
Overview of Query Optimization
in Relational Systems

Original slides by
Presenter: Albert Wong

Discussion: Stephen Ingram
Modified by Rachel Pottinger, Sarah

Elhammadi

Overview of Query Optimization in
Relational Systems

• An overview of current SQL query
optimization techniques in relational
database systems.

• Gives fundamentals of SQL query
optimization

Introduction

• 2 key components for query evaluation in
a SQL database system
– Query optimizer
– Query execution engine

Query Execution Engine

• Implements a set of physical operators.
• A physical operator takes as input one or more

data streams and produces an output data
stream
– Ex. (external) sort, sequential scan, index scan,..
– pieces of code used as building blocks to execute

SQL queries
– responsible for execution of operator tree (execution

plan) that generates answers to the query.

Example Operator Tree

Query Optimizer
• Input: parsed representation of SQL query
• Output: an efficient execution plan for the

given SQL query from the space of
possible execution plans
– Input to Query Execution Engine

• The space of possible execution plan can
be huge:
– Many logically algebraic transformations.
– Many operator trees for a given

representation.
– Throughput varies widely with each plan.

The Key Idea: Query Optimization
as a Search Problem

• To solve problem, we need to provide:
– Search space (low cost plans desirable)
– Cost estimation technique to assign a cost to

each plan in the search space (accuracy
desired)

– Enumeration algorithm to search through the
execution space (efficiency desired)

• Search for the best (or not the worst) plan

Search Space

• Depends on:
– Equivalence among algebraic transformations
– Physical operators supported in an optimizer

• Transformations may not reduce cost and
therefore must be applied in a cost-based
manner to ensure a positive benefit

Commuting Between Operators
• Generalized Join Sequencing

– Linear join most common.
– Bushy join (materialization, cheaper query

plan, expensive enumeration)
• Outer Join and Join

– Join(R, S LOJ T) = Join(R, S) LOJ T
– Still need to account for cost.

• Group-By and Join
– In some cases, performing Group-By first may

reduce the cost of join.
– Inexpensive with index.

Linear and Bushy Joins

Multi-Block Query to Single-Block

• Merging Views
– Q = Join(R,V)
– View V = Join(S,T)
– Q = Join(R,Join(S,T))

• Merging Nested
Subqueries
– Uncorrelated.
– Correlated.
– Complexity

depends on
structure.

Discussion

How do you feel about using a declarative
language and optimizer to query data? Do
you think the users at the time would have
been quick to adopt this kind of system?
Why or why not?

Statistics and Cost Estimation

• Deciding which operator tree consumes least
resources (CPU, I/O, memory,..)

• Cost estimation must be accurate because
optimization is only as good as its cost estimates

• Must be efficient as it is repeatedly invoked by
the optimizer

• Basic estimation framework
– collect statistical summaries of data stored
– given an operator and statistical summaries of its

input streams, determine
• statistical summary of output data stream
• estimated cost of executing the operation

Statistical Summaries of Data

• Ex.: # tuples in table, # physical pages used by
table, statistical information on columns (e.g.,
histograms, min or max, second lowest and
second highest)

• Can use sampling to build histograms that are
accurate for a large class of queries
– estimating distinct values is provably error prone

• Statistics must be propagated from base data to
be useful
– Can be difficult as assumptions must be made when

propagating statistical summaries

Discussion

What effect do you think all of this tuning
and maintenance has on: How database
systems are deployed? How they are
managed? How they are used?

Cost Computation

• Costs:
– CPU
– I/O
– communication costs (parallel & distributed)

• Difficult to determine best cost estimator
• Statistical summary propagation and

accurate cost estimation are difficult open
issues in query optimization

Enumeration Architectures

• Enumeration algorithm explores search
space to pick cheap execution plan

• Enumerators concentrate on linear join
sequences rather than bushy join
sequences due to the size of the search
space including bushy join sequences

Extensible Optimizers

• Want enumerator to adapt to changes in search
space
– New transformations
– Addition of new physical operators
– Changes in cost estimation techniques

• Solution:
– infrastructure for evolution of optimizer design.
– Trade off between generality in the

architecture and efficiency in enumeration
– Ex. Starburst and Volcano/Cascades (coming up!)

Materialized Views

• Views cached by database system
• Query can take advantage of materialized views

to reduce the cost of executing the query
• Problems

– Reformulating query to take advantage of
materialized views (general problem is undecidable,
determining effective sufficient conditions is nontrivial)

Summary of Chaudhuri’s Paper

• Query optimization as a search problem
whose solution requires:
– a search space, cost estimation technique, an

enumeration algorithm
• Query optimization can be considered an

art
– effective and correct SQL transformations
– robust cost metric
– extensible architecture

Ending Discussions

• What value does this paper contribute to
the community and why do you think this
paper was accepted?

