
3/3/2009

1

CPSC 504: DATA
MANAGEMENT

2009
PRESENTER: YONG

DISCUSSION : BRENDAN

Monitoring Streams : A New Class
of Data Management Applications

Outline

 Motivation
 -5 assumptions of traditional DBMS

 -Monitoring applications

 -Rethink the fundamental

 Aurora System Model

 Aurora Run-time architecture

 QoS in Aurora

 Real-time Scheduling

 Conclusion

5 assumptions of traditional DBMS

1. Passive repository: Human-Active, DBMS-Passive
(HADP) model

2. The current of state of the data is important:
Previous data needs to be extracted from the log

3. Triggers and alerts as second-class citizens

4. Perfect synchronization of data elements and exact
query answers

5. No real-time services from applications

So what’s wrong with this assumption?

Monitoring applications : are those where
streams of information, triggers, real-time
requirements, and imprecise data are
prevalent.

So what’s wrong with this assumption?

5 assumptions

1. HADP model
2. Only the current

data is important
3. Triggers and

alerts as second-
class citizens

4. Perfect
synchronization
of data elements
and complete
data

5. No real-time
services

Market Analysis

Streams of Stock Exchange Data
Critical Care
Streams of Vital Sign Measurements
Physical Plant Monitoring
Streams of Environmental Readings

Biological Population Tracking
Streams of Positions from Individuals of a Species

Monitoring

Application

Traditional

DBMS

Typical model
Data Active

Human Passive

Data Passive

Human Active

Managing History of

values
required Very hard or inefficient

Approximate query result required Not supported

Trigger oriented required Limited support

Real-time requirement required Not supported

So what’s wrong with this assumption?

3/3/2009

2

So what’s wrong with this assumption?

SO!

All 5 assumptions are problematic
for motoring applications!

Aurora System Model

 So, the solution “Aurora”, which is designed

to better support monitoring applications

-Stream data

-Triggers

-Imprecise data

-Real-time requirement

Aurora System Model

Aurora: process incoming streams in the way defined by an
applications (data-flow system : Aurora Network)
Data sources (stream) : A stream in Aurora is a sequence
of tuples from a given data source, and each tuple is time
stamped upon entry to Aurora
Boxes : performs operations on incoming stream of data

Boxes : Operations

8 primitive operators (Box)
 Windowed : Operate on a set of consecutive tuples from a stream at

a time. Applies function to a windows and advances the window to
capture a new set of tuples.
 Slide : advances a window by ‘sliding’ it downstream by some no of

tuples.
 Tumble: consecutive windows don’t have overlap
 Latch: maintain internal state between window.
 Resample : produce synthetic stream.

 Non-windowed: single tuple at a time

 Filter : condition
 Map : apply a function to every tuple
 GroupBy : partition incoming tuples across multiple streams to

groups
 Join : pairs tuples from input streams

3 kinds of query supported
Continuous
View
Ad-Hoc Query

Aurora Run-time architecture

3/3/2009

3

Quality of Service (QoS) must be provided by the application
administrator!

The QoS monitor constantly monitors system performance and activates
load shedder (ex. Drop tuples) when it is needed, that is, the system
performance is degrading by data overload.

QoS: Quality of Service QoS: Quality of Service

Discussion

 The authors state: "Asking the application
administrator to specify a multidimensional QoS
function seems impractical. Instead, Aurora relies
on a simpler tactic, which is much easier for humans
to deal with: for each output stream, we expect the
application administrator to give Aurora a two-
dimensional QoS graph based on the processing
delay of output tuples produced." Does this seem
easier? Does it make sense to you?

Real Time Scheduling

 Scheduling decision on QoS is not enough!

Maximize overall QoS + reduce overall end to
end tuple execution costs!

But how?

Conclusion

 Aurora Stream Query Processing System

 Designed for Scalability

 QoS-Driven Resource Management

 Continuous and Historical Queries

 Stream Storage Management

 Implemented Prototype
www.cs.brown.edu/research/aurora/

3/3/2009

4

Discussion

 Compare Aurora with distributed databases (e.g.,
Mariposa) and adaptive query execution systems
(e.g., Eddies). These systems have to handle
arbitrary data arrival rates, and don’t know in
advance how much data they will need to process.
How does this differ from the continuous query
problem? Which techniques are common to both?

