriers

Minimal ordering constraints

→Rules out hybrid hash join, merge joins, and nested loops joins

– Choice: Ripple Join
Frequently-symmetric versions of traditional iteration, hashing and 
indexing schemes

– Favors adaptivity over best-case performance



Ripple Joins

Ripple joins
– Have moments of symmetry at each corner

– Are designed to allow changing rates for each input

→Offer attractive adaptivity features at modest overhead

Block Index Hash



Pair Discussion
(with neighbours)

(Credit to Ji Tong Yin)

Rivers, eddies, ripples…

Many of the papers we've read have had 
friendly names. Tukwila is a city in 
Washington. An eddy is circular flowing water.

What are some interesting or effective 
strategies for naming systems, programs, or 
processes?



Routing Tuples in Eddies

An eddy module

– Directs the flow of tuples from the inputs 
through the various operators to the output

– Providing the flexibility to allow each tuple to 
be routed individually through the operators

– The routing policy determines the efficiency



Naïve eddy

Naïve eddy
– Tuples enter eddy with low priority, and when 

returned to eddy from an operator are given high 
priority
→ Tuples flow completely through eddy before new 
tuples
Prevents being ‘clogged’ with new tuples

– Fixed-size queue: back-pressure
Production along the input to any edge is limited by the 
rate of consumption at the output
Tuples are routed to the low-cost operator first

– Cost-aware policy
– Selectivity-unaware policy



Learning Selectivity : 
Lottery Scheduling

To track both 
– Consumption (determined by cost)

– Production (determined by cost and selectivity)

Lottery Scheduling
– Maintain ‘tickets’ for an operator

– An operator’s chance of receiving the tuple
∝The counts of tickets

– The eddy can track (learn) an ordering of the 
operators that gives good overall efficiency

DebitCredit

Eddy Operator Eddy Operator



Some Experimental Results



Summary

Eddies are 
– A query processing mechanism that allow fine-

grained, adaptive, online optimization
– Beneficial in the unpredictable query processing 

environments

Challenges
– To develop eddy ‘ticket’ policies that can be 

formally proved to converge quickly
– To attack the remaining static aspects
– To harness the parallelism and adaptivity available 

to us in rivers
– To explore the application of eddies and rivers to 

the generic space of dataflow programming



Thank you



Group Discussion
(~4 per group)

(Credit style to Matt)

It's 2023 and data has exploded in 
quantity, with a population expecting to 
have instant access to all of it over a 
massive global network of connected 
computers.

Do we favour Tukwila or Eddies? Why?



Final Discussion

(Credit to Sarah)
The authors of "Eddies" mention that part of 

the aim was attempting to do away with 
traditional optimizers entirely. Considering 
research and innovation in general, what 
are some advantages and disadvantages 
of attempting to replace traditional 
approaches with entirely new methods? 
What are some instances where this may 
be necessary and others where it is 
unlikely to work?


