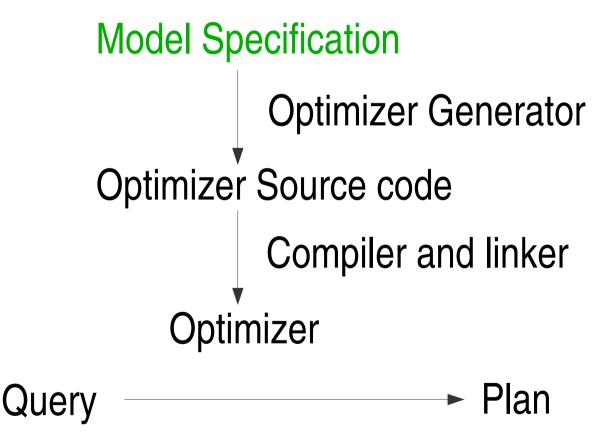
# The Volcano Optimizer Generator: Extensibility and Efficient Search

Presentation: Mirna Limic

Discussion: Jerry Zhang

## What is Volcano? Why develop it?


- An optimizer generator tuned towards object-oriented and scientific database systems. It can handle large data volumes.
- In short: Volcano is a package for "assembling" one's own efficient optimizer for the needs of an application.
- target = optimizer implementor

<u>Definition</u>: An architectural property of a program that allows its capabilities to expand is called <u>extensibility</u>. (web.mit.edu/oki/learn/gloss.html)

Where is extensibility in the Volcano Generator Model?

#### The Generator Paradigm

Where does extensibility come in the generator paradigm model?



#### Design Principles of Opt. Gen.

relational algebra – logical for the set of algebraic operators, physical for the set of algorithms

rules over relational algebra – used in equivalence transformations, allow for modularity

rule compilation rather than interpretation

dynamic programming used to find the most efficient plan

## How do we make use of extensibility?

By specifying the model using:
logical operators, algebraic transformation rules,
algorithms and enforcers, mappings of operators
to algorithms, "cost" ADT functions,
ADT physical property vector, ...

**VOLCANO OPTIMIZER GENERATOR** 

▼ OPTIMIZER

ADT is Abstract Data Type

#### The Search Engine - Terms

Results of an algebra expression are described using properties

logical – e.g. types in schema, a type's expected size physical – e.g. sort order, uniqueness

An enforcer is a physical algebra operator that ensures one or two physical properties. It does not correspond to any operator in the logical algebra.

#### Search Engine – Terms, cont'd

```
plan is used for two things so we differentiate:

execution plan: a set of algorithms,

their inputs,

the ordering in which algorithms are executed
the total cost of executing the algorithms
decision plan: a way (plan) of doing something
```

So How Does It Work?

Hash table containing expressions and equivalence classes. A row contains the following

| a logical<br>expression | equivalence classes            |                                           |
|-------------------------|--------------------------------|-------------------------------------------|
|                         | equivalent logical expressions | physical expressions i.e. execution plans |

#### Decision plan:

Based on the input: query exp., phys. prop., cost limit do in order

- -Read the execution plan by keying on the logical expression, where the execution plan matches the physical properties supplied, and its cost is less than the cost limit
- -If no such execution plan exists do one of the following:
  - use an equivalent logical expression
  - use an algorithm
  - use enforcer to change the physical properties

#### Volcano vs. Starburst

- Volcano can do general algebraic queries, Starburst can do only SPJ queries
- Starburst optimizer evaluates all alternative query evaluation plans (QEP's) to find the cheapest, Volcano evaluates only those it needs to.
- Starburst has a hierarchy of intermediate levels, Volcano uses an algebraic approach (Which one is easier to understand?)

#### Goals of the new optimizer generator

- make the new generator compatible with the existing query execution software, and as stand-alone tool
- make it more efficient than its predecessor (EXODUS) in optimization time and memory requirements
- allow for the definition of one's own physical properties (e.g. sort order)
- use heuristics and specification of the data model when searching for the optimal plan of execution of a query
- generate optimization plans for incompletely specified queries