
1/29/2009

1

A Transaction Recovery Method

ARIES

1/29/20091 Simon Olberding

Outline

 What’s the problem ?

 Terminology

 ARIES in action

 Normal processing

 System crash

1/29/20092 Simon Olberding

ACID

 Atomicity: Either all actions in the transaction occur, or

none occur

 Consistency: If each transaction is consistent and the DB

starts in a consistent state, then the DB ends up being

consistent.

 Isolation: The execution of one Transaction is isolated from

that of other transactions

 Durability: The result of a committed transaction is stored

persistently.

1/29/20093 Simon Olberding

Discussion

1/29/2009Simon Olberding4

 How much of the success of a database

management system depends on reliable and

efficient transaction management?

 Given that relational database management

systems have been very successful, do you believe

relational model has made the design of

transaction management algorithms easier and

more efficient? Why or why not?

What is ARIES good for ?
 Problem: How to ensure the Atomicity and Durability if a transaction

gets aborted or a media or device failure occurs?

 Unroll transaction

 redo transactions

 ARIES supports methods to deal with the problem

 ARIES features: fine granularity locking

1. OO systems make users think in small objects
2. “Object-oriented system users may tend to have many terminal

interactions during …”

3. More system use more hotspots need less tuning
4. Metadata is accessed often; cannot all be locked at once

1/29/20095 Simon Olberding

Goals
1. Simplicity (Concurrency & recovery are complex)

2. Operation Logging (higher concurrency level)

3. Flexible storage management (avoid offline reorganization of data -->
garbage collect)

4. Partial rollbacks (faster than total rollback)

5. Flexible buffer management (concurrency I/O)

6. Recovery independence (selective recovery+ image copy at different
granularities e.g. page oriented)

7. Logical undo (concurrency)

8. Parallelism and fast recovery (multiprocessors, normal processing
while recovery)

9. Minimal overhead (min log data, min CPU usage)

1/29/20096 Simon Olberding

1/29/2009

2

Excursus: Buffer management

DIRTY

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

Q: When should a updated page be written to disc?

I

Need for a policy

Update

1/29/20097 Simon Olberding

Handling the buffer pool Policies
 Force: make sure that every update is on disk before

commit

 Durability without REDO logging

 Bad performance

 no Steal: don’t allow buffer-pool frames with uncommitted

updates to overwrite committed data on disk.

 Atomicity without UNDO logging

 Bad performance

Force

No Force

No Steal Steal

No REDO

No UNDO

UNDO

REDO

No UNDO

REDO

Force

No Force

No Steal Steal

Slowest

Fastest

1/29/20098 Simon Olberding

Transaction has to wait for the disk

Basic Idea: Logging
 Record REDO and UNDO information, for every update, in

a log.

 Sequential writes to log (put it on a separate disk).

 Minimal info (difference) written to log, so multiple updates fit in a

single log page.

 Log: An ordered list of REDO/UNDO actions

 Log record contains:

<XID, pageID, offset, length, old data, new data>

 and additional control info (which we’ll see soon).

1/29/20099 Simon Olberding

Write-Ahead Logging (WAL)

 The Write-Ahead Logging Protocol:

Must force log record for an update before the

corresponding data page gets to disk.

Must write all log records for a Xact before commit

 #1 guarantees Atomicity.

 With UNDO info (ARIES: logical undo, concurrency)

 #2 guarantees Durability.

 With REDO info (ARIES: physical REDO, simplicity,

independency)
Note: Now we can implement Steal/No-force

1/29/200910 Simon Olberding

Log in WAL
 LSN: log sequence number for every log record

 Always increasing

 pageLSN:

 LSN of the most recent log record for an update to that page

 Part of the log is in RAM another part is already on disc

 Following the WAL-Protocol requires that flushedLSN >= pageLSN

 Otherwise there would be an updated page which isn’t registered in the

log on stable storage

DISC

RAM

flushedLSN

1/29/200911 Simon Olberding

Outline

 What’s the problem ?

 Terminology

 ARIES in action

 Normal processing

 System crash

1/29/200912 Simon Olberding

1/29/2009

3

Simon Olberding

The Big Picture: What’s Stored Where

DB

Data pages
each

with a

pageLSN

Xact Table
lastLSN

status

Dirty Page Table
recLSN

flushedLSN

RAM

LSN

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecords

LOG

Master record

1/29/200913

Log Records

Possible log record types:

 Update

 Commit

 Abort

 End (signifies end of commit or

abort)

 Compensation Log

Records (CLRs)

 for UNDO actions

prevLSN

transID

type

length

pageID

offset

before-image

after-image

LogRecord fields:

update
records
only

before and after image are the data before and after the update.

UndoNxtLSNCLR only

1/29/2009Simon Olberding

Dirty page & Transaction table

1/29/2009Simon Olberding17

Outline

 What’s the problem ?

 Terminology

 ARIES in action

 Normal processing

 System crash

1/29/200918 Simon Olberding

Normal processing

 Updating / forward processing

 Adding records the log file

 Checkpoints (next Slide)

 Total/partial rollback

 If transaction is aborted. Rollback to the last savepoint or the

whole transaction no double UNDO

1/29/200919 Simon Olberding

Checkpoints
 Motivation: reduce the amount of recovery work after a

System crash

 Idea: make a fuzzy snapshot of the DPT and TAT
 1st log entry: begin_ckp

 2nd log entry end_ckp. Save DPT and TAT on stable storage

 Write begin_ckp LSN to a save place (master record)

 Fuzzy, because there might be transaction between
begin_ckp and end_ckp

 No attempt to force dirty pages to disk

 effectiveness of checkpoint limited by oldest unwritten change
to a dirty page

1/29/200920 Simon Olberding

1/29/2009

4

Outline

 What’s the problem ?

 Terminology

 ARIES in action

 Normal processing

 System crash

1/29/200921 Simon Olberding

Crash Recovery: Big Picture

 Start from a checkpoint (found via

master record).

 Three phases. Need to do:

– Analysis - Figure out which Xacts

committed since checkpoint, which

failed.

– REDO all actions.

(repeat history)

– UNDO effects of failed Xacts.

Oldest log rec.

of Xact active

at crash

Smallest

recLSN in dirty

page table after

Analysis

Last chkpt

CRASH

A R U 1/29/200922 Simon Olberding

Analysis Phase
 Recreate Transaction & Dirtypage table using the checkpoint

 Follow the log data from the checkpoint until the last LSN
(like normal processing)
 End record: Remove Xact from Xact table.
 All Other records: Add Xact to Xact table, set lastLSN=LSN,

change Xact status on commit.
 also, for Update records: If page P not in Dirty Page Table, Add

P to DPT, set its recLSN=LSN.

crash!
T1

T2

T3

T4

T5

Abort

Commit

Commit

Result: TAT says which
Xacts were active at time of
crash.

DPT says which dirty pages
MIGHT NOT have made it to
disk

1/29/200923 Simon Olberding

Redo pass
 Motivation: Repeat history to reconstruct state at crash

 Reapply all updates, also updates of looser transactions

 Procedure

 Start at the log with the smallest recLSN

 Redo all actions of log record or CLR unless
 Affected Pages is not in the DPT or

 Affected page is in DPT and (recLSN > LSN or

 pageLSN >= LSN) (requires I/O, therefore last check)

 Redo = apply action + set pageLSN = LSN

 At the end of REDO, and End record is inserted in the log for
each transaction with status C which is removed from Xact
table.

1/29/200924 Simon Olberding

 Motivation: remove looser transactions

UNDO Pass

ToUndo = { l | l a lastLSN of a “loser” Xact}

Repeat:

 Choose largest LSN among ToUndo

 If this LSN is a CLR and undoNextLSN==NULL

 Write an End record for this Xact

 If this LSN is a CLR and undoNextLSN != NULL

 Add undoNextLSN to ToUndo

 Else this LSN is an update
Undo the update, write a CLR, add prevLSN to ToUndo

Until ToUndo is empty

1/29/200925 Simon Olberding

Example: Crash

LSN LOG

00

05

10

20

30

40

45

50

60

Xact Table

lastLSN

status

Dirty Page Table

recLSN

flushedLSN

ToUndo

prevLSN

RAM begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

1/29/200926 Simon Olberding

undoNxtLSN

1/29/2009

5

Example: Crash During Restart!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10

20

30

40,45

50

60

70

80,85

90

Xact Table

lastLSN

status

Dirty Page Table

recLSN

flushedLSN

ToUndo

undonextLSN

RAM

1/29/200927 Simon Olberding

Analysis+Redo: P1(50), P3(20) P5(10)

T2(60), T3(50)

Discussion

1/29/2009Simon Olberding28

 Goals of ARIES: Simplicity, operation logging,
flexible storage management, partial rollbacks,
flexible buffer management, recovery
independence, logical undo, parallelism and fast
recovery, minimal overhead

 The authors claim that the system is simple and
efficient. Do you agree or disagree with each
claim? Why or why not? Do you think all of these
goals are among the primary requirements of
every transaction management system?

Example: Crash During Restart!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10

20

30

40,45

50

60

70

80,85

90

Xact Table

lastLSN

status

Dirty Page Table

recLSN

flushedLSN

ToUndo

undonextLSN

RAM

1/29/200929 Simon Olberding
Analysis+Redo: P1(50), P3(20) P5(10)

T2(70) DPT same as before

Limit the recovery work

 How do you limit the amount of work in REDO?

 Flush asynchronously in the background.

 Watch “hot spots”!

 How do you limit the amount of work in UNDO?

 Avoid long-running Xacts.

1/29/200930 Simon Olberding

Sources
 Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, P.

1992. ARIES: a transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead
logging. ACM Trans. Database Syst. 17, 1 (Mar. 1992), 94-162.
DOI= http://doi.acm.org/10.1145/128765.128770

 Slides Crash Recovery by Robert VanNatta

 Slides ARIES: Database Logging and Recovery by Zachary G.
Ives

 Slides ARIES: A Transaction Recovery Method by Rachel
Pottinger

 Slides “Buffer Management Notes” by Amol Deshpande

 R. Ramakrishnan and J. Gehrke, Database Management Systems,
McGraw-Hill, 3rdEd., 2003

1/29/200931 Simon Olberding

