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Abstract 
Query processing in data integration occurs over network- 
bound, autonomous data sources. This requires extensions 
to traditional optimization and execution techniques for three 
reasons: there is an absence of quality statistics about the 
data, data transfer rates are unpredictable and bursty, and 
slow or unavailable data sources can often be replaced by 
overlapping or mirrored sources. This paper presents the 
Tukwila data integration system, designed to support adap- 
tivity at its core using a two-pronged approach. Interleaved 
planning and execution with partial optimization allows Tuk- 
wila to quickly recover from decisions based on inaccurate 
estimates. During execution, Tukwila uses adaptive query 
operators such as the double pipelined hash join, which pro- 
duces answers quickly, and the dynamic collector, which ro- 
bustly and efficiently computes unions across overlapping 
data sources. We demonstrate that the Tukwila architecture 
extends previous innovations in adaptive execution (such as 
query scrambling, mid-execution re-optimization, and choose 
nodes), and we present experimental evidence that our tech- 
niques result in behavior desirable for a data integration 
system. 

1 Introduction 
The goal of a data integration system is to provide a 
uniform query interface to a multitude of data sources. 
The data integration problem primarily arises in two 
contexts: organizations trying to provide access to a 
collection of internal autonomous sources, and systems 
that present a uniform interface to a multitude of sources 
available on the World-Wide Web (WWW). The key ad- 
vantage of a data integration system is that it frees users 
from having to locate the sources relevant to their query, 
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interact with each source independently, and manually 
combine the data from the different sources. The prob- 
lem of data integration has received significant attention 
in the research community as evidenced by numerous re- 
search projects (e.g., [lo, 20, 25, 17, 9, 3, 6, 1, 25, 21, 4, 
131) and the emergence of several commercial products 
(e.g., DataJoiner [23] and j ango. excite. corn). 

Three main challenges distinguish the design of a 
data integration system from that of a traditional data- 
base system: query reformulation, the construction of 
wrapper programs, and the design of new query process- 
ing techniques for this more unpredictable environment. 
While the problems of reformulation and rapid wrapper 
development have been the focus of previous work (e.g., 
[lo, 17, 1, 9, 16, 3]), relatively little attention has been 
given to the development of query optimization algo- 
rithms and efficient query execution engines for data 
integration systems. These components are now the 
critical bottleneck to making such systems deployable 
in practice. 

1.1 The Need for Adaptivity 
To date, most data integration research has focused on 
the problem of integrating information from web-based 
data sources, where the amount of data returned by 
each source is generally small. The greater problem - 
that of querying over multiple autonomous data sources 
of moderate size, across intranets as well as the Inter- 
net - requires us to integrate novel query execution 
techniques. 

Several characteristics of the data integration prob- 
lem render existing database optimizers and execution 
engines (or simple extensions thereof) inappropriate in 
the context of data integration: 

l Absence of statistics: statistics about the data 
(e.g., cardinalities, histograms) are central to a query 
optimizer’s cost estimates for query execution plans. 
Since data integration systems manipulate data from 
autonomous external sources, the system has rela- 
tively few and often unreliable statistics about the 
data. 

l Unpredictable data arrival characteristics: un- 
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like traditional systems, data integration systems have 
little knowledge a.bout the rate of data arrival from 
the sources. Two phenomena that occur frequently 
in practice are significant initial delays before data 
starts arriving, and bursty arrivals of data thereafter. 
Hence, even if the query optimizer is able to deter- 
mine the best plan based on total work, the data ar- 
rival characteristics may cause it to be inefficient in 
practice [22]. 

l Overlap and redundancy among sources: as a 
result of the heterogeneity of the data sources, there is 
often significant overlap or redundancy among them. 
Hence, the query processor needs to be able to ef- 
ficiently collect related data from multiple sources, 
minimize the access to redundant sources, and re- 
spond flexibly when some sources are unavailable. 

Since data integration systems are designed for on- 
line querying of data on the network, they have two 
other important characteristics. First, it is important 
to optimize the time to the initial answers to the query, 
rather than to minimize the total work of the system. 
Also, network bandwidth generally constrains the data 
sources to be somewhat smaller than in traditional data- 
base applications. 

For all of these reasons, a data integration query 
processor should be adaptive. This is particularly true 
since a query optimizer is unlikely to produce good 
plans from bad metadata, and even a plan that may 
be good on average should be abandoned if unexpected 
situations arise. While runtime adaptivity has been 
shown to speed up performance even in traditional sys- 
tems [15, 121, it becomes critical to performance in the 
data integration context (e.g., [22]). 

1.2 Adaptive :Features of Tukwila 

This paper describes the Tukwilal data integration sys- 
tem, designed with adaptivity built into its core. There 
are two levels at which Tukwila exhibits adaptive be- 
havior: between the optimizer and execution engine, 
through a process of interleaved planning and execu- 
tion, and ,within the execution engine, with operators 
designed for dynamic execution. 

l Interleaving planning and execution: when Tuk- 
wila processes a query it does not necessarily create 
a complete query execution plan before beginning to 
evaluate the query. If the optimizer concludes that 
it does not have enough metadata with which to reli- 
ably compare candidate query execution plans, it may 
choose to send only a partial plan to the execution en- 
gine, and decide how to proceed after the partial plan 
has been completed, as in [7]. Alternatively, the op- 
timizer may send a complete plan, but the execution 
engine may check for conditions that require incre- 
mental re-optimization. 

‘Tukwila is a scenic cilty near Seattle in the Northwest United 
States. 

l Adaptive operators: Tukwila incorporates opera- 
tors that are especially well suited for adaptive exe- 
cution and for minimizing the time required to obtain 
the first answers to a query. Specifically, it employs an 
enhanced version of the double pipelined hash join [24] 
(a join implementation which executes in a symmet- 
ric, data-driven manner) and techniques for adapt,ing 
its execution when there is insufficient memory. In 
addition, the Tukwila execution engine includes a col- 
lector operator whose task is to efficiently union data 
from a large set of possibly overlapping or redundant 
sources. Finally, Tukwila query execution plans (can 
contain conditional nodes in the spirit of [12] in or- 
der to adapt to conditions that can be anticipated at 
optimization time. 

Adaptive behavior in Tukwila is coordinated in a uni- 
form fashion by a set of event-condition-action rules. 
An event may be raised by the execution of operators 
(e.g., out of memory, data source not, responding) or 
at materialization points in the plan. The possible ac- 
tions include modifying operator execution, reordering 
of operators, or re-optimization. 

1.3 Example 
A simple example demonstrates the breadth of Tukwila’s 
adaptive behavior. Suppose that the same query (Fig- 
ure la) is issued to the system under three extreme con- 
ditions: when the source tables are of unknown size, are 
small, or are large. Each time, assume that the relative 
statistics are such that a traditional optimizer would 
construct the join tree in Figure lb. In a traditional 
query engine, the join implementations, memory alloca- 
tions, and materialization points will be fixed at compile 
time, and the tree will be executed in a predetermined 
order. Tukwila implements mechanisms needed to be- 
have more adaptively. Consider its response to the three 
cases: 

No size information: With no information there is 
no point in traditional optimization. Instead, the op- 
timizer may decide to compute a partial result that. it 
chooses heuristically, such as the join AB, and decide 
afterwards what do next. 

Small tables: Tukwila chooses the double pipelined 
join implementation for joins of small cardinality, and 
pipelines the entire query. When source latencies are 
high, this type of join has a large advantage over tradi- 
tional joins, but it demands considerably more memory. 
To handle the ‘?mlucky” case that memory is exceeded, 
the join operator has an overflow resolution mechanism. 

Large tables: If the tables are sufficiently large, Tuk- 
wila’s optimizer chooses standard hash joins, and brea,ks 
the pipeline, perhaps after join AB in Figure lb. Now, 
depending on the rules in force, one of two things may 
happen during execution: 

l Rescheduling: If all sources respond, and table AB 
has a cardinality sufficiently close to the optimizer’s 
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Select * from A,B,C,D,E 
where Assn =B.ssn 
and B.ssn=C.ssn 
and C.ssn=D.ssn 
and D.ssn=E.ssn 

(a) (b) (c> 

Figure 1: Sample query, initial join tree, and join tree produced by re-optimization. 

estimate, execution continues normally. Should some 
sources respond slowly, however, Tukwila can resched- 
ule as with query scrambling [22]. If the connection 
to data source A times out, join DE will be executed 
preemptively. Should that time out as well, the op- 
timizer is called with that information to produce a 
plan reordered to use the non-blocked sources first. 

l Re-optimization: After the AB join completes and 
materializes, Tukwila compares the actual cardinality 
with the optimizer’s estimate. As in [15], if this value 
significantly differs from the optimizer’s estimate, the 
optimizer is awakened to find a cheaper plan (perhaps 
the one in Figure lc) given more accurate information. 

The paper is organized as follows. Section 2 provides 
an overview of the architecture of Tukwila. Section 3 de- 
scribes the mechanisms for interleaving of planning and 
execution. Section 4 describes the new query operator 
algorithms used in Tukwila. Section 5 discusses the im- 
plemented system. Section 6 describes our experimental 
results. Section 7 discusses related work, and Section 8 
discusses several additional issues and concluding re- 
marks. 

2 Tukwila Architecture 
This section provides an overview of the Tukwila archi- 
tecture as illustrated in Figure 2. 

Queries: A Tukwila user poses queries in terms of a 
mediated relational schema. The relations in the medi- 
ated schema are virtual in the sense that their exten- 
sions are not stored anywhere. The goal of the mediated 
schema is to abstract the details of the data sources’ 
schemata from the user. In this paper we limit our dis- 
cussion to select-project-join (conjunctive) queries over 
this mediated schema. 

Data source catalog: The catalog contains several 
types of metadata about each data source. The first 
of these is a semantic description of the contents of the 
data sources. Second is overlap information about pairs 
of data sources (that is, the probability that a data 
value d appears in source Si if d is known to appear in 
source 5’2) for use by collector operators, as in [8]. In 
the extreme case, overlap information can indicate that 
two sites are mirrors of each other. Finally, the catalog 
may contain key statistics about the data, such as the 

cost of accessing each source, the sizes of the relations 
in the sources, and selectivity information. 

Query reformulation: The query over the mediated 
schema is fed into the Tukwila query reformulation com- 
ponent, which is based on an enhanced version of the 
algorithm described in [17]. In general, a query refor- 
mulator converts the user’s query into a union of con- 
junctive queries referring to the data source schemata. 
This paper focuses on a limited form in which we have a 
single query that may include disjunction at the leaves. 
This limited disjunction, which is handled by our dy- 
namic collector operator, is useful in handling multiple 
overlapping or mirrored data sources with the same at- 
tributes, e.g. in a query over bibliographical databases. 

Query optimizer: The query optimizer transforms 
the rewritten query into a query execution plan for the 
execution engine. The optimizer has the ability to cre- 
ate partial plans if essential statistics are missing or 
uncertain, and also produces rules to define adaptive 
behavior during runtime. 

Query execution engine: The query execution en- 
gine processes query plans produced by the optimizer. 
The execution engine emphasizes time-to-first result and 
includes operators designed to facilitate this. It includes 
an event handler for dynamically interpreting rules and 
supports incremental re-optimization. 

Wrappers: the query execution engine communicates 
with the data sources through a set of wrapper pro- 
grams. Wrappers handle the communication with the 
data sources and, when necessary, translate the data 
from the formats used in the sources to those used in 
Tukwila. We assume a location-independent wrapper 
model, where wrappers can be placed either at the data 
source or at the execution system. 

3 Interleaving Planning and 
Execution 

The query optimizer takes a query from the reformu- 
lator and uses information from the source catalog to 
produce query execution plans for the execution engine 
via a System-R style dynamic programming algorithm. 
The non-traditional aspects of the Tukwila optimizer in- 
clude the following: 
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Figure 2: Architecture of the Tukwila information integration system. 

l The optimizer does not always create a complete ex- 
ecution plan for the query. If essential statistics are 
missing or uncertain, the optimizer may generate a 
partial plan with only the first steps specified, de- 
ferring subsequent planning until sources have been 
contacted and critical metadata obtained. 

l In addition to producing the annotated operator tree, 
the optimizer also generates the appropriate event- 
condition-action rules. These rules specify (1) when 
and how to modify the implementation of certain op- 
erators at runtime if needed, and (2) conditions to 
check at materialization points in order to detect op- 
portunities for re-optimization. 

l The query optimizer conserves the state of its search 
space when it calls the execution engine. The op- 
timizer is able to efficiently resume optimization in 
incremental fashion if needed. 

3.1 Query Plans 
Operators in Tukwila are organized into pipelined units 
called fmgrnents. At the end of a fragment, pipelines 
terminate, results are materialized, and the rest of the 
plan can be re-optimized or rescheduled. A plan con- 
sists of a partially-ordered set of fragments and a set of 
global rules. The partial ordering reflects constraints on 
the order of execution such as data flow dependencies. 
The global rules encode conditional execution policies, 
such as choosing among a set of alternative fragments 
after one completes. Fragments unrelated in the partial 
order may execute in parallel. For example, we may ex- 
ecute one CPU-bound fragment in parallel with other 
network-bound fragments as in [14]. 

3.1.1 Fragments alnd Operators 

A fragment consists of a fully pipelined tree of physical 
operators, and a set of local rules. Each node in the 
tree is a physical operator specifying: (1) the algebraic 
operator at the node (e.g., selection, join), (2) the cho- 
sen physical implementation of the operator (e.g., hash 
join, double pipelined join), (3) the children of the node, 
(4) the memory allocated to the operator, as discussed 
in [5, 181, and (5) an estimate of result cardinality. 

3.1.2 Rules 

Rules are the key mechanism for implementing several 
kinds of adaptive behavior in Tukwila: 

l Re-optimization: At the end of a fragment, if the 
optimizer’s cardinality estimate for the fragment’s re- 
sult is significantly different from the actual size, the 
optimizer will be reinvoked (in the same spirit as [15]). 

l Contingent planning: At the end of a fragment the 
execution engine can check properties of the result in 
order to select the next fragment (thus implementi:ng 
choose nodes [12]). 

l Adaptive operators: The policy for memory over- 
flow resolution in the double pipelined join (Section 4.2) 
is guided by a rule. Collectors (Section 4.1) are also 
implemented using rules. 

l Rescheduling: Rules are used for specifying when. a 
plan should be rescheduled if a source times out (as 
in query scrambling [22]). 

Tukwila rules have the form when event if co72& 

tion then actions. For example, the following rule calls 
the optimizer to replan the subsequent fragments if the 
estimated cardinality is significantly different from the 
size of the result. 

when closed(frag1) 
if card(join1) > 2 * est-card(join1) then replan 

Formally, a rule in a Tukwila plan is a quintuple 
(event, condition, actions, owner, active-f lag). An event 
can trigger a rule, causing it to check its condition. If 
the condition is true, the rule fires, executing the ac- 
tions. The owner is the query operator or plan frag- 
ment which the rule controls or monitors. Only active 
rules with active owners may trigger. Firing a rule once 
makes it become inactive. 

The execution system generates events in response 
to important changes in the execution state, such as: 

l open, closed: fragment/operator starts or completes 
l error: operator failure, e.g., unable to contact source 
l timeout(n): data source has not responded in n msec. 
l out-of memory: join has insufficient memory 
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l threshold(n): n tuples processed by operator 

Once an event has triggered a set of associated rules, 
each rule’s conditions are evaluated in parallel to deter- 
mine whether any actions should be taken. Conditions 
are propositional formulae, with comparator terms as 
propositions. The quantities that can be compared in- 
clude integer and state constants, states, values pre- 
computed by the optimizer (e.g., estimated cardinality 
or memory allocated), and various dynamic quantities 
in the system: 

l state(operutor): the operator’s current state 
l card( operator): the number of tuples produced so far 
l time(operator): the time waiting since last tuple 
l memory(operator): the memory used so far 

After all rule conditions corresponding to a given 
event have been evaluated, actions are executed for 
those rules whose conditions are met. Most actions 
change some operator’s memory allocation, implemen- 
tation, or state. Tukwila actions include: 

l set the overflow method for a double pipelined join 
0 alter a memory allotment 
l deactivate an operator or fragment, which stops its 

execution and deactivates its associated rules 
l reschedule the query operator tree 
l re-optimize the plan 
l return an error to the user 

Naturally, the power of the rule language makes it 
possible to have conflicting or non-terminating rules. It 
is ultimately the responsibility of the optimizer to avoid 
generating such rules. However, in order to avoid the 
most common errors we impose a number of restrictions 
on rule semantics: (1) All of a rule’s actions must be 
executed before another event is processed. (2) Rules 
with inactive owners are themselves inactive. (3) No 
two rules may ever be active such that one rule negates 
the effect of the other and both rules can be fired simul- 
taneously. (This final aspect is a condition that can be 
statically checked.) 

3.2 Query Execution 
The Tukwila query execution engine is responsible not 
only for executing a query plan, but also for gathering 
statistics about each operation and for handling excep- 
tion conditions or re-invoking the optimizer. The sys- 
tem takes a query execution plan from the optimizer 
and sends its rules to the event handler (Section 3.3). 
Then each plan fragment is processed in turn, as a sin- 
gle, pipelined execution unit. 

The operator tree is executed using the top-down 
“iterator” model [ll]. (Note that our implementation 
of the double pipelined join is an iterator-based adap- 
tation, as described in Section 4.2). Control flows from 
the root node and makes its way down the tree. At 
the leaf nodes are file scans or requests for data from 
wrappers2. 

2Although several authors have considered wrappers that, in 

As operators within a fragment are executed, they 
perform two functions in addition to data manipulation: 
they gather cardinality statistics for the optimizer, and 
they invoke the event handler when significant system 
events (such as running out of memory, timing out on 
a connection, or completion of a fragment) occur. 

3.3 Event Handling 
The event handler is responsible for interpreting the 
rules that are attached to query execution plans, and 
thus it is the subsystem which enables most of Tukwila’s 
adaptive behavior. The execution system may generate 
an event at any time. These events are fed into an event 
queue, which imposes an ordering on the rule evaluation 
process. 

For each event in the queue, the event handler uses a 
hash table to find all matching rules that are in the ac- 
tive set. For each active rule, it evaluates the conditions; 
if they are satisfied, all of the rule’s actions are executed 
before the next event in the queue is processed. Actions 
may change operator execution or cause the execution 
engine to terminate the current plan and re-invoke the 
optimizer, sending back statistics. 

4 Adaptive Query Operators 
Tukwila plans include the standard relational query op- 
erators: join (including dependent join), selection, pro- 
jection, union and table scan. In this section, we high- 
light Tukwila’s adaptive operators: the dynamic collec- 
tor and the double pipelined join operator. 

4.1 Dynamic collectors 
A common task in data integration is to perform a union 
over a large number of overlapping sources [27,8]. Com- 
mon examples of such sources include those providing 
bibliographic references, movie reviews and product in- 
formation. In some cases different sites are deliberately 
created as mirrors. 

For these reasons, the Tukwila query reformulator 
will output queries using disjunction at the leaves. We 
could potentially express these disjunctions as unions 
over the data sources. However, a standard union op- 

erator has no mechanism for handling errors or for de- 
ciding to ignore slow mirror data sources once it has 
obtained the full data set, so it does not provide the 
flexibility needed in the data integration context. In 
Tukwila we treat this task as a primitive operator into 
which we can program a policy to guide the access to 
the sources. 

An optimizer that has estimates of the overlap rela- 
tionships between sources can provide guidance about 

addition to accessing the data sources, may also apply relational 
operators to the data, in our discussion we assume that exploiting 
additional capabilities of the wrappers is done within the refor- 
mulator, and hence Tukwila submits atomic fetch queries to the 
wrappers. 
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the order in which data sources should be accessed, 
and potential fallback sources to use when a particular 
source is unavailable or slow (as in [a]). This guidance 
is given in the form of a policy. The query execution en- 
gine implements the policy by contacting data sources 
in parallel, monitoring the state of each connection, and 
adding or dropping c.onnections as required by error and 
latency conditions. A key aspect distinguishing the col- 
lector operator from a standard union is flexibility to 
contact only some of the sources. 

Formally, a collector operator includes a set of chil- 
dren (wrapper calls or table scans of cached or local 
data) and a policy for contacting them. A policy is a 
set of triples {(i, ai, ki)}, associating with the ith child 
of the collector an activation condition ai and a termi- 
nation condition ti. The conditions are propositional 
boolean formulas constructed from true, false, and, 
or, and four kinds of predicates on children: closed(c), 
error(c), timeout(c) and threshold(c). The policy is 
actually expressed in Tukwila as a set of event-condition- 
action rules, which are implemented using the normal 
rule-execution mechanisms. 

In the example below, we have a fairly complex pol- 
icy. Initially we attempt to contact sources A and B. 
Whichever source sends 10 tuples earliest “wins” and 
“kills” the other source. (Note that we take advantage 
of the fact that a rule owned by a deactivated node 
has no effect.) If Source A times out before Source B 
has sent 10 tuples, Source C is activated and the other 
sources are deactivatled. 

when opened(coll1) 
if true then activate(colll,A); activate(colll,B) 

when threshold(A,lO) 
if true then deactivate(colll,B) 

when threshold(B,lO) 
if true then deactivate(colll,A) 

when timeout(A) 
if true then activate(colll,C); deactivate(coll1, B); 

dea.ctivate(colll, A) 

4.2 Double Pipelined Join 
Conventional join algorithms have characteristics unde- 
sirable in a data integration system. For example, sort- 
merge joins (except with presorted data) and indexed 
joins cannot be pipeliined, since they require an initial 
sorting or indexing step in this context. Even the pipe- 
lined join methods -- nested loops join and hash join 
- have a Aaw in that they follow an asymmetric execu- 
tion model: one of the two join relations is classified as 
the “inner” relation, and the other as the “outer” rela- 
tion. For a nested loops join, each tuple from the outer 
relation is probed against the entire inner relation; we 
must wait for the entire inner table to be transmitted 
initially before pipelining begins. Likewise, for the hash 
join, we must load the entire inner relation into a hash 
table before we can pipeline. 

We now contrast these models with the double pi.pe- 
lined join (also known as the pipelined hash join), which 
was originally proposed in [24] for parallel database sys- 
tems. 

4.2.1 Conventional Hash Join 

As was previously mentioned, in a standard hash join, 
the database system creates a hash table from the inner 
relation, keyed by the join attributes of the operation. 
Then one tuple at a time is read from the outer relation 
and is used to probe the hash table; all matching tuples 
will be joined with the current tuple and returned [Ill]. 
If the entire inner relation fits into memory, hash join 
requires only as many I/O operations as are requi:red 
to load both relations. If the inner relation is too large, 
however, the data must be partitioned into smaller units 
that are small enough to fit into memory. Common 
strategies such as recursive hashing and hybrid hash:ing 
use overflow resolution, waiting until memory runs out 
before breaking down the relations. 

In recursive hashing, if the inner relation is too large, 
the relation is partitioned along bucket boundaries that 
are written to separate files. The outer relation is thlen 
read and partitioned along the same boundaries. Now 
the hash join procedure is recursively performed on match- 
ing pairs of overflow files. 

Hybrid hashing [ll] uses a similar mechanism, but 
takes a “lazy” approach to creating overflow files: each 
time the operation runs out of memory, only a subset 
of the hash buckets are written to disk. After the en- 
tire inner relation is scanned, some buckets will proba- 
bly remain in memory. Now, when the outer relation is 
read, tuples in those buckets are immediately processed; 
the others are swapped out to be joined with the over- 
flow files. Naturally, hybrid hashing can be considerably 
more efficient than recursive hashing. 

A hash join has several important parameters that 
can be set by an optimizer based on its knowledge of the 
source relations’ cardinalities. Most important is the 
decision about which operand will be the inner relation: 
this should be the smaller of the two relations, as it mu.st 
be loaded into a memory. Other parameters include the 
number of hash buckets to use, the number of buckets 
to write to disk at each overflow, and the amount of 
memory to allocate to the operator. In a conventional 
database system, where the optimizer has knowledge 
about cardinalities, and where the cost of a disk I/O 
from any source is the same, the join parameters can be 
set effectively. However, a data integration environme:nt 
creates several challenges: 

l The optimizer may not know the relative sizes of the 
two relations, and thus might position the larger re- 
lation as the inner one. 

l Since the time to first tuple is important in data inte- 
gration, we may actually want to use the larger data 
source as the inner relation if we discover that it sends 
data faster. 
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l The time to first tuple is extended by the hash join’s 
non-pipelined behavior when it is reading the inner 
relation. 

4.2.2 Double Pipelined Hash Join 

The double pipelined hash join is a symmetric and in- 
cremental join, which produces tuples almost immedi- 
ately and masks slow data source transmission rates. 
The trade-off is that we must hold hash tables for both 
relations in memory. 

As originally proposed, the double pipelined join is 
data-driven in behavior: each of the join relations sends 
tuples through the join operator as quickly as possible. 
The operator takes a tuple, uses it to probe the hash ta- 
ble for the opposite join relation, and adds the tuple to 
the hash table for the current relation3. At any point in 
time, all of the data encountered so far has been joined, 
and the resulting tuples have already been output. 

The double pipelined join addresses many of the 
aforementioned problems with a conventional hash join 
in a data integration system: 

l Tuples are output as quickly as data sources allow, so 
time to first output tuple is minimized. 

l The operator is symmetric, so the optimizer does not 
need to choose an “inner” relation. 

l Its data-driven operation compensates for a slow data 
source by processing the other source more quickly. 
This also allows the query execution system to make 
more efficient use of the CPU, as it may process data 
from one join relation while waiting for the other. 

On the other hand, the double pipelined join poses 
two problems as we attempt to integrate it into Tuk- 
wila. The first is that the double pipelined join follows 
a data-driven, bottom-up execution model. To inte- 
grate it with our top-down, iterator-based system, we 
make use of multithreading: the join consists of sepa- 
rate threads for output, left child, and right child. As 
each child reads tuples, it places them into a small k- 
ple transfer queue. The join output thread then takes 
a tuple from either child’s queue, depending on where 
data is present, and processes that tuple. For greater 
efficiency, we ensure that each thread blocks when it 
cannot do work (i.e., when transfer queues are empty 
for the output thread, or full for the child threads). 

The second problem with a double pipelined join is 
that it requires enough memory to hold both join re- 
lations, rather than the smaller of two join relations. 
To a large extent, we feel that this is less of a prob- 
lem in a data integration environment than it is in a 
standard database system: the sizes of most data in- 
tegration queries are expected to be only moderately 
large, and we may also be willing to trade off some 
total execution time in order to get the initial results 

30nce the opposite relation has been read in its entirety, it 
is no longer necessary to add tuples to the hash table unless the 
matching bucket has overflowed. 

sooner. Additionally, we expect an optimizer to use 
conventional joins when a relation is known to be espe- 
cially large, or when one input relation is substantially 
smaller than the other. Nevertheless, we have identified 
several strategies for efficiently dealing with the prob- 
lem of insufficient memory in a double pipelined join, 
and report on experiments with each of these methods 
(see Section 6). 

4.2.3 Handling Memory Overflow 

When a hash join overflows, the only feasible recovery 
strategy is to take some portion of the hash table and 
swap it to disk. With the double pipelined hash join, 
there are at least four possibilities. First, it is possible 
to use statically sized buckets which are flushed and 
refilled every time they overflow, but this would not 
perform well if the relation were slightly larger than 
memory. Another alternative would be a conversion 
from double pipelined join to hybrid hash join, where 
we simply flush one hash table to disk. 

The two algorithms we implemented in Tukwila are 
considerably more sophisticated and efficient. To give a 
feel for the algorithms’ relative performance, we include 
an analysis here of a join between two unsorted relations 
A (left child) and B (right child) of equal tuple size and 
data transfer rate, and of the same cardinality s. For 
simplicity, we count tuples rather than blocks, and we 
further assume even distribution of tuples across hash 
buckets, and that memory holds m tuples. Note that 
our emphasis is on the disk I/O costs, and that we do 
not include the unavoidable costs of fetching input data 
across the network or writing the result. 

Incremental Left Flush Upon overflow, switch to a 
strategy of reading only tuples from the right-side re- 
lation; as necessary, flush a bucket from the left-side 
relation’s hash table each time the system runs out of 
memory. Now resume reading and joining from the left 
side. This approach allows the double pipelined join 
to gradually degrade into hybrid hash, flushing buck- 
ets lazily. If memory is exhausted before the operation 
completes, we proceed as follows. (1) Pause reading tu- 
ples from source A. (2) Flush some buckets from A’s 
hash table to disk. (3) Continue reading tuples from 
source B, entering them into B’s hash table, and us- 
ing them to probe A’s (partial) table; if a B-tuple be- 
longs in a bucket whose corresponding A-bucket has 
been flushed, then ma& the tuple for later processing. 
(4) If source B’s hash table runs out of memory after 
A’s table has been flushed completely, then write one 
or more of B’s buckets to disk. (5) When all of B has 
been read, resume processing tuples from source A. If 
these tuples belong in a bucket which has been flushed, 
then write the tuples to disk; otherwise probe source 
B’s hash table. (6) Once both sources have been pro- 
cessed, do a recursive hybrid hash to join the bucket 
overflow files. To avoid duplicates, the unmarked tu- 
ples from A should only be joined with marked tuples 
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from B, whereas ma.rked tuples should be joined with 
both unmarked and marked tuples. We calculate total 
costs for this algorithm as follows: 

l Suppose T < s 5: m, so B does not overflow. We 
flush s - T tuples from A, giving a cost of 2s - m. 

l Suppose m < s <_:_ 2m, so B is too large to fit in 
memory. In reading B, we overflow ( y ) + (s - m) 

tuples. Reading the rest of A flushes s + g - $m 

more tuples. Our total cost becomes 4s - 4m + $. 

Incremental Symmetric Flush In this case, we pick 
a bucket to flush to disk, and flush the bucket from both 
sources. Steps to resolve overflow are as follows: (1) 
Upon memory exhaustion, choose a bucket and write 
that component of both A and B’s hash tables to disk. 
(2) Continue reading tuples from both source relations. 
(3) If a newly read tuple belongs to a flushed bucket, 
mark the tuple as new and flush it to disk; otherwise, 
add the tuple to the appropriate hash table, and use it 
to probe the opposite hash table. (4) Once both sources 
have been processed, do a recursive hybrid hash to join 
the bucket overflow files. Note that the join must con- 
sider the tuple markings: unmarked tuples should only 
be joined with marked tuples; marked tuples should be 
joined with both unmarked and marked tuples. The 
disk I/O costs of this algorithm can be derived as fol- 
lows: 

Suppose s 5 2m. After reading the entire contents of 
both tables, we have overflowed 2s - m tuples. After 
reading them back, we get a total cost of 4s - 2m. 

Our analysis suggests that incremental left-flush will 
perform fewer disk I/OS than the symmetric strategy, 
but the latter may have reduced latency since both re- 
lations continue to be processed in parallel. Section 6.3 
evaluates this assessment empirically. 

5 Implementation 
The Tukwila system is an end-to-end platform for data 
integration research, from query reformulation through 
optimization to execution strategies and wrapper inter- 
faces. To facilitate this, we use a component architec- 
ture with separate modules (wrappers, execution sys- 
tem, optimizer) communicating via well-specified APIs. 
Wherever possible, w,e leverage pre-existing standards, 
including TCP sockets, XML, and Unicode. 

All communication between modules occurs over a 
socket interface. While this introduces a minimal per- 
formance penalty in cross-module calls on a single ma- 
chine, it gives Tukwila several highly desirable charac- 
teristics. The first is that our system supports a limited 
form of scalability and distribution: all components can 
share a single machine or run on separate machines. A 
second major benefit of using sockets is that the system 
is language- and platform-independent. Our execution 
engine is written in C++ on a Windows NT/Pentium 
II platform; the optimizer and wrappers are written in 

Java, and can run on any platform supporting the lan- 
guage. 

The query execution system accepts plans which are 
specified in an XML-based query plan language which 
is human-writable. At the end of its execution cycle 
(which may consist of an entire plan, or merely some 
subset after which the engine was directed to return 
to the optimizer), the execution system sends back .in- 
formation about operator state and cardinalities so the 
optimizer will have more accurate statistics. 

The Tukwila query execution engine currently con- 
sists of approximately 25,000 lines of C-t-+ code. The 
execution engine is designed with a multithreaded ardhi- 
tecture in order to support prefetching and the double 
pipelined join and collector operators. Thread schedul- 
ing is done by the operating system, but it is con- 
trolled closely by the execution engine in order to pre- 
vent heavy contention for the CPU. We use a custom 
memory-management system optimized for efficient space 
usage in creating hash tables. 

An early version of the query optimizer, implemented 
in Java and which includes the ability to save optimiza- 
tion state, was used in our experiments involving inter- 
leaving of planning and execution. For the other ex- 
periments, we used hand-coded query plans for greater 
control. 

6 Experiments 
We report the highlights of our experiments in four ar- 
eas, showing that (1) the double pipelined join outper- 
forms hybrid hash, (2) the preferred output behavior 
dictates optimal memory overflow strategy, (3) inter- 
leaved planning and execution produces significant ben- 
efits, and (4) having the optimizer save state in order 
to speed subsequent re-optimizations yields substantial 
savings. 

6.1 Experimental Methodology 
Experiments were performed using scaled versions of 
the TPC-D data set, at 50MB and lOMB, created with 
the dbgen 1.31 program. This data was stored in 
IBM DB2 Universal Database 5.20 on a dual-process’or 
450MHz Pentium II server with 512MB RAM, running 
Windows NT Server. The wrappers used IBM’s DB2 
JDBC driver, and were run directly on the server with 
JIT v. 3.10.93. The execution engine was run on a 
‘450MHz Pentium II machine under NT Worksta,tion 
with 256MB RAM. Our machines were connected via 
a standard 1OMbps Ethernet network. 

For each of the experiments, we initially ran the 
query once to “prime” the database, then repeated it 
3 times under measurement conditions. We show the 
average running times in our experimental results. 
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Figure 3: Double pipelined join produces initial results more quickly, is less sensitive to slow sources, and completes faster 
than the optimal hybrid hash join. 

6.2 Performance of Double Pipelined Join ment of link bandwidth with the ttcp network measure- 

In order to compare the overall performance of the dou- ment tool yielded an estimate of 82.1KB/sec, and ping 

ble pipelined join versus a standard join, we ran all returned a round-trip time of approximately 145msec. 

possible joins of two and three relations in our 50MB Figure 3b shows the performance of a sample join, 
TPC-based data set. partsupp w part, under conditions where both con- 

The results are very much in favor of the double nections are slow, the inner relation is slow, the outer 

pipelined join. In each of the experiments, we saw the relation is slow, and at full speed. As expected, we ob- 

same pattern: not only did the double pipelined join serve that the double pipelined join begins producing 

show a huge improvement in time to first tuple, but it tuples much earlier, and that it completes the query 

also had a slightly faster time-to-completion than the much faster as well. 

hybrid hash join. This is explained by the double pipe- 
lined join’s use of multithreading, which allows it to 6.3 Memory Overflow Resolution 
perform useful work as it is waiting for data to arrive. The first experiment assumed ample memory, but since 
The exact performance gain of the double pipelined join double pipelined join is memory intensive, we now ex- 
varied depending on the sizes of the tables (since a small plore performance in a memory-limited environment. 
inner relation allows the hybrid hash join to perform In order to contrast our double pipelined overflow res- 
well), but in all cases there was a measurable differ- olution strategies, we ran experiments to measure the 
ence. Additional preliminary experiments suggest that performance of these strategies under different memory 
adding prefetching to the hybrid hash join can almost conditions. 
remove the gap in total execution time between the two 
join methods, but that the double pipelined hash join 

Figure 4 shows one such result. Here we are execut- 

still has an advantage in time-to-first-triple. 
ing the join part w partsupp, which requires approx- 
imately 48MB of memory in our system. The graph 

Figure 3a shows a typical plot of tuples vs. time shows how the number of tuples produced by a given 
for the 3-relation join lineitem w order w supplier time varies as we run the same join with full memory, 
with different configurations of the join tree. lineitem 32MB of memory, and 16MB of memory. 
is larger than the combined order w supplier result, 
so clearly it should be joined last. However, since the 

Prom the figure it is apparent that the Left Flush 

hybrid hash join is not symmetric, our assignment of 
algorithm has a much more abrupt tuple production 

inner and outer relations at each join impacts the per- 
pattern, as it runs smoothly only until the first overflow, 

formance for this join. In contrast, the double pipelined 
after which it must flush and read in the right child 

join performs equally well in all of these cases. 
before resuming fully pipelined operation. Note that 
this is still superior to the hybrid hash join, because 

Next, we analyze the performance of the double our algorithm may still produce output as it reads the 
pipelined join in a wide-area domain. In order to get right child if there is data in the left child’s hash table. 
realistic performance, we redirected wrapper data orig- 
inating at the University of Washington to a Java “echo 

In contrast, the Symmetric Flush algorithm contin- 

server” located at INRIA in France, which “bounced” 
ues to pipeline as it overflows, but the number of buck- 

the data back to the wrapper, which in turn forwarded 
ets in memory decreases. The result is a a somewhat 

the delayed data to the execution engine. A measure- 
smoother curve which is dependent on the skew of the 
data. 

...o.. Hybrid - Outer Slow 
160 - - Hybrid - Inner Slow 

1 11 21 31 

Number of Tuples Output (1000’s) 

(b) Wide Area Performance: Partsupp w Part 
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+ Left Flush - 16MB 
-Symmetric Flush - 32MB 
- Symmetric Flush - 16MB 
- Fits in Memory - 64MB 

1 11 21 31 

Number of Tuples Produced (1000’s) 

Figure 4: Symmetric Flush outputs tuples more steadily, 
but the rate tapers off more than with Left Flush. Overall 
performance of both strategies is similar. 

Our experiments suggest that overall running time 
for the two strategies is relatively close, and that the 
primary basis for choosing the overflow resolution strat- 
egy should be the desired pattern of tuple production. 
Left Flush must operate for a period in which few tu- 
ples are output, but after which it begins pipelining the 
left child against mcost or all of the right child’s data. 
Symmetric Flush produces tuples more steadily, but its 
performance slows as memory is exceeded, up until the 
point at which the sources have been read and the over- 
flow files can be processed. 

The results also suggest that, while there is a notice- 
able penalty for overflowing memory with the double 
pipelined join, the operator’s ability to produce initial 
tuples quickly may still make it preferable to the hybrid 
hash join in many situations. 

6.4 Interleaved Planning and Execution 
For complex queries over data sources with unknown se- 
lectivities and cardinalities, an optimizer is likely to pro- 
duce a suboptimal plan. In this experiment, we demon- 
strate that Tukwila’s strategy of interleaving planning 
and execution can slash the total time spent processing 
a query. We find that replanning can significantly re- 
duce query completion time versus completely pipelin- 
ing the plan. 

For the 10MB (data set, we ran all seven of the 
four-table joins tha-t did not involve the lineitem ta- 
ble (which was extremely large). The optimizer was 
given correct source cardinalities, but it had to base its 
intermediate result cardinalities on estimates of join se- 
lectivities, since no Ihistograms were available. We used 
the double pipelined join implementation in all cases. 

In Figure 5 we see the comparison of running times 
for three different strategies using the same queries. 
The baseline strateg:y is simply to materialize after each 
join .and go on to the next fragment. The second strat- 
egy added a rule to the end of each fragment, which 

W Materialize 
q Materialize and replan 
n Pipeline 

200 
a 
d 
E 
i= 

100 

0 J 

!5 Figure 

1 2 3 4 5 6 7 

Query ID 

: Even counting the cost of repeated materializa- 
tion, interleaved planning and execution runs faster than a 
fully pipelined, static plan. 

replans whenever the cardinality of the result differs 
from the estimate by at least a factor of two. The third 
strategy is to fully pipeline the query. 

In every case, the materialize and replan strategy 
was fastest, with a total speedup of 1.42 over pipeline 
and 1.69 over the na’ive strategy of materializing alone. 
This is somewhat surprising, since the benefit of re- 
planning based on corrected estimates overwhelms the 
costs of both replanning and extra materializations in 
each case. The most likely reason is that many of the 
join operations were given insufficient memory because 
of poor selectivity estimates, and this caused them to 
overflow. In practice, both cardinality and selectivity 
estimates of initial table sizes will be inaccurate, favor- 
ing replanning even more. 

6.5 Saving Optimizer State 
As the results from the previous experiment illustrate, 
re-optimization can yield significant performance im- 
provements. Hence, it is common for the Tukwila exe- 
cution system to re-invoke the optimizer after finishing 
a fragment. The optimizer then needs to correct its 
size estimate for the fragment’s result, and update the 
cost estimate to reflect the cost of reading the material- 
ization. A dynamic-programming optimizer can either 
replan from scratch each time, or save its state for reuse 
on the next re-optimization. 

For the case of replanning from scratch, the query 
gets smaller by one operation after each join, thereby 
halving the size of the dynamic program. However, 
reuse has the advantage that any new information about 
the completion of a fragment can only impact half of the 
entries in the original table. 

The advantage of saving state is that half of the 
useful entries in the rebuilt table have already been 
computed. Our stored-state algorithm visits none of 
these nodes. To facilitate this search strategy during 
re-optimization, we introduce usage pointers into the 
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dynamic program from each subquery to every larger 
subquery that can use it as a left or right child. We 
also keep a usage pointer from every subquery to every 
subplan that does use it as a left or right child. In our 
final experiment, we compare replanning from scratch 
to re-optimization based on saved state as optimized 
with usage pointers. Here we realize a speedup of up to 
1.64 over replanning from scratch. In separate exper- 
iments (not shown) we compare re-optimization using 
saved state without usage pointers and the resulting 
performance is worse than replanning from scratch. 

7 Related work 
The INGRES query optimization algorithm originally 
interleaved steps of constructing a query execution plan 
and executing it [26]. However, their approach was 
largely eclipsed by less flexible System-R style optimiz- 
ers. Only recently have Kabra and Dewitt demon- 
strated the utility of runtime re-optimization for con- 
ventional database queries using a System-R style op- 
timizer [15]. The Tukwila rule mechanism enables re- 
optimization as in [15] with two important advantages: 
(1) we do not necessarily create complete plans in ad- 
vance, and (2) our optimizer was built to support effi- 
cient re-optimization while [15] used the standard Par- 
adise optimizer. 

Graefe and Ward’s choose nodes allow the execu- 
tion system to choose from a set of precompiled sub- 
plans based on runtime variables [12]. Oracle’s Rdb [2] 
used a ‘Ldynamic optimization” strategy to deal with 
uncertainty by running alternative query plan subtrees 
in parallel competition. Although our query plans have 
a different structure, they can express similar choices 
over a set of fragments. 

Tukwila provides dynamic collectors to organize ac- 
cess to redundant and overlapping information sources. 
Local completeness reasoning [9] can be used to gener- 
ate policies for collectors when there are covering rela- 
tionships between the sources. Probabilistic reasoning 
can be used whenever there is partial overlap, and com- 
pleteness is not required [B]. Tukwila is the first data 
integration system to incorporate these techniques into 
a query processor. 

Other researchers have investigated double pipelined 
joins (e.g., [14, 24]), but in the context of parallel data- 
base systems as opposed to data integration. Bouganim 
et al. [5] consider adaptive scheduling techniques aimed 
at large queries, and Nag and Dewitt [18] investigate 
memory allocation strategies in the context of decision 
support queries. 

The data integration context provides performance 
challenges unfamiliar in database systems. Urhan et al. 
explored replanning and rescheduling options for deal- 
ing with long source transmission delays [22] that may 
occur when sources are remotely located and autono- 
mous. Our framework incorporates their adaptive algo- 
rithms. 

Data integration also involves extending the query- 
answering problem to handle sources with varying capa- 
bilities. In contrast to our paper, much of this work has 
focused on either query optimization or query reformu- 
lation. The Garlic system [13] optimizes over sources 
that can perform joins. The work on fusion queries [27] 
optimizes queries for data that occur in multiple sources, 
while utilizing semijoins at the sources if possible. Sys- 
tems such as TSIMMIS [lo], the Information Mani- 
fold [17], Hermes [l], and Razor 191 have focused on 
the query reformulation component. Our research com- 
plements these projects by providing a general query 
execution engine. 

8 Conclusions 
This paper represents the first step in a larger research 
effort concerning query optimization and execution for 
data integration. Our main contribution is identifying 
several basic mechanisms for achieving adaptive behav- 
ior, incorporating them into a unified framework, and 
presenting evidence of their utility. In particular, we 
make the following contributions: 

l We describe the architecture of the implemented Tuk- 
wila query processor. The key contribution is that 
adaptivity is designed into its core to facilitate inter- 
leaving of planning and execution. Furthermore, Tuk- 
wila provides a platform for incorporating hybrid opti- 
mization [19, ~1811 and important query optimization 
techniques that have been developed previously in iso- 
lation (e.g., query scrambling [22], choose nodes [12], 
runtime re-optimization [15], optimization of fusion 
queries [27]). 

l We describe the design and implementation of query 
operators that are especially suited for adaptive be- 
havior - the double pipelined join and the dynamic 
collector. We also demonstrate two useful techniques 
Tukwila uses to adapt the execution of a double pipe- 
lined join when there is insufficient memory for its 
execution. 

l We use Tukwila to measure the impact of adaptive 
execution on data integration performance. We show 
that the double pipelined join outperforms the hy- 
brid hash join. We demonstrate experimentally the 
efficiency gains of interleaving optimization and ex- 
ecution over the traditional approach of computing 
the entire plan before execution begins. We provide 
methods to efficiently resolve memory overflow for the 
double pipelined join. Our final experiment demon- 
strates the benefits of having the optimizer save state 
for subsequent re-optimization. 

The success of our adaptive query execution system 
suggests a next course of action for the Tukwila project, 
which is to explore how the optimizer can best use our 
techniques in combination. We plan to discover effec- 
tive strategies for generating rules and policies for dy- 
namic collectors, as well as for combining interleaving 
of planning and execution and the double pipelined join 
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to produce fast resul!ts. In addition, we plan to further 
extend the execution system to make use of optimistic 
prefetching and cach.ing of source data. 
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