
Access Path Selection in a
Relational DBMS

Original Slides by
Presentation: Stephen Ingram

Modified by: Rachel Pottinger, Sarah
Elhammadi

Why bother to optimize?
• Queries must be executed and execution

takes time

• There are multiple execution plans for most
queries

• Some plans cost less than others

Simple Example
• SELECT * FROM A,B,C WHERE A.n = B.n

AND B.m = C.m
• A = 100 tuples
• B = 50 tuples
• C = 2 tuples
• Which plan is cheaper?

– Join(C, Join(A, B))
– Join(A, Join(B, C))

How did we find the right one?

1. Measure the cost of each query
2. Enumerate possibilities
3. Pick the least expensive one

• Is that all?

But the search space is too big
• Just for this simple join example, we have a

factorial search space (n!)

• Just to remind you,
– 20! = 2,432,902,008,176,640,000

• So now what do we do?

Use Statistics
• For each relation keep track of

– Cardinality of tuples
– Cardinality of pages
– Etc.

• For each index keep track of
– number of distinct keys in index I.
– the number of pages in index I.

• Use these statistics in conjunction with
– Predicates
– Interesting Orders

Discussion

This all seems like a bit of a black art. And
yet it largely works. Does this surprise you?
Why or why not?

Predicates
• Predicates like =, >, NOT, etc. reduce the

number of tuples

• THUS: Evaluate predicates as early as
possible

Interesting Orders
• GROUP BY and ORDER BY or Join column order

are interesting orders
• To find the cheapest plan we examine the the

cheapest access path that produces tuples in
interesting order or cheapest unordered plan.

• Sorted orders by merge scan can significantly
reduce the cost of subsequent joining even though
nested loop join could cheaper for the current join.

But…
• Statistics alone cannot save us

– Expensive to compute
– Can’t keep track of all joint statistics

• Compromise on statistics
– Periodically update stats for each relation

• Compromise on search
– Dynamic programming approach

Dynamic programming (Wikipedia)
• Optimal substructure means that optimal solutions

of subproblems can be used to find the optimal
solutions of the overall problem.

1. Break the problem into smaller subproblems.
2. Solve these problems optimally using this

three-step process recursively.
3. Use these optimal solutions to construct an

optimal solution for the original problem.

Optimal Substructure in Joins
• Exploits principle of optimality of cost model.
• An N-Join is really just a sequence of 2-Joins

– 2-join becomes a single composite relation

• Find the cheapest join of a subset of the N tables
and store (memoization)

• This costs 2n , which is << n!

From the Top
• Enumerate access paths to each relation

– Sequential scans
– Interesting orders

• Enumerate access paths to join a second relation
to these results (if there is a predicate to do so)
– Nested loop (unordered)
– Merge (interesting order)

• Compare with equivalent solutions found so far but
only keep the cheapest

Example Schema

Example Query

Example Initial Access Paths

Example Search Tree

2 Relations Nested Loop

2 Relations Merge Join

Prune and 3 Relations

Major Contributions of Paper
• Cost based optimization

– Statistics
– CPU utilization (for sorts, etc.)

• Dynamic programming approach
• Interesting Orders

Discussion

We saw a lot of these ideas still in use 20
years later in the previous paper. Are you
surprised on how much was kept, or not?

