CPSC 304 Introduction to Database Systems

Formal Relational Languages

Textbook Reference
Database Management Systems: 4 - 4.2
(skip the calculii)

- Identify the basic operators in Relational Algebra (RA).
- Use RA to create queries that include combining RA operators.
- Given an RA query and table schemas and instances, compute the result of the query.

Databases: the continuing saga

When last we left databases...

- We learned that they're excellent things
- We learned how to conceptually model them using ER diagrams
- We learned how to logically model them using relational schemas
- We knew how to normalize our database relations

We're almost ready to use SQL to query it, but first...

Balance, Daniel-san, is key

The mathematical foundations:

- Relational Algebra
 - Clear way of describing core concepts
 - partially procedural: describe what you want and how you want it, but the order of operations matters
- Datalog
 - A logic-based language (basically a subset of Prolog)
 - Coming up after this

Relational Query Languages

- Allow data manipulation and retrieval from a DB
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic
 - Allows for much optimization via query optimizer
- Query Languages != Programming Languages
 - QLs not intended for complex calculations
 - QLs provide easy access to large datasets
 - Users do not need to know how to navigate through complicated data structures

Relational Algebra (RA) All in one place

- Basic operations:
 - Selection (σ): Selects a subset of rows from relation.
 - <u>Projection</u> (π) : Deletes unwanted columns from relation.
 - Cross-product (x): Allows us to combine two relations.
 - <u>Set-difference</u> (-): Tuples in relation 1, but not in relation 2.
 - <u>Union</u> (\cup): Tuples in relation 1 and in relation 2.
 - Rename (ρ): Assigns a (another) name to a relation
- Additional, inessential but useful operations:
 - Intersection (∩), join (⋈), division (/), assignment(←)
- All operators take one or two relations as inputs and give a new relation as a result
- For the purposes of relational algebra, relations are sets
- Operations can be composed. (Algebra is "closed")

Example Movies Database

Movie(MovieID, Title, Year)

StarsIn(MovieID, StarID, Character)

MovieStar(StarID, Name, Gender)

Example Instances

Movie:

MovieID	Title	Year
1	Star Wars	1977
2	Gone with the Wind	1939
3	The Wizard of Oz	1939
4	Indiana Jones and the Raiders of the Lost Ark	1981

StarsIn:

MovielD	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale

MovieStar:

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female 8

Selection (σ (sigma))

- Notation: $\sigma_{p}(r)$
- p is called the selection predicate
- Defined as:

```
\sigma_p(r) = \{t \mid t \in r \text{ and } p(t)\}
```

Where *p* is a formula in propositional calculus consisting of:

```
connectives : \land (and), \lor (or), \neg (not) and predicates:

<a href="english"><a href="english"><a
```

Set of tuples of r satisfying p

Selection Example

Movie:

MovielD	Title	Year
1	Star Wars	1977
2	Gone with the Wind	1939
3	The Wizard of Oz	1939
4	Indiana Jones and the Raiders of the Lost Ark	1981

$\sigma_{\text{year} > 1940}(\text{Movie})$

MovielD	Title	Year
1	Star Wars	1977
4	Indiana Jones and the Raiders of the Lost Ark	1981

Selection Example #2

Find all male stars

StarID	Name	Gender
1	Harrison Ford	Male

Selection Example #2

Find all male stars

StarID	Name	Gender
1	Harrison Ford	Male

Projection (π (pi))

Notation:

```
\pi_{A1, A2, ..., Ak} (r)
where A1, ..., Ak are attributes (the projection list) and r is a relation.
```

- The result: a relation of the k attributes A1, A2, ..., AK obtained from r by erasing the columns that are not listed
- Duplicate rows removed from result (relations are sets)

Projection Examples

Movie:

 $\pi_{\text{Title, Year}}$ (Movie)

MovielD	Title	Year
1	Star Wars	1977
2	Gone with the Wind	1939
3	The Wizard of Oz	1939
4	Indiana Jones and the Raiders of the Lost Ark	1981

Title	Year
Star Wars	1977
Gone with the Wind	1939
The Wizard of Oz	1939
Indiana Jones and the Raiders of the Lost Ark	1981

$\pi_{Year}(Movie)$

What is $\pi_{\text{Title,Year}}(\sigma_{\text{year} > 1940}(\text{Movie}))$?

Year	
1977	
1939	
1981	

Title	Year
Star Wars	1977
Indiana Jones and the Raiders of the Lost Ark	1981

CPSC 304 – February 13, 2018 Administrative Notes

- Reminder: 2nd project milestone due Friday
- Reminder: the midterm 1 regrade deadline is past
- Reminder: tutorial due Friday (as always)
- Reminder: next week is Reading Week
 - This week's tutorial will be due at the normal time

Now where were we...

- We'd moved onto relational algebra
- In particular, we'd covered two operators: selection (σ) and projection (π)
- Selecting allows you to say that you want specific rows.
- Projection allows you to say that you want specific columns.

Projection Example #2

 Find the IDs of actors who have starred in movies

Projection Example #2

 Find the IDs of actors who have starred in movies

 $\pi_{StarID}(StarsIn)$

Clicker Projection Example

Suppose relation R(A,B,C) has the tuples:

Α	В	С
1	2	3
4	2	3
4	5	6
2	5	3
1	2	6

Compute the projection $\pi_{C,B}(R)$, and

identify one of its tuples from the list below.

- A. (2,3)
- в. (4,2,3)
- c. (6,4)
- D. (6,5)
- E. None of the above

Clicker Projection Example

Suppose relation R(A,B,C) has the tuples:

Α	В	С
1	2	3
4	2	3
4	5	6
2	5	3
1	2	6

Compute the projection $\pi_{C,B}(R)$, and

identify one of its tuples from the list below.

D.(6.5)	right

С	В
3	2
6	5
3	5
6	2

E. None of the above

Selection and Projection Example

Find the ids of movies made prior to 1950

Movie:

MovielD	Title	Year
1	Star Wars	1977
2	Gone with the Wind	1939
3	The Wizard of Oz	1939
4	Indiana Jones and the Raiders of the Lost Ark	1981

MovieID

2

3

Selection and Projection Example

Find the ids of movies made prior to 1950

Movie:

MovielD	Title	Year
1	Star Wars	1977
2	Gone with the Wind	1939
3	The Wizard of Oz	1939
4	Indiana Jones and the Raiders of the Lost Ark	1981

 $\pi_{MovieID}$ ($\sigma_{year < 1950}$ Movie)

MovieID

2

3

Union, Intersection, Set-Difference

- Notation: $r \cup s$ $r \cap s$ r s
- Defined as:

```
r \cup s = \{t \mid t \in r \text{ or } t \in s\}

r \cap s = \{t \mid t \in r \text{ and } t \in s\}

r - s = \{t \mid t \in r \text{ and } t \notin s\}
```

- For these operations to be well-defined:
 - 1. *r*, *s* must have the *same arity* (same number of attributes)
 - 2. The attribute domains must be *compatible* (e.g., 2nd column of *r* has same domain of values as the 2nd column of *s*)
- What is the schema of the result?

Union, Intersection, and Set Difference Examples

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

MovieStar ∪ Singer

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female
4	Christine Lavin	Female

Singer

StarID	SName	Gender
3	Judy Garland	Female
4	Christine Lavin	Female

MovieStar ∩ Singer

StarID	Name	Gender
3	Judy Garland	Female

MovieStar - Singer

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female

Set Operator Example

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

Singer

StarID	Name	Gender
3	Judy Garland	Female
4	Christine Lavin	Female

Find the names of stars that are Singers but not MovieStars

Name
Christine Lavin

Set Operator Example

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

Singer

StarID	Name	Gender
3	Judy Garland	Female
4	Christine Lavin	Female

Find the names of stars that are Singers but not MovieStars

 $\pi_{\text{Name}}(\text{Singer - MovieStar})$

Cartesian (or Cross)-Product

- Notation: rxs
- Defined as:

$$r \times s = \{ t \mid q \mid t \in r \text{ and } q \in s \}$$

- It is possible for r and s to have attributes with the same name, which creates a naming conflict.
 - In this case, the attributes are referred to solely by position.

Cartesian Product Example

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

StarsIn

MovielD	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale

MovieStar x StarsIn

1	Name	Gender	MovielD	5	Character
1	Harrison Ford	Male	1	1	Han Solo
2	Vivian Leigh	Female	1	1	Han Solo
3	Judy Garland	Female	1	1	Han Solo
1	Harrison Ford	Male	4	1	Indiana Jones
2	Vivian Leigh	Female	4	1	Indiana Jones
3	Judy Garland	Female	4	1	Indiana Jones
					28

Rename (ρ (rho))

- Allows us to name results of relational-algebra expressions.
- Notation

$$\rho$$
 (X, E)

returns the expression *E* under the name *X*

- We can rename part of an expression, e.g., $\rho((StarlD \rightarrow ID), \pi_{StarlD,Name}(MovieStar))$
- We can also refer to positions of attributes, e.g., $\rho((1 \rightarrow ID))$, $\pi_{StarID,Name}(MovieStar)$ Is the same as above

ρ Example

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

StarsIn

MovielD	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale

$\rho((1 \rightarrow StarID1, 5 \rightarrow StarID2), MovieStar x StarsIn)$

StarID1	Name	Gender	MovielD	StarID2	Character
1	Harrison Ford	Male	1	1	Han Solo
2	Vivian Leigh	Female	1	1	Han Solo
3	Judy Garland	Female	1	1	Han Solo
1	Harrison Ford	Male	4	1	Indiana Jones
2	Vivian Leigh	Female	4	1	Indiana Jones
3	Judy Garland	Female	4	1	Indiana Jones
		***		•••	

Additional Operations

- They can be defined in terms of the primitive operations
- They are added for convenience
- They are:
 - Join (Condition, Equi-, Natural) (⋈)
 - Division (/)
 - ◆ Assignment (←)

Joins (⋈)

Condition Join:

$$R \bowtie_{c} S = \sigma_{c}(R \times S)$$

- Result schema same as cross-product.
- Fewer tuples than cross-product
 - might be able to compute more efficiently
- Sometimes called a theta-join.
 - The reference to an attribute of a relation R can be by position (R.i) or by name (R.name)

Condition Join Example

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

StarsIn

MovielD	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale

MovieStar ⋈ MovieStar.StarID < StarsIn.StarID StarsIn

1	Name	Gender	MovielD	5	Character
1	Harrison Ford	Male	2	2	Scarlett O'Hara
1	Harrison Ford	Male	3	3	Dorothy Gale
2	Vivian Leigh	Female	3	3	Dorothy Gale

Condition Join Clicker Example

• Compute $R \bowtie_{R.A < S.C \text{ and } R.B < S.D}S$ where:

R(A,B):

S(B,C,D):

Α	В
1	2
3	4
5	6

В	C	D
2	4	6
4	6	8
4	7	9

Assume the schema of the result is (A, R.B, S.B, C, D). Which tuple is in the result?

- A. (1,2,2,6,8)
- в. (1,2,4,4,6)
- C. (5,6,2,4,6)
- D. All are valid
- E. None are valid

Condition Join Clicker Example

• Compute $R \bowtie_{R.A < S.C \text{ and } R.B < S.D}S$ where:

R(A,B):

S(B,C,D):

Α	В
1	2
3	4
5	6

В	С	D
2	4	6
4	6	8
4	7	9

Assume the schema of the result is (A, R.B, S.B, C, D). Which tuple is in the result?

- A. (1,2,2,6,8)
- (2,6,8) would have to be in S
- в. (1,2,4,4,6)
- (4,4,6) would have to be in S
- C. (5,6,2,4,6)
- Violates R.A < SC & R.B < S.D
- D. All are valid
- (5 > 2, and 6 = 6)
- E. None are valid

Correct

Equi-Join & Natural Join

- **Equi-Join**: A special case of condition join $R \bowtie_c S = σ_c(R × S)$, where c contains only **equalities**. Note: this definition differs slightly from the one in the book: it retains all copies of the joined-on attributes. In practice, a join is usually paired with a projection, so the impact is minimal.
- Natural Join: Equijoin on all common attributes
 - Result schema: similar to cross-product, but has only one copy of each common attribute
 - No need to show the condition
 - If the two attributes have no common attributes, this would be the same as cross product.
 - This is what we saw in BCNF & 3NF

Equi and Natural Join Examples

MovieStar

StarsIn

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

MovielD	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale

MovieStar ⋈ StarsIn

StarID	Name	Gender	MovielD	Character
1	Harrison Ford	Male	1	Han Solo
1	Harrison Ford	Male	4	Indiana Jones
3	Judy Garland	Female	3	Dorothy Gale
2	Vivian Leigh	Female	2	Scarlett O'Hara

Join Example

 Find the names of all Movie Stars who were in any Movie

Name

Harrison Ford

Vivian Leigh

Judy Garland

Join Example

 Find the names of all Movie Stars who were in any Movie

 $\pi_{\text{name}}(\text{MovieStar} \bowtie \text{StarsIn})$

Assignment Operation

- Notation: t ← E assigns the result of expression E to a temporary relation t.
- Used to break complex queries to small steps.
- Assignment is always made to a temporary relation variable.
- Example: Write r ∩ s in terms of ∪ and/or temp1 ← r - s

result \leftarrow r – temp1

Okay, let's do some exercises!

Find names of actors who have been in "Indiana Jones"

 $(\sigma_{Title} = "Indiana Jones" Movie)$

MovieID	Title	Year
4	Indiana Jones and the Raiders of the Lost Ark	1981

 $((\sigma_{Title = "Indiana Jones"} Movie) \bowtie StarsIn)$

MovielD	Title	Year	StarID	Character
4	Indiana Jones and the Raiders of the Lost Ark	1981	1	Indiana Jones

 $(\pi_{\text{Name}}((\sigma_{\text{Title}} = \text{``Indiana Jones''} \text{Movie}) \bowtie \text{StarsIn} \bowtie \text{MovieStar}))$

Name
Harrison Ford

Find names of actors who have been in "Indiana Jones" or "Star Wars"

 $(\sigma_{Title} = "Indiana Jones" v title = "Star Wars" Movie)$

MovieID	Title	Year
1	Star Wars	1977
4	Indiana Jones and the Raiders of the Lost Ark	1981

 $(\pi_{\text{Name}}((\sigma_{\text{Title}} = \text{"Indiana Jones" v title} = \text{"Star Wars"} \text{ Movie})$ $\bowtie \text{StarsIn} \bowtie \text{MovieStar})$

Name

Harrison Ford

Find the name of actors who have been in "Indiana Jones" and "Star Wars"

Indy
$$\leftarrow \pi_{\text{starID}}((\sigma_{\text{Title = "Indiana Jones"}} \text{ Movie}) \bowtie \text{StarsIn})$$

StarWars
$$\leftarrow \pi_{\text{starID}}((\sigma_{\text{Title = "Star Wars"}} \text{ Movie}) \bowtie \text{StarsIn})$$

CoolPeople←Indy ∩ StarWars

 $\pi_{\text{name}}(\text{CoolPeople} \bowtie \text{MovieStar})$

Exercise

Find the names of actors who have been in a movie with the same title as the actor's name

Clicker Exercise

Find the names of actors who have been in a movie with the same title as the actor's name Which of the following does *not* do that correctly:

- A. $\pi_{Name}((Movie \bowtie StarsIn) \bowtie_{title = name \land StarID = MovieStar.StarID} MovieStar)$
- B. $\pi_{Name}(MovieStar\bowtie_{Name = title \land MovieStar.StarID = StarID}(StarsIn\bowtie_{Movie}))$
- C. $\pi_{Name}((StarsIn\bowtie (\pi_{StarID,Name}MovieStar)))$ $\bowtie_{MovieID = Movie.MovieID \land title = name}Movie)$
- D. All are correct
- E. None are correct

Clicker Exercise

Find the names of actors who have been in a movie with the same title as the actor's name Which of the following does *not* do that correctly:

- A. $\pi_{Name}((Movie \bowtie StarsIn) \bowtie_{title = name \land StarID = MovieStar.StarID} MovieStar)$
- B. $\pi_{Name}(MovieStar\bowtie_{Name = title \land MovieStar.StarID = StarID}(StarsIn\bowtie_{Movie}))$
- C. $\pi_{Name}((StarsIn\bowtie (\pi_{StarID,Name}MovieStar)))$ $\bowtie_{MovieID = Movie.MovieID \land title = name}Movie)$
- D. All are correct (D)
- E. None are correct

Note: these slides originally included a discussion of the division operator, but I removed it because it's out of scope for 504

197/ D

Learning Goals Revisited

- Identify the basic operators in RA.
- Use RA to create queries that include combining RA operators.
- Given an RA query and table schemas and instances, compute the result of the query.