CPSC 304
 Introduction to Database Systems

Formal Relational Languages

Textbook Reference
Database Management Systems: 4-4.2
(skip the calculii)

Learning Goals

- Identify the basic operators in Relational Algebra (RA).
- Use RA to create queries that include combining RA operators.
- Given an RA query and table schemas and instances, compute the result of the query.

Databases: the continuing saga

When last we left databases...

- We learned that they're excellent things
- We learned how to conceptually model them using ER diagrams
- We learned how to logically model them using relational schemas
- We knew how to normalize our database relations
We're almost ready to use SQL to query it, but first...

Balance, Daniel-san, is key

The mathematical foundations:

- Relational Algebra
- Clear way of describing core concepts
- partially procedural: describe what you want and how you want it, but the order of operations matters
- Datalog
- A logic-based language (basically a subset of Prolog)
- Coming up after this

Relational Query Languages

- Allow data manipulation and retrieval from a DB
- Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic
- Allows for much optimization via query optimizer
- Query Languages != Programming Languages
- QLs not intended for complex calculations
- QLs provide easy access to large datasets
- Users do not need to know how to navigate through complicated data structures

Relational Algebra (RA) All in one place

- Basic operations:
- Selection (σ): Selects a subset of rows from relation.
- Projection (π): Deletes unwanted columns from relation.
- Cross-product (x): Allows us to combine two relations.
- Set-difference (-): Tuples in relation 1, but not in relation 2.
- Union (\cup): Tuples in relation 1 and in relation 2.
- Rename (ρ): Assigns a (another) name to a relation
- Additional, inessential but useful operations:
- Intersection (\cap), join (\bowtie), division ($/$, , assignment (\leftarrow)
- All operators take one or two relations as inputs and give a new relation as a result
- For the purposes of relational algebra, relations are sets
- Operations can be composed. (Algebra is "closed")

Example Movies Database

Movie(MovieID, Title, Year)
StarsIn(MovieID, StarID, Character)
MovieStar(StarID, Name, Gender)

Example Instances

Movie:

StarsIn:

MovieStar:

MovieID	Title	Year
1	Star Wars	1977
2	Gone with the Wind	1939
3	The Wizard of Oz	1939
4	Indiana Jones and the Raiders of the Lost Ark	1981
MovieID	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale
StarlD		Name
1	Harrison Ford	Gender
2	Vivian Leigh	Female
3		Judy Garland

Selection (σ (sigma))

- Notation: $\sigma_{p}(r)$
- p is called the selection predicate
* Defined as:

$$
\sigma_{p}(r)=\{t \mid t \in r \text { and } p(t)\}
$$

Set of tuples of r satisfying

Where p is a formula in propositional calculus consisting of:
connectives : $\wedge($ and $), \vee($ or $), \neg($ not $)$ and predicates:
<attribute> op <attribute> or
<attribute> op <constant>
where $o p$ is one of: $=, \neq>, \geq,<, \leq$

Selection Example

Movie:

MovielD	Title	Year
$\mathbf{1}$	Star Wars	1977
2	Gone with the Wind	1939
$\mathbf{3}$	The Wizard of Oz	1939
4	Indiana Jones and the Raiders of the Lost Ark	1981

$\sigma_{\text {year }}>1940($ Movie $)$

MovielD	Title	Year
1	Star Wars	1977
4	Indiana Jones and the Raiders of the Lost Ark	1981

Selection Example \#2

Find all male stars

StarID	Name	Gender
1	Harrison Ford	Male

Selection Example \#2

Find all male stars

StarID	Name	Gender
1	Harrison Ford	Male

$\boldsymbol{\sigma}_{\text {Gender }}=$ 'male ${ }^{\prime}$ MovieStar

Projection ($\pi(\mathrm{pi})$)

- Notation:

$$
\pi_{\mathrm{A} 1, \mathrm{~A} 2, \ldots, A k}(r)
$$

where $A 1, \ldots, A k$ are attributes (the projection list) and r is a relation.

- The result: a relation of the k attributes A1, A2, ..., AK obtained from r by erasing the columns that are not listed
- Duplicate rows removed from result (relations are sets)

Projection Examples

MOVie:		
MovieID	Title	Year
1	Star Wars	1977
2	Gone with the Wind	1939
3	The Wizard of Oz	1939
4	Indiana Jones and the Raiders of the Lost Ark	1981

$\pi_{\text {Title, Year }}$ (Movie)

Titte	Year
Star Wars	1977
Gone with the Wind	1939
The Wizard of Oz	1939
Indiana Jones and the Raiders of the Lost Ark	1981

$\pi_{\text {Year }}$ (Movie)
What is $\pi_{\text {Title,Year }}\left(\sigma_{\text {year }>1940}(\right.$ Movie $\left.)\right)$?

Titte	Year
Star Wars	1977
Indiana Jones and the Raiders of the Lost Ark	1981

CPSC 304 - February 13, 2018 Administrative Notes

- Reminder: $2^{\text {nd }}$ project milestone due Friday
- Reminder: the midterm 1 regrade deadline is past
- Reminder: tutorial due Friday (as always)
- Reminder: next week is Reading Week
- This week's tutorial will be due at the normal time

Now where were we...

- We'd moved onto relational algebra
- In particular, we'd covered two operators: selection (σ) and projection (π)
- Selecting allows you to say that you want specific rows.
- Projection allows you to say that you want specific columns.

Projection Example \#2

- Find the IDs of actors who have starred in movies

Projection Example \#2

- Find the IDs of actors who have starred in movies

$\pi_{\text {StarID }}($ StarsIn $)$

StarID
1
2
3

Clicker Projection Example

Suppose relation $R(A, B, C)$ has the tuples:

A	B	C
1	2	3
4	2	3
4	5	6
2	5	3
1	2	6

Compute the projection $\pi_{\mathrm{C}, \mathrm{B}}(\mathrm{R})$, and identify one of its tuples from the list below.
A. $(2,3)$
B. $(4,2,3)$
C. $(6,4)$
D. $(6,5)$
E. None of the above

Clicker Projection Example

Suppose relation $R(A, B, C)$ has the tuples:

A	B	C
1	2	3
4	2	3
4	5	6
2	5	3
1	2	6

Compute the projection $\pi_{\mathrm{C}, \mathrm{B}}(\mathrm{R})$, and identify one of its tuples from the list below.

E. None of the above

Selection and Projection Example

Find the ids of movies made prior to 1950

 Movie:| MovielD | Title | Year |
| :--- | :--- | :--- |
| 1 | Star Wars | 1977 |
| 2 | Gone with the Wind | 1939 |
| 3 | The Wizard of Oz | 1939 |
| 4 | Indiana Jones and the
 Raiders of the Lost Ark | 1981 |

MovielD
2
3

Selection and Projection Example

Find the ids of movies made prior to 1950

 Movie:| MovieID | Title | Year |
| :--- | :--- | :--- |
| $\mathbf{1}$ | Star Wars | 1977 |
| 2 | Gone with the Wind | 1939 |
| 3 | The Wizard of Oz | 1939 |
| 4 | Indiana Jones and the
 Raiders of the Lost Ark | 1981 |

$\pi_{\text {MovieID }}\left(\sigma_{\text {year }<1950}\right.$ Movie $)$

MovieID
2
3

Union, Intersection, Set-Difference

- Notation: $\boldsymbol{r} \cup \boldsymbol{s} \quad \boldsymbol{r} \cap \boldsymbol{s} \quad \boldsymbol{r}-\boldsymbol{s}$
- Defined as:

$$
\begin{aligned}
& r \cup s=\{t \mid t \in r \text { or } t \in S\} \\
& r \cap S=\{t \mid t \in r \text { and } t \in S\} \\
& r-S=\{t \mid t \in r \text { and } t \notin S\}
\end{aligned}
$$

- For these operations to be well-defined:

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (e.g., 2nd column of r has same domain of values as the 2 nd column of s)

- What is the schema of the result?

Union, Intersection, and Set Difference Examples

MovieStar

StarlD	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

MovieStar \cup Singer

StarlD	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female
4	Christine Lavin	Female

Singer

StarID	SName	Gender
3	Judy Garland	Female
4	Christine Lavin	Female

MovieStar \cap Singer

StarlD	Name	Gender
3	Judy Garland	Female

MovieStar - Singer

StarlD	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female

Set Operator Example

MovieStar

StarlD	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

Singer

StarlD	Name	Gender
3	Judy Garland	Female
4	Christine Lavin	Female

Find the names of stars that are Singers but not MovieStars

Name

Christine Lavin

Set Operator Example

MovieStar

StarlD	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

Singer

StarlD	Name	Gender
3	Judy Garland	Female
4	Christine Lavin	Female

Find the names of stars that are Singers but not MovieStars

$$
\pi_{\text {Name }}(\text { Singer - MovieStar) }
$$

Name
Christine Lavin

Cartesian (or Cross)-Product

- Notation: rxs
- Defined as:

$$
r \times s=\{t q \mid t \in r \text { and } q \in s\}
$$

- It is possible for r and s to have attributes with the same name, which creates a naming conflict.
- In this case, the attributes are referred to solely by position.

Cartesian Product Example

MovieStar		
StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

MovieStar x StarsIn
StarsIn

MovielD	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale

	Name	Gender	MovielD		5
1	Harrison Ford	Male	1	1	Character
2	Vivian Leigh	Female	1	1	Han Solo
3	Judy Garland	Female	1	1	Han Solo
1	Harrison Ford	Male	4	1	Indiana Jones
2	Vivian Leigh	Female	4	1	Indiana Jones
3	Judy Garland	Female	4	1	Indiana Jones
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
28					

Rename (ρ (rho))

- Allows us to name results of relational-algebra expressions.
- Notation

$$
\rho(X, E)
$$

returns the expression E under the name X

- We can rename part of an expression, e.g., $\rho\left((\right.$ StarID \rightarrow ID $), \pi_{\text {StarID,Name }}($ MovieStar $\left.)\right)$
- We can also refer to positions of attributes, e.g., $\rho((1 \rightarrow \mathrm{ID})), \pi_{\text {StarID,Name }}($ MovieStar $)$
Is the same as above

ρ Example

MovieStar		
StarlD	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

StarsIn

MovieID	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale

$\rho((1 \rightarrow$ StarID1, $5 \rightarrow$ StarID2), MovieStar x StarsIn $)$

StarlD1	Name	Gender	MovielD	StarID2	Character
1	Harrison Ford	Male	1	1	Han Solo
2	Vivian Leigh	Female	1	1	Han Solo
3	Judy Garland	Female	1	1	Han Solo
1	Harrison Ford	Male	4	1	Indiana Jones
2	Vivian Leigh	Female	4	1	Indiana Jones
3	Judy Garland	Female	4	1	Indiana Jones
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

Additional Operations

- They can be defined in terms of the primitive operations
- They are added for convenience
- They are:
- Join (Condition, Equi-, Natural) (®)
- Division (/)
- Assignment (\leftarrow)

Joins (\bowtie)

- Condition Join:

$$
R \bowtie_{c} S=\sigma_{c}(\mathrm{R} \times \mathrm{S})
$$

- Result schema same as cross-product.
- Fewer tuples than cross-product
- might be able to compute more efficiently
- Sometimes called a theta-join.
- The reference to an attribute of a relation R can be by position (R.i) or by name (R.name)

Condition Join Example

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

StarsIn

MovieID	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale

MovieStar \bowtie MovieStar.StarID < StarsIn.StarID StarsIn

1	Name	Gender	MovielD	$\mathbf{5}$	Character
1	Harrison Ford	Male	2	2	Scarlett O'Hara
1	Harrison Ford	Male	3	3	Dorothy Gale
2	Vivian Leigh	Female	3	3	Dorothy Gale

Condition Join Clicker Example

- Compute $R \bowtie_{\text {R.A }}$ < S.C and R.B < S.D S where:

$R(A, B):$	
A	B
1	2
3	4
5	6

S(B,C,D):		
B	C	D
2	4	6
4	6	8
4	7	9

Assume the schema of the result is (A, R.B, S.B, C, D).
Which tuple is in the result?
A. $(1,2,2,6,8)$
B. $(1,2,4,4,6)$
C. $(5,6,2,4,6)$
D. All are valid
E. None are valid

Condition Join Clicker Example

- Compute $R \bowtie_{\text {R.A }}$ S S.C and R.B $<$ S.D S where:

R(A,B):

\mathbf{A}	\mathbf{B}
1	2
3	4
5	6

$\mathrm{S}(\mathrm{B}, \mathrm{C}, \mathrm{D})$:

B	C	D
2	4	6
4	6	8
4	7	9

Assume the schema of the result is (A, R.B, S.B, C, D). Which tuple is in the result?
A. $(1,2,2,6,8) \quad(2,6,8)$ would have to be in S
B. $(1,2,4,4,6) \quad(4,4,6)$ would have to be in S
C. $(5,6,2,4,6) \quad$ Violates R.A < SC \& R.B < S.D
D. All are valid ($5>2$, and $6=6$)
E. None are valid Correct

Equi-Join \& Natural Join

- Equi-Join: A special case of condition join $R \bowtie_{c} S=\sigma_{c}(R \times S)$, where c contains only equalities. Note: this definition differs slightly from the one in the book: it retains all copies of the joined-on attributes. In practice, a join is usually paired with a projection, so the impact is minimal.
- Natural Join: Equijoin on all common attributes
- Result schema: similar to cross-product, but has only one copy of each common attribute
- No need to show the condition
- If the two attributes have no common attributes, this would be the same as cross product.
- This is what we saw in BCNF \& 3NF

Equi and Natural Join Examples

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

StarsIn

MovieStar \bowtie StarsIn

StarID	Name	Gender	MovieID	Character
1	Harrison Ford	Male	1	Han Solo
1	Harrison Ford	Male	4	Indiana Jones
3	Judy Garland	Female	3	Dorothy Gale
2	Vivian Leigh	Female	2	Scarlett O'Hara

Join Example

- Find the names of all Movie Stars who were in any Movie

Name
Harrison Ford
Vivian Leigh
Judy Garland

Join Example

- Find the names of all Movie Stars who were in any Movie

$\pi_{\text {name }}$ (MovieStar \bowtie StarsIn)

Name
Harrison Ford
Vivian Leigh
Judy Garland

Assignment Operation

- Notation: $\mathrm{t} \leftarrow \mathrm{E}$ assigns the result of expression E to a temporary relation t.
- Used to break complex queries to small steps.
- Assignment is always made to a temporary relation variable.
- Example: Write $r \cap s$ in terms of \cup and/or -

$$
\begin{aligned}
& \text { temp1 } \leftarrow r \text {-s } \\
& \text { result } \leftarrow r \text { - temp1 }
\end{aligned}
$$

Okay, let's do some exercises!

Find names of actors who have been in "Indiana Jones"

$\left(\sigma_{\text {Title }}=\right.$ "Indiana Jones"		
MovieID	Title	Year
4	Indiana Jones and the Raiders of the Lost Ark	1981

$$
\left(\left(\sigma_{\text {Title }}=\text { "Indiana Jones" } \text { Movie }\right) \bowtie \text { StarsIn }\right)
$$

MovieID	Title	Year	StarlD	Character
4	Indiana Jones and the Raiders of the Lost Ark	1981	1	Indiana Jones

$\left(\pi_{\text {Name }}\left(\left(\sigma_{\text {Title }}=\right.\right.\right.$ "Indiana Jones" Movie $) \bowtie$ StarsIn \bowtie MovieStar $\left.)\right)$

Name

Find names of actors who have been in "Indiana Jones" or "Star Wars"

$$
\left(\sigma_{\text {Title }}=\text { "Indiana Jones" } v \text { title }=\text { "Star Wars" Movie }\right)
$$

MovielD	Title	Year
1	Star Wars	1977
4	Indiana Jones and the Raiders of the Lost Ark	1981

$\left(\pi_{\text {Name }}\left(\left(\sigma_{\text {Title }}=\right.\right.\right.$ "Indiana Jones" v title $=$ "Star Wars" Movie $)$ \bowtie StarsIn \bowtie MovieStar)

Name
Harrison Ford

Find the name of actors who have been in "Indiana Jones" and "Star Wars"

Indy $\leftarrow \pi_{\text {starID }}\left(\left(\sigma_{\text {Title }}=\right.\right.$ "Indiana Jones" M Mie $) \bowtie$ StarsIn $)$

StarWars $\leftarrow \pi_{\text {starID }}\left(\left(\sigma_{\text {Title }}=\right.\right.$ "Star Wars" Movie $) \bowtie$ StarsIn $)$

CoolPeople \leftarrow Indy \cap StarWars

$$
\pi_{\text {name }}(\text { CoolPeople } \bowtie \text { MovieStar })
$$

Exercise

Find the names of actors who have been in a movie with the same title as the actor's name

Clicker Exercise

Find the names of actors who have been in a movie with the same title as the actor's name Which of the following does not do that correctly:
A. $\pi_{\text {Name }}\left((\right.$ Movie \bowtie StarsIn $) \bowtie{ }_{\text {title }}=$ name \wedge StarID $=$ MovieStar.StarID MovieStar)
B. $\pi_{\text {Name }}($ MovieStar \bowtie Name $=$ title \wedge MovieStar.StarID $=$ StarıD (StarsIn凶 Movie))
C. $\pi_{\text {Name }}\left(\left(\right.\right.$ StarsIn $\bowtie\left(\pi_{\text {StarID,Name }}\right.$ MovieStar $\left.)\right)$ $\bowtie_{\text {MovieID }}=$ Movie.MovieID \wedge title $=$ name Movie)
D. All are correct
E. None are correct

Clicker Exercise

Find the names of actors who have been in a movie with the same title as the actor's name Which of the following does not do that correctly: A. $\pi_{\text {Name }}\left((\right.$ Movie \bowtie StarsIn $) \bowtie{ }_{\text {title }}=$ name \wedge StarID $=$ MovieStar.StarID MovieStar)
B. $\pi_{\text {Name }}($ MovieStar \bowtie Name $=$ title \wedge MovieStar.StarID $=$ StarıD (StarsIn凶 Movie))
C. $\pi_{\text {Name }}\left(\left(\right.\right.$ StarsIn $\bowtie\left(\pi_{\text {StarID,Name }}\right.$ MovieStar $\left.)\right)$ $\bowtie_{\text {MovieID }}=$ Movie.MovieID \wedge title $=$ name Movie)
D. All are correct All are correct (D)
E. None are correct

Note: these slides originally included a discussion of the division operator, but I removed it because it's out of scope for 504

Learning Goals Revisited

- Identify the basic operators in RA.
- Use RA to create queries that include combining RA operators.
- Given an RA query and table schemas and instances, compute the result of the query.

