
1

The ObjectStore

Database System

Charles Lamb

Gordon Landis

Jack Orenstein

Dan Weinreb

Presented by: Nguyet Minh Nguyen

Discussion by: Immad Naseer

CPCS 504 – Data Management

2

Outline

� Introduction (ObjectStore, Motivation, Goals)

� Application interface (Collection facility, 

Relationship facility, Accessing persistent data, Query 

facility)

� Memory-mapped architecture 

� Distributed data access

� Query optimization

� Conclusions

3

ObjectStore

�Object-oriented DBMS

�Some different packages (C++, Java)

�C++ package

�Closely integrated with the C++ language

�Persistent storage capabilities for C++ objects

�Associative queries 

�Transaction management

�Distributed data access

4

Motivation

�Target applications (CAD, CAE, GIS…)

�Complex manipulations

�Large databases of objects with intricate 

structure

� Impedance mismatch between application 

code and database code

�a uniform programmatic interface to both 

persistent and transient data.

5

Goal: add persistence to C++

� Ease of learning: 
�C++ plus a little extra.

� No translation code: 
�Persistent data is treated like transient data.

� Expressive power: 
�General purpose language (as opposed to SQL)

� Reusability: 
�Same code can operate on persistent or transient data

� Ease of conversion: 
�Data operations are syntactically the same for persistent 

and transient data.

6

Goal: add persistence to C++

� Type checking: 
�The same static type-checking from C++ works for 

persistent data.

� Temporal/Spatial locality: 
�Take advantage of common access patterns.

� Fine interleaving: 
�Low overhead to allow frequent, small database 

operations

� Performance: 
�Do it all with good performance compared to RDBMSs



2

7

Discussion #1

� What are the pros and cons of merging 
programming languages & databases ? 
For example: 
�“Expressive power”: You can express more queries 

using a programming language as compared to, say, 
SQL. What are the pros and cons? Are there alternate 
solutions?

�“Reusability”: Does the data model become more or less 
reusable across applications?

�“Using the data”: Does manipulating the data in the 
application become easier or difficult?

�Other?

8

Application Interface

�Three programming interfaces

�C library interface

�C++ library interface

�Extended C++ language

�Collection facility

�Relationship facility

�Accessing persistent data 

�Query facility

9

Collection facility

�Object class library

�Ordered collections (os_list)

�Collections with or without duplicates (os_bag

or os_set)

�Behaviors

�insert(e), remove(e), create(e),…

�Looping construct (Cursor interator)

10

Collection facility (cont.)

employee

department

1

N

11

Relationship facility

�Modeling complex objects

�A pair of inverse pointers

�Maintaining the integrity of the pointers

�Relationships

�One-to-one 

�One-to-many

�Many-to-many

12

Relationship facility (cont.)

employee

department

1

N



3

13

Accessing Persistent Data

main()
{
database *db = database::open(“/company/records”);

persistent<db> department* engineering_department;

transaction::begin();

employee *emp = new(db) employee(“Fred”);
engineering_department->add_employee(emp);
emp->salary = 1000;

transaction::commit();
}

14

Accessing Persistent Data (cont.)

�Manipulation of persistent data like an 

ordinary C++ program

�Protecting the integrity of database

�Automatically set read and write locks

�Keep track of what has been modified

�Access to persistent data guaranteed to be 

transaction-consistent, and recoverable

15

Discussion #2

�ObjectStore employs page level locking as 

the only mode of locking 

�What implications does it have for transactions 

and concurrency? 

�Should other granularities of locking be 

provided as well? If yes, which ones?

16

Query Facility

� Closely integrated with the host language

�Expressions operating on collections

�Producing a collection or a reference to an object

� Selection predicates can be applied to 

collections.

�Special syntax: [: predicate :]

�Eg. 

employees [: salary >= 10000 :]

17

Query Facility (cont.)

�Queries may be nested to form more 

complex queries

os_Set<employee*> &work_with_fred = 

all_employees � query (‘employee*’, 

“dept � employees [: name == \’Fred’\ :]”);

18

Memory-mapped Architecture

� Goal: object-access speed for persistent data equal to 
that of an in-memory dereference of a pointer to 
transient data

� Once objects have been retrieved, subsequent 
references should be as fast as an ordinary pointer 
dereference

� Similar goals as a virtual memory system- use VM 
system in OS for solution:
� Set flags so that accessing a non-fetched persistent object 

causes page fault

� Upon fault, retrieve object

� Subsequent access is a normal pointer dereference



4

19

Distributed Data Access

� Client/Server communication method
�Local area network

�Shared memory, local sockets

� During transaction
�Whole pages of data brought from server to client

�Placed in the client‘s cache

�Mapped into virtual memory

�Objects stored on the server in the same format

� Transaction finish
�All the pages removed from the address space

�Modified pages written back to server

20

Distributed Data Access (cont.)

� Applications control the placement of objects 

within databases

�Cluster objects that are frequently referenced together

� Objects can cross page boundaries 

�Ex. Image data

�Page-granularity transfer

� Many small objects can reside on a single page

�Locking granularity on a per-page basic

�Clustering � decreasing locking overhead

21

Query optimizations

Some RDBMS query optimization techniques 

don’t work or make sense

� Collections are not known by name

� Join optimization is less of a problem

�paths can be viewed as precomputed joins

�optimization is index selection

�“true joins” are rare

� Index maintenance is more of a problem

�Data members (indexable)� potential index keys 

22

Conclusions

�ObjectStore provides the applications

�High productivity

�High performance

�Achieved by a virtual memory-mapping 

architecture

�Support for conceptual modeling 

constructs by collection, relationship, and 

query facilities


