
An Adaptive Query Execution System for Data Integration*

Zachary G. Ives Daniela Florescu
University of Washington INRIA Roquencourt

zives@cs.washington.edu Daniela.Florescu@inria.fr

Marc Friedman
University of Washington

friedman@cs.washington.edu

Alon Levy
University of Washington

alon@cs.washington.edu

Abstract
Query processing in data integration occurs over network-
bound, autonomous data sources. This requires extensions
to traditional optimization and execution techniques for three
reasons: there is an absence of quality statistics about the
data, data transfer rates are unpredictable and bursty, and
slow or unavailable data sources can often be replaced by
overlapping or mirrored sources. This paper presents the
Tukwila data integration system, designed to support adap-
tivity at its core using a two-pronged approach. Interleaved
planning and execution with partial optimization allows Tuk-
wila to quickly recover from decisions based on inaccurate
estimates. During execution, Tukwila uses adaptive query
operators such as the double pipelined hash join, which pro-
duces answers quickly, and the dynamic collector, which ro-
bustly and efficiently computes unions across overlapping
data sources. We demonstrate that the Tukwila architecture
extends previous innovations in adaptive execution (such as
query scrambling, mid-execution re-optimization, and choose
nodes), and we present experimental evidence that our tech-
niques result in behavior desirable for a data integration
system.

1 Introduction
The goal of a data integration system is to provide a
uniform query interface to a multitude of data sources.
The data integration problem primarily arises in two
contexts: organizations trying to provide access to a
collection of internal autonomous sources, and systems
that present a uniform interface to a multitude of sources
available on the World-Wide Web (WWW). The key ad-
vantage of a data integration system is that it frees users
from having to locate the sources relevant to their query,

*This research was funded in part by ARPA / Rome Labs
grant F30602-95-1-0024, Office of Naval Research &ant N00014-
98-I-0147, bv National Science Foundation Grants IRI-9303461.
IIS-98721i8,“and 9874759.

Permission to make digital or hard topics ol’oll or part ol‘this work ibl
personal or classroom USC is granU without fee provided that topics
are not made or distributed for profit or commercial advantnge and that
copies hear this notice und the l’ull citation on the first page. To copy
otherwise, 10 republish, to post on scrwrs or 10 redistribute to lists.
rcquircs prior specific permission and/or a fee.

SIGMOD ‘99 Philadelphia PA
Copyright ACM 1999 I-581 13-084-8/99/05...$5.00

Daniel S. Weld
University of Washington

weldQcs.washington.edu

interact with each source independently, and manually
combine the data from the different sources. The prob-
lem of data integration has received significant attention
in the research community as evidenced by numerous re-
search projects (e.g., [lo, 20, 25, 17, 9, 3, 6, 1, 25, 21, 4,
131) and the emergence of several commercial products
(e.g., DataJoiner [23] and j ango. excite. corn).

Three main challenges distinguish the design of a
data integration system from that of a traditional data-
base system: query reformulation, the construction of
wrapper programs, and the design of new query process-
ing techniques for this more unpredictable environment.
While the problems of reformulation and rapid wrapper
development have been the focus of previous work (e.g.,
[lo, 17, 1, 9, 16, 3]), relatively little attention has been
given to the development of query optimization algo-
rithms and efficient query execution engines for data
integration systems. These components are now the
critical bottleneck to making such systems deployable
in practice.

1.1 The Need for Adaptivity
To date, most data integration research has focused on
the problem of integrating information from web-based
data sources, where the amount of data returned by
each source is generally small. The greater problem -
that of querying over multiple autonomous data sources
of moderate size, across intranets as well as the Inter-
net - requires us to integrate novel query execution
techniques.

Several characteristics of the data integration prob-
lem render existing database optimizers and execution
engines (or simple extensions thereof) inappropriate in
the context of data integration:

l Absence of statistics: statistics about the data
(e.g., cardinalities, histograms) are central to a query
optimizer’s cost estimates for query execution plans.
Since data integration systems manipulate data from
autonomous external sources, the system has rela-
tively few and often unreliable statistics about the
data.

l Unpredictable data arrival characteristics: un-

299

like traditional systems, data integration systems have
little knowledge a.bout the rate of data arrival from
the sources. Two phenomena that occur frequently
in practice are significant initial delays before data
starts arriving, and bursty arrivals of data thereafter.
Hence, even if the query optimizer is able to deter-
mine the best plan based on total work, the data ar-
rival characteristics may cause it to be inefficient in
practice [22].

l Overlap and redundancy among sources: as a
result of the heterogeneity of the data sources, there is
often significant overlap or redundancy among them.
Hence, the query processor needs to be able to ef-
ficiently collect related data from multiple sources,
minimize the access to redundant sources, and re-
spond flexibly when some sources are unavailable.

Since data integration systems are designed for on-
line querying of data on the network, they have two
other important characteristics. First, it is important
to optimize the time to the initial answers to the query,
rather than to minimize the total work of the system.
Also, network bandwidth generally constrains the data
sources to be somewhat smaller than in traditional data-
base applications.

For all of these reasons, a data integration query
processor should be adaptive. This is particularly true
since a query optimizer is unlikely to produce good
plans from bad metadata, and even a plan that may
be good on average should be abandoned if unexpected
situations arise. While runtime adaptivity has been
shown to speed up performance even in traditional sys-
tems [15, 121, it becomes critical to performance in the
data integration context (e.g., [22]).

1.2 Adaptive :Features of Tukwila

This paper describes the Tukwilal data integration sys-
tem, designed with adaptivity built into its core. There
are two levels at which Tukwila exhibits adaptive be-
havior: between the optimizer and execution engine,
through a process of interleaved planning and execu-
tion, and ,within the execution engine, with operators
designed for dynamic execution.

l Interleaving planning and execution: when Tuk-
wila processes a query it does not necessarily create
a complete query execution plan before beginning to
evaluate the query. If the optimizer concludes that
it does not have enough metadata with which to reli-
ably compare candidate query execution plans, it may
choose to send only a partial plan to the execution en-
gine, and decide how to proceed after the partial plan
has been completed, as in [7]. Alternatively, the op-
timizer may send a complete plan, but the execution
engine may check for conditions that require incre-
mental re-optimization.

‘Tukwila is a scenic cilty near Seattle in the Northwest United
States.

l Adaptive operators: Tukwila incorporates opera-
tors that are especially well suited for adaptive exe-
cution and for minimizing the time required to obtain
the first answers to a query. Specifically, it employs an
enhanced version of the double pipelined hash join [24]
(a join implementation which executes in a symmet-
ric, data-driven manner) and techniques for adapt,ing
its execution when there is insufficient memory. In
addition, the Tukwila execution engine includes a col-
lector operator whose task is to efficiently union data
from a large set of possibly overlapping or redundant
sources. Finally, Tukwila query execution plans (can
contain conditional nodes in the spirit of [12] in or-
der to adapt to conditions that can be anticipated at
optimization time.

Adaptive behavior in Tukwila is coordinated in a uni-
form fashion by a set of event-condition-action rules.
An event may be raised by the execution of operators
(e.g., out of memory, data source not, responding) or
at materialization points in the plan. The possible ac-
tions include modifying operator execution, reordering
of operators, or re-optimization.

1.3 Example
A simple example demonstrates the breadth of Tukwila’s
adaptive behavior. Suppose that the same query (Fig-
ure la) is issued to the system under three extreme con-
ditions: when the source tables are of unknown size, are
small, or are large. Each time, assume that the relative
statistics are such that a traditional optimizer would
construct the join tree in Figure lb. In a traditional
query engine, the join implementations, memory alloca-
tions, and materialization points will be fixed at compile
time, and the tree will be executed in a predetermined
order. Tukwila implements mechanisms needed to be-
have more adaptively. Consider its response to the three
cases:

No size information: With no information there is
no point in traditional optimization. Instead, the op-
timizer may decide to compute a partial result that. it
chooses heuristically, such as the join AB, and decide
afterwards what do next.

Small tables: Tukwila chooses the double pipelined
join implementation for joins of small cardinality, and
pipelines the entire query. When source latencies are
high, this type of join has a large advantage over tradi-
tional joins, but it demands considerably more memory.
To handle the ‘?mlucky” case that memory is exceeded,
the join operator has an overflow resolution mechanism.

Large tables: If the tables are sufficiently large, Tuk-
wila’s optimizer chooses standard hash joins, and brea,ks
the pipeline, perhaps after join AB in Figure lb. Now,
depending on the rules in force, one of two things may
happen during execution:

l Rescheduling: If all sources respond, and table AB
has a cardinality sufficiently close to the optimizer’s

300

Select * from A,B,C,D,E
where Assn =B.ssn
and B.ssn=C.ssn
and C.ssn=D.ssn
and D.ssn=E.ssn

(a) (b) (c>

Figure 1: Sample query, initial join tree, and join tree produced by re-optimization.

estimate, execution continues normally. Should some
sources respond slowly, however, Tukwila can resched-
ule as with query scrambling [22]. If the connection
to data source A times out, join DE will be executed
preemptively. Should that time out as well, the op-
timizer is called with that information to produce a
plan reordered to use the non-blocked sources first.

l Re-optimization: After the AB join completes and
materializes, Tukwila compares the actual cardinality
with the optimizer’s estimate. As in [15], if this value
significantly differs from the optimizer’s estimate, the
optimizer is awakened to find a cheaper plan (perhaps
the one in Figure lc) given more accurate information.

The paper is organized as follows. Section 2 provides
an overview of the architecture of Tukwila. Section 3 de-
scribes the mechanisms for interleaving of planning and
execution. Section 4 describes the new query operator
algorithms used in Tukwila. Section 5 discusses the im-
plemented system. Section 6 describes our experimental
results. Section 7 discusses related work, and Section 8
discusses several additional issues and concluding re-
marks.

2 Tukwila Architecture
This section provides an overview of the Tukwila archi-
tecture as illustrated in Figure 2.

Queries: A Tukwila user poses queries in terms of a
mediated relational schema. The relations in the medi-
ated schema are virtual in the sense that their exten-
sions are not stored anywhere. The goal of the mediated
schema is to abstract the details of the data sources’
schemata from the user. In this paper we limit our dis-
cussion to select-project-join (conjunctive) queries over
this mediated schema.

Data source catalog: The catalog contains several
types of metadata about each data source. The first
of these is a semantic description of the contents of the
data sources. Second is overlap information about pairs
of data sources (that is, the probability that a data
value d appears in source Si if d is known to appear in
source 5’2) for use by collector operators, as in [8]. In
the extreme case, overlap information can indicate that
two sites are mirrors of each other. Finally, the catalog
may contain key statistics about the data, such as the

cost of accessing each source, the sizes of the relations
in the sources, and selectivity information.

Query reformulation: The query over the mediated
schema is fed into the Tukwila query reformulation com-
ponent, which is based on an enhanced version of the
algorithm described in [17]. In general, a query refor-
mulator converts the user’s query into a union of con-
junctive queries referring to the data source schemata.
This paper focuses on a limited form in which we have a
single query that may include disjunction at the leaves.
This limited disjunction, which is handled by our dy-
namic collector operator, is useful in handling multiple
overlapping or mirrored data sources with the same at-
tributes, e.g. in a query over bibliographical databases.

Query optimizer: The query optimizer transforms
the rewritten query into a query execution plan for the
execution engine. The optimizer has the ability to cre-
ate partial plans if essential statistics are missing or
uncertain, and also produces rules to define adaptive
behavior during runtime.

Query execution engine: The query execution en-
gine processes query plans produced by the optimizer.
The execution engine emphasizes time-to-first result and
includes operators designed to facilitate this. It includes
an event handler for dynamically interpreting rules and
supports incremental re-optimization.

Wrappers: the query execution engine communicates
with the data sources through a set of wrapper pro-
grams. Wrappers handle the communication with the
data sources and, when necessary, translate the data
from the formats used in the sources to those used in
Tukwila. We assume a location-independent wrapper
model, where wrappers can be placed either at the data
source or at the execution system.

3 Interleaving Planning and
Execution

The query optimizer takes a query from the reformu-
lator and uses information from the source catalog to
produce query execution plans for the execution engine
via a System-R style dynamic programming algorithm.
The non-traditional aspects of the Tukwila optimizer in-
clude the following:

301

Figure 2: Architecture of the Tukwila information integration system.

l The optimizer does not always create a complete ex-
ecution plan for the query. If essential statistics are
missing or uncertain, the optimizer may generate a
partial plan with only the first steps specified, de-
ferring subsequent planning until sources have been
contacted and critical metadata obtained.

l In addition to producing the annotated operator tree,
the optimizer also generates the appropriate event-
condition-action rules. These rules specify (1) when
and how to modify the implementation of certain op-
erators at runtime if needed, and (2) conditions to
check at materialization points in order to detect op-
portunities for re-optimization.

l The query optimizer conserves the state of its search
space when it calls the execution engine. The op-
timizer is able to efficiently resume optimization in
incremental fashion if needed.

3.1 Query Plans
Operators in Tukwila are organized into pipelined units
called fmgrnents. At the end of a fragment, pipelines
terminate, results are materialized, and the rest of the
plan can be re-optimized or rescheduled. A plan con-
sists of a partially-ordered set of fragments and a set of
global rules. The partial ordering reflects constraints on
the order of execution such as data flow dependencies.
The global rules encode conditional execution policies,
such as choosing among a set of alternative fragments
after one completes. Fragments unrelated in the partial
order may execute in parallel. For example, we may ex-
ecute one CPU-bound fragment in parallel with other
network-bound fragments as in [14].

3.1.1 Fragments alnd Operators

A fragment consists of a fully pipelined tree of physical
operators, and a set of local rules. Each node in the
tree is a physical operator specifying: (1) the algebraic
operator at the node (e.g., selection, join), (2) the cho-
sen physical implementation of the operator (e.g., hash
join, double pipelined join), (3) the children of the node,
(4) the memory allocated to the operator, as discussed
in [5, 181, and (5) an estimate of result cardinality.

3.1.2 Rules

Rules are the key mechanism for implementing several
kinds of adaptive behavior in Tukwila:

l Re-optimization: At the end of a fragment, if the
optimizer’s cardinality estimate for the fragment’s re-
sult is significantly different from the actual size, the
optimizer will be reinvoked (in the same spirit as [15]).

l Contingent planning: At the end of a fragment the
execution engine can check properties of the result in
order to select the next fragment (thus implementi:ng
choose nodes [12]).

l Adaptive operators: The policy for memory over-
flow resolution in the double pipelined join (Section 4.2)
is guided by a rule. Collectors (Section 4.1) are also
implemented using rules.

l Rescheduling: Rules are used for specifying when. a
plan should be rescheduled if a source times out (as
in query scrambling [22]).

Tukwila rules have the form when event if co72&

tion then actions. For example, the following rule calls
the optimizer to replan the subsequent fragments if the
estimated cardinality is significantly different from the
size of the result.

when closed(frag1)
if card(join1) > 2 * est-card(join1) then replan

Formally, a rule in a Tukwila plan is a quintuple
(event, condition, actions, owner, active-f lag). An event
can trigger a rule, causing it to check its condition. If
the condition is true, the rule fires, executing the ac-
tions. The owner is the query operator or plan frag-
ment which the rule controls or monitors. Only active
rules with active owners may trigger. Firing a rule once
makes it become inactive.

The execution system generates events in response
to important changes in the execution state, such as:

l open, closed: fragment/operator starts or completes
l error: operator failure, e.g., unable to contact source
l timeout(n): data source has not responded in n msec.
l out-of memory: join has insufficient memory

302

l threshold(n): n tuples processed by operator

Once an event has triggered a set of associated rules,
each rule’s conditions are evaluated in parallel to deter-
mine whether any actions should be taken. Conditions
are propositional formulae, with comparator terms as
propositions. The quantities that can be compared in-
clude integer and state constants, states, values pre-
computed by the optimizer (e.g., estimated cardinality
or memory allocated), and various dynamic quantities
in the system:

l state(operutor): the operator’s current state
l card(operator): the number of tuples produced so far
l time(operator): the time waiting since last tuple
l memory(operator): the memory used so far

After all rule conditions corresponding to a given
event have been evaluated, actions are executed for
those rules whose conditions are met. Most actions
change some operator’s memory allocation, implemen-
tation, or state. Tukwila actions include:

l set the overflow method for a double pipelined join
0 alter a memory allotment
l deactivate an operator or fragment, which stops its

execution and deactivates its associated rules
l reschedule the query operator tree
l re-optimize the plan
l return an error to the user

Naturally, the power of the rule language makes it
possible to have conflicting or non-terminating rules. It
is ultimately the responsibility of the optimizer to avoid
generating such rules. However, in order to avoid the
most common errors we impose a number of restrictions
on rule semantics: (1) All of a rule’s actions must be
executed before another event is processed. (2) Rules
with inactive owners are themselves inactive. (3) No
two rules may ever be active such that one rule negates
the effect of the other and both rules can be fired simul-
taneously. (This final aspect is a condition that can be
statically checked.)

3.2 Query Execution
The Tukwila query execution engine is responsible not
only for executing a query plan, but also for gathering
statistics about each operation and for handling excep-
tion conditions or re-invoking the optimizer. The sys-
tem takes a query execution plan from the optimizer
and sends its rules to the event handler (Section 3.3).
Then each plan fragment is processed in turn, as a sin-
gle, pipelined execution unit.

The operator tree is executed using the top-down
“iterator” model [ll]. (Note that our implementation
of the double pipelined join is an iterator-based adap-
tation, as described in Section 4.2). Control flows from
the root node and makes its way down the tree. At
the leaf nodes are file scans or requests for data from
wrappers2.

2Although several authors have considered wrappers that, in

As operators within a fragment are executed, they
perform two functions in addition to data manipulation:
they gather cardinality statistics for the optimizer, and
they invoke the event handler when significant system
events (such as running out of memory, timing out on
a connection, or completion of a fragment) occur.

3.3 Event Handling
The event handler is responsible for interpreting the
rules that are attached to query execution plans, and
thus it is the subsystem which enables most of Tukwila’s
adaptive behavior. The execution system may generate
an event at any time. These events are fed into an event
queue, which imposes an ordering on the rule evaluation
process.

For each event in the queue, the event handler uses a
hash table to find all matching rules that are in the ac-
tive set. For each active rule, it evaluates the conditions;
if they are satisfied, all of the rule’s actions are executed
before the next event in the queue is processed. Actions
may change operator execution or cause the execution
engine to terminate the current plan and re-invoke the
optimizer, sending back statistics.

4 Adaptive Query Operators
Tukwila plans include the standard relational query op-
erators: join (including dependent join), selection, pro-
jection, union and table scan. In this section, we high-
light Tukwila’s adaptive operators: the dynamic collec-
tor and the double pipelined join operator.

4.1 Dynamic collectors
A common task in data integration is to perform a union
over a large number of overlapping sources [27,8]. Com-
mon examples of such sources include those providing
bibliographic references, movie reviews and product in-
formation. In some cases different sites are deliberately
created as mirrors.

For these reasons, the Tukwila query reformulator
will output queries using disjunction at the leaves. We
could potentially express these disjunctions as unions
over the data sources. However, a standard union op-

erator has no mechanism for handling errors or for de-
ciding to ignore slow mirror data sources once it has
obtained the full data set, so it does not provide the
flexibility needed in the data integration context. In
Tukwila we treat this task as a primitive operator into
which we can program a policy to guide the access to
the sources.

An optimizer that has estimates of the overlap rela-
tionships between sources can provide guidance about

addition to accessing the data sources, may also apply relational
operators to the data, in our discussion we assume that exploiting
additional capabilities of the wrappers is done within the refor-
mulator, and hence Tukwila submits atomic fetch queries to the
wrappers.

303

the order in which data sources should be accessed,
and potential fallback sources to use when a particular
source is unavailable or slow (as in [a]). This guidance
is given in the form of a policy. The query execution en-
gine implements the policy by contacting data sources
in parallel, monitoring the state of each connection, and
adding or dropping c.onnections as required by error and
latency conditions. A key aspect distinguishing the col-
lector operator from a standard union is flexibility to
contact only some of the sources.

Formally, a collector operator includes a set of chil-
dren (wrapper calls or table scans of cached or local
data) and a policy for contacting them. A policy is a
set of triples {(i, ai, ki)}, associating with the ith child
of the collector an activation condition ai and a termi-
nation condition ti. The conditions are propositional
boolean formulas constructed from true, false, and,
or, and four kinds of predicates on children: closed(c),
error(c), timeout(c) and threshold(c). The policy is
actually expressed in Tukwila as a set of event-condition-
action rules, which are implemented using the normal
rule-execution mechanisms.

In the example below, we have a fairly complex pol-
icy. Initially we attempt to contact sources A and B.
Whichever source sends 10 tuples earliest “wins” and
“kills” the other source. (Note that we take advantage
of the fact that a rule owned by a deactivated node
has no effect.) If Source A times out before Source B
has sent 10 tuples, Source C is activated and the other
sources are deactivatled.

when opened(coll1)
if true then activate(colll,A); activate(colll,B)

when threshold(A,lO)
if true then deactivate(colll,B)

when threshold(B,lO)
if true then deactivate(colll,A)

when timeout(A)
if true then activate(colll,C); deactivate(coll1, B);

dea.ctivate(colll, A)

4.2 Double Pipelined Join
Conventional join algorithms have characteristics unde-
sirable in a data integration system. For example, sort-
merge joins (except with presorted data) and indexed
joins cannot be pipeliined, since they require an initial
sorting or indexing step in this context. Even the pipe-
lined join methods -- nested loops join and hash join
- have a Aaw in that they follow an asymmetric execu-
tion model: one of the two join relations is classified as
the “inner” relation, and the other as the “outer” rela-
tion. For a nested loops join, each tuple from the outer
relation is probed against the entire inner relation; we
must wait for the entire inner table to be transmitted
initially before pipelining begins. Likewise, for the hash
join, we must load the entire inner relation into a hash
table before we can pipeline.

We now contrast these models with the double pi.pe-
lined join (also known as the pipelined hash join), which
was originally proposed in [24] for parallel database sys-
tems.

4.2.1 Conventional Hash Join

As was previously mentioned, in a standard hash join,
the database system creates a hash table from the inner
relation, keyed by the join attributes of the operation.
Then one tuple at a time is read from the outer relation
and is used to probe the hash table; all matching tuples
will be joined with the current tuple and returned [Ill].
If the entire inner relation fits into memory, hash join
requires only as many I/O operations as are requi:red
to load both relations. If the inner relation is too large,
however, the data must be partitioned into smaller units
that are small enough to fit into memory. Common
strategies such as recursive hashing and hybrid hash:ing
use overflow resolution, waiting until memory runs out
before breaking down the relations.

In recursive hashing, if the inner relation is too large,
the relation is partitioned along bucket boundaries that
are written to separate files. The outer relation is thlen
read and partitioned along the same boundaries. Now
the hash join procedure is recursively performed on match-
ing pairs of overflow files.

Hybrid hashing [ll] uses a similar mechanism, but
takes a “lazy” approach to creating overflow files: each
time the operation runs out of memory, only a subset
of the hash buckets are written to disk. After the en-
tire inner relation is scanned, some buckets will proba-
bly remain in memory. Now, when the outer relation is
read, tuples in those buckets are immediately processed;
the others are swapped out to be joined with the over-
flow files. Naturally, hybrid hashing can be considerably
more efficient than recursive hashing.

A hash join has several important parameters that
can be set by an optimizer based on its knowledge of the
source relations’ cardinalities. Most important is the
decision about which operand will be the inner relation:
this should be the smaller of the two relations, as it mu.st
be loaded into a memory. Other parameters include the
number of hash buckets to use, the number of buckets
to write to disk at each overflow, and the amount of
memory to allocate to the operator. In a conventional
database system, where the optimizer has knowledge
about cardinalities, and where the cost of a disk I/O
from any source is the same, the join parameters can be
set effectively. However, a data integration environme:nt
creates several challenges:

l The optimizer may not know the relative sizes of the
two relations, and thus might position the larger re-
lation as the inner one.

l Since the time to first tuple is important in data inte-
gration, we may actually want to use the larger data
source as the inner relation if we discover that it sends
data faster.

304

l The time to first tuple is extended by the hash join’s
non-pipelined behavior when it is reading the inner
relation.

4.2.2 Double Pipelined Hash Join

The double pipelined hash join is a symmetric and in-
cremental join, which produces tuples almost immedi-
ately and masks slow data source transmission rates.
The trade-off is that we must hold hash tables for both
relations in memory.

As originally proposed, the double pipelined join is
data-driven in behavior: each of the join relations sends
tuples through the join operator as quickly as possible.
The operator takes a tuple, uses it to probe the hash ta-
ble for the opposite join relation, and adds the tuple to
the hash table for the current relation3. At any point in
time, all of the data encountered so far has been joined,
and the resulting tuples have already been output.

The double pipelined join addresses many of the
aforementioned problems with a conventional hash join
in a data integration system:

l Tuples are output as quickly as data sources allow, so
time to first output tuple is minimized.

l The operator is symmetric, so the optimizer does not
need to choose an “inner” relation.

l Its data-driven operation compensates for a slow data
source by processing the other source more quickly.
This also allows the query execution system to make
more efficient use of the CPU, as it may process data
from one join relation while waiting for the other.

On the other hand, the double pipelined join poses
two problems as we attempt to integrate it into Tuk-
wila. The first is that the double pipelined join follows
a data-driven, bottom-up execution model. To inte-
grate it with our top-down, iterator-based system, we
make use of multithreading: the join consists of sepa-
rate threads for output, left child, and right child. As
each child reads tuples, it places them into a small k-
ple transfer queue. The join output thread then takes
a tuple from either child’s queue, depending on where
data is present, and processes that tuple. For greater
efficiency, we ensure that each thread blocks when it
cannot do work (i.e., when transfer queues are empty
for the output thread, or full for the child threads).

The second problem with a double pipelined join is
that it requires enough memory to hold both join re-
lations, rather than the smaller of two join relations.
To a large extent, we feel that this is less of a prob-
lem in a data integration environment than it is in a
standard database system: the sizes of most data in-
tegration queries are expected to be only moderately
large, and we may also be willing to trade off some
total execution time in order to get the initial results

30nce the opposite relation has been read in its entirety, it
is no longer necessary to add tuples to the hash table unless the
matching bucket has overflowed.

sooner. Additionally, we expect an optimizer to use
conventional joins when a relation is known to be espe-
cially large, or when one input relation is substantially
smaller than the other. Nevertheless, we have identified
several strategies for efficiently dealing with the prob-
lem of insufficient memory in a double pipelined join,
and report on experiments with each of these methods
(see Section 6).

4.2.3 Handling Memory Overflow

When a hash join overflows, the only feasible recovery
strategy is to take some portion of the hash table and
swap it to disk. With the double pipelined hash join,
there are at least four possibilities. First, it is possible
to use statically sized buckets which are flushed and
refilled every time they overflow, but this would not
perform well if the relation were slightly larger than
memory. Another alternative would be a conversion
from double pipelined join to hybrid hash join, where
we simply flush one hash table to disk.

The two algorithms we implemented in Tukwila are
considerably more sophisticated and efficient. To give a
feel for the algorithms’ relative performance, we include
an analysis here of a join between two unsorted relations
A (left child) and B (right child) of equal tuple size and
data transfer rate, and of the same cardinality s. For
simplicity, we count tuples rather than blocks, and we
further assume even distribution of tuples across hash
buckets, and that memory holds m tuples. Note that
our emphasis is on the disk I/O costs, and that we do
not include the unavoidable costs of fetching input data
across the network or writing the result.

Incremental Left Flush Upon overflow, switch to a
strategy of reading only tuples from the right-side re-
lation; as necessary, flush a bucket from the left-side
relation’s hash table each time the system runs out of
memory. Now resume reading and joining from the left
side. This approach allows the double pipelined join
to gradually degrade into hybrid hash, flushing buck-
ets lazily. If memory is exhausted before the operation
completes, we proceed as follows. (1) Pause reading tu-
ples from source A. (2) Flush some buckets from A’s
hash table to disk. (3) Continue reading tuples from
source B, entering them into B’s hash table, and us-
ing them to probe A’s (partial) table; if a B-tuple be-
longs in a bucket whose corresponding A-bucket has
been flushed, then ma& the tuple for later processing.
(4) If source B’s hash table runs out of memory after
A’s table has been flushed completely, then write one
or more of B’s buckets to disk. (5) When all of B has
been read, resume processing tuples from source A. If
these tuples belong in a bucket which has been flushed,
then write the tuples to disk; otherwise probe source
B’s hash table. (6) Once both sources have been pro-
cessed, do a recursive hybrid hash to join the bucket
overflow files. To avoid duplicates, the unmarked tu-
ples from A should only be joined with marked tuples

305

from B, whereas ma.rked tuples should be joined with
both unmarked and marked tuples. We calculate total
costs for this algorithm as follows:

l Suppose T < s 5: m, so B does not overflow. We
flush s - T tuples from A, giving a cost of 2s - m.

l Suppose m < s <_:_ 2m, so B is too large to fit in
memory. In reading B, we overflow (y) + (s - m)

tuples. Reading the rest of A flushes s + g - $m

more tuples. Our total cost becomes 4s - 4m + $.

Incremental Symmetric Flush In this case, we pick
a bucket to flush to disk, and flush the bucket from both
sources. Steps to resolve overflow are as follows: (1)
Upon memory exhaustion, choose a bucket and write
that component of both A and B’s hash tables to disk.
(2) Continue reading tuples from both source relations.
(3) If a newly read tuple belongs to a flushed bucket,
mark the tuple as new and flush it to disk; otherwise,
add the tuple to the appropriate hash table, and use it
to probe the opposite hash table. (4) Once both sources
have been processed, do a recursive hybrid hash to join
the bucket overflow files. Note that the join must con-
sider the tuple markings: unmarked tuples should only
be joined with marked tuples; marked tuples should be
joined with both unmarked and marked tuples. The
disk I/O costs of this algorithm can be derived as fol-
lows:

Suppose s 5 2m. After reading the entire contents of
both tables, we have overflowed 2s - m tuples. After
reading them back, we get a total cost of 4s - 2m.

Our analysis suggests that incremental left-flush will
perform fewer disk I/OS than the symmetric strategy,
but the latter may have reduced latency since both re-
lations continue to be processed in parallel. Section 6.3
evaluates this assessment empirically.

5 Implementation
The Tukwila system is an end-to-end platform for data
integration research, from query reformulation through
optimization to execution strategies and wrapper inter-
faces. To facilitate this, we use a component architec-
ture with separate modules (wrappers, execution sys-
tem, optimizer) communicating via well-specified APIs.
Wherever possible, w,e leverage pre-existing standards,
including TCP sockets, XML, and Unicode.

All communication between modules occurs over a
socket interface. While this introduces a minimal per-
formance penalty in cross-module calls on a single ma-
chine, it gives Tukwila several highly desirable charac-
teristics. The first is that our system supports a limited
form of scalability and distribution: all components can
share a single machine or run on separate machines. A
second major benefit of using sockets is that the system
is language- and platform-independent. Our execution
engine is written in C++ on a Windows NT/Pentium
II platform; the optimizer and wrappers are written in

Java, and can run on any platform supporting the lan-
guage.

The query execution system accepts plans which are
specified in an XML-based query plan language which
is human-writable. At the end of its execution cycle
(which may consist of an entire plan, or merely some
subset after which the engine was directed to return
to the optimizer), the execution system sends back .in-
formation about operator state and cardinalities so the
optimizer will have more accurate statistics.

The Tukwila query execution engine currently con-
sists of approximately 25,000 lines of C-t-+ code. The
execution engine is designed with a multithreaded ardhi-
tecture in order to support prefetching and the double
pipelined join and collector operators. Thread schedul-
ing is done by the operating system, but it is con-
trolled closely by the execution engine in order to pre-
vent heavy contention for the CPU. We use a custom
memory-management system optimized for efficient space
usage in creating hash tables.

An early version of the query optimizer, implemented
in Java and which includes the ability to save optimiza-
tion state, was used in our experiments involving inter-
leaving of planning and execution. For the other ex-
periments, we used hand-coded query plans for greater
control.

6 Experiments
We report the highlights of our experiments in four ar-
eas, showing that (1) the double pipelined join outper-
forms hybrid hash, (2) the preferred output behavior
dictates optimal memory overflow strategy, (3) inter-
leaved planning and execution produces significant ben-
efits, and (4) having the optimizer save state in order
to speed subsequent re-optimizations yields substantial
savings.

6.1 Experimental Methodology
Experiments were performed using scaled versions of
the TPC-D data set, at 50MB and lOMB, created with
the dbgen 1.31 program. This data was stored in
IBM DB2 Universal Database 5.20 on a dual-process’or
450MHz Pentium II server with 512MB RAM, running
Windows NT Server. The wrappers used IBM’s DB2
JDBC driver, and were run directly on the server with
JIT v. 3.10.93. The execution engine was run on a
‘450MHz Pentium II machine under NT Worksta,tion
with 256MB RAM. Our machines were connected via
a standard 1OMbps Ethernet network.

For each of the experiments, we initially ran the
query once to “prime” the database, then repeated it
3 times under measurement conditions. We show the
average running times in our experimental results.

306

‘O” 1 --- Hybrid - Both Slow

- Hybrid - (Lineitem w Supplier) w Order :

ON, I I I I I I 1 I I I 1
....-.- Hybrid - (Supplier w Lineitem) w Order

1 51 101 151 201 251

Number of Tuples Output (1000’s)

(a) Join Performance: Lineitem w Supplier WOrder

Figure 3: Double pipelined join produces initial results more quickly, is less sensitive to slow sources, and completes faster
than the optimal hybrid hash join.

6.2 Performance of Double Pipelined Join ment of link bandwidth with the ttcp network measure-

In order to compare the overall performance of the dou- ment tool yielded an estimate of 82.1KB/sec, and ping

ble pipelined join versus a standard join, we ran all returned a round-trip time of approximately 145msec.

possible joins of two and three relations in our 50MB Figure 3b shows the performance of a sample join,
TPC-based data set. partsupp w part, under conditions where both con-

The results are very much in favor of the double nections are slow, the inner relation is slow, the outer

pipelined join. In each of the experiments, we saw the relation is slow, and at full speed. As expected, we ob-

same pattern: not only did the double pipelined join serve that the double pipelined join begins producing

show a huge improvement in time to first tuple, but it tuples much earlier, and that it completes the query

also had a slightly faster time-to-completion than the much faster as well.

hybrid hash join. This is explained by the double pipe-
lined join’s use of multithreading, which allows it to 6.3 Memory Overflow Resolution
perform useful work as it is waiting for data to arrive. The first experiment assumed ample memory, but since
The exact performance gain of the double pipelined join double pipelined join is memory intensive, we now ex-
varied depending on the sizes of the tables (since a small plore performance in a memory-limited environment.
inner relation allows the hybrid hash join to perform In order to contrast our double pipelined overflow res-
well), but in all cases there was a measurable differ- olution strategies, we ran experiments to measure the
ence. Additional preliminary experiments suggest that performance of these strategies under different memory
adding prefetching to the hybrid hash join can almost conditions.
remove the gap in total execution time between the two
join methods, but that the double pipelined hash join

Figure 4 shows one such result. Here we are execut-

still has an advantage in time-to-first-triple.
ing the join part w partsupp, which requires approx-
imately 48MB of memory in our system. The graph

Figure 3a shows a typical plot of tuples vs. time shows how the number of tuples produced by a given
for the 3-relation join lineitem w order w supplier time varies as we run the same join with full memory,
with different configurations of the join tree. lineitem 32MB of memory, and 16MB of memory.
is larger than the combined order w supplier result,
so clearly it should be joined last. However, since the

Prom the figure it is apparent that the Left Flush

hybrid hash join is not symmetric, our assignment of
algorithm has a much more abrupt tuple production

inner and outer relations at each join impacts the per-
pattern, as it runs smoothly only until the first overflow,

formance for this join. In contrast, the double pipelined
after which it must flush and read in the right child

join performs equally well in all of these cases.
before resuming fully pipelined operation. Note that
this is still superior to the hybrid hash join, because

Next, we analyze the performance of the double our algorithm may still produce output as it reads the
pipelined join in a wide-area domain. In order to get right child if there is data in the left child’s hash table.
realistic performance, we redirected wrapper data orig-
inating at the University of Washington to a Java “echo

In contrast, the Symmetric Flush algorithm contin-

server” located at INRIA in France, which “bounced”
ues to pipeline as it overflows, but the number of buck-

the data back to the wrapper, which in turn forwarded
ets in memory decreases. The result is a a somewhat

the delayed data to the execution engine. A measure-
smoother curve which is dependent on the skew of the
data.

...o.. Hybrid - Outer Slow
160 - - Hybrid - Inner Slow

1 11 21 31

Number of Tuples Output (1000’s)

(b) Wide Area Performance: Partsupp w Part

307

- Left Flush - 32MB
+ Left Flush - 16MB
-Symmetric Flush - 32MB
- Symmetric Flush - 16MB
- Fits in Memory - 64MB

1 11 21 31

Number of Tuples Produced (1000’s)

Figure 4: Symmetric Flush outputs tuples more steadily,
but the rate tapers off more than with Left Flush. Overall
performance of both strategies is similar.

Our experiments suggest that overall running time
for the two strategies is relatively close, and that the
primary basis for choosing the overflow resolution strat-
egy should be the desired pattern of tuple production.
Left Flush must operate for a period in which few tu-
ples are output, but after which it begins pipelining the
left child against mcost or all of the right child’s data.
Symmetric Flush produces tuples more steadily, but its
performance slows as memory is exceeded, up until the
point at which the sources have been read and the over-
flow files can be processed.

The results also suggest that, while there is a notice-
able penalty for overflowing memory with the double
pipelined join, the operator’s ability to produce initial
tuples quickly may still make it preferable to the hybrid
hash join in many situations.

6.4 Interleaved Planning and Execution
For complex queries over data sources with unknown se-
lectivities and cardinalities, an optimizer is likely to pro-
duce a suboptimal plan. In this experiment, we demon-
strate that Tukwila’s strategy of interleaving planning
and execution can slash the total time spent processing
a query. We find that replanning can significantly re-
duce query completion time versus completely pipelin-
ing the plan.

For the 10MB (data set, we ran all seven of the
four-table joins tha-t did not involve the lineitem ta-
ble (which was extremely large). The optimizer was
given correct source cardinalities, but it had to base its
intermediate result cardinalities on estimates of join se-
lectivities, since no Ihistograms were available. We used
the double pipelined join implementation in all cases.

In Figure 5 we see the comparison of running times
for three different strategies using the same queries.
The baseline strateg:y is simply to materialize after each
join .and go on to the next fragment. The second strat-
egy added a rule to the end of each fragment, which

W Materialize
q Materialize and replan
n Pipeline

200
a
d
E
i=

100

0 J

!5 Figure

1 2 3 4 5 6 7

Query ID

: Even counting the cost of repeated materializa-
tion, interleaved planning and execution runs faster than a
fully pipelined, static plan.

replans whenever the cardinality of the result differs
from the estimate by at least a factor of two. The third
strategy is to fully pipeline the query.

In every case, the materialize and replan strategy
was fastest, with a total speedup of 1.42 over pipeline
and 1.69 over the na’ive strategy of materializing alone.
This is somewhat surprising, since the benefit of re-
planning based on corrected estimates overwhelms the
costs of both replanning and extra materializations in
each case. The most likely reason is that many of the
join operations were given insufficient memory because
of poor selectivity estimates, and this caused them to
overflow. In practice, both cardinality and selectivity
estimates of initial table sizes will be inaccurate, favor-
ing replanning even more.

6.5 Saving Optimizer State
As the results from the previous experiment illustrate,
re-optimization can yield significant performance im-
provements. Hence, it is common for the Tukwila exe-
cution system to re-invoke the optimizer after finishing
a fragment. The optimizer then needs to correct its
size estimate for the fragment’s result, and update the
cost estimate to reflect the cost of reading the material-
ization. A dynamic-programming optimizer can either
replan from scratch each time, or save its state for reuse
on the next re-optimization.

For the case of replanning from scratch, the query
gets smaller by one operation after each join, thereby
halving the size of the dynamic program. However,
reuse has the advantage that any new information about
the completion of a fragment can only impact half of the
entries in the original table.

The advantage of saving state is that half of the
useful entries in the rebuilt table have already been
computed. Our stored-state algorithm visits none of
these nodes. To facilitate this search strategy during
re-optimization, we introduce usage pointers into the

308

dynamic program from each subquery to every larger
subquery that can use it as a left or right child. We
also keep a usage pointer from every subquery to every
subplan that does use it as a left or right child. In our
final experiment, we compare replanning from scratch
to re-optimization based on saved state as optimized
with usage pointers. Here we realize a speedup of up to
1.64 over replanning from scratch. In separate exper-
iments (not shown) we compare re-optimization using
saved state without usage pointers and the resulting
performance is worse than replanning from scratch.

7 Related work
The INGRES query optimization algorithm originally
interleaved steps of constructing a query execution plan
and executing it [26]. However, their approach was
largely eclipsed by less flexible System-R style optimiz-
ers. Only recently have Kabra and Dewitt demon-
strated the utility of runtime re-optimization for con-
ventional database queries using a System-R style op-
timizer [15]. The Tukwila rule mechanism enables re-
optimization as in [15] with two important advantages:
(1) we do not necessarily create complete plans in ad-
vance, and (2) our optimizer was built to support effi-
cient re-optimization while [15] used the standard Par-
adise optimizer.

Graefe and Ward’s choose nodes allow the execu-
tion system to choose from a set of precompiled sub-
plans based on runtime variables [12]. Oracle’s Rdb [2]
used a ‘Ldynamic optimization” strategy to deal with
uncertainty by running alternative query plan subtrees
in parallel competition. Although our query plans have
a different structure, they can express similar choices
over a set of fragments.

Tukwila provides dynamic collectors to organize ac-
cess to redundant and overlapping information sources.
Local completeness reasoning [9] can be used to gener-
ate policies for collectors when there are covering rela-
tionships between the sources. Probabilistic reasoning
can be used whenever there is partial overlap, and com-
pleteness is not required [B]. Tukwila is the first data
integration system to incorporate these techniques into
a query processor.

Other researchers have investigated double pipelined
joins (e.g., [14, 24]), but in the context of parallel data-
base systems as opposed to data integration. Bouganim
et al. [5] consider adaptive scheduling techniques aimed
at large queries, and Nag and Dewitt [18] investigate
memory allocation strategies in the context of decision
support queries.

The data integration context provides performance
challenges unfamiliar in database systems. Urhan et al.
explored replanning and rescheduling options for deal-
ing with long source transmission delays [22] that may
occur when sources are remotely located and autono-
mous. Our framework incorporates their adaptive algo-
rithms.

Data integration also involves extending the query-
answering problem to handle sources with varying capa-
bilities. In contrast to our paper, much of this work has
focused on either query optimization or query reformu-
lation. The Garlic system [13] optimizes over sources
that can perform joins. The work on fusion queries [27]
optimizes queries for data that occur in multiple sources,
while utilizing semijoins at the sources if possible. Sys-
tems such as TSIMMIS [lo], the Information Mani-
fold [17], Hermes [l], and Razor 191 have focused on
the query reformulation component. Our research com-
plements these projects by providing a general query
execution engine.

8 Conclusions
This paper represents the first step in a larger research
effort concerning query optimization and execution for
data integration. Our main contribution is identifying
several basic mechanisms for achieving adaptive behav-
ior, incorporating them into a unified framework, and
presenting evidence of their utility. In particular, we
make the following contributions:

l We describe the architecture of the implemented Tuk-
wila query processor. The key contribution is that
adaptivity is designed into its core to facilitate inter-
leaving of planning and execution. Furthermore, Tuk-
wila provides a platform for incorporating hybrid opti-
mization [19, ~1811 and important query optimization
techniques that have been developed previously in iso-
lation (e.g., query scrambling [22], choose nodes [12],
runtime re-optimization [15], optimization of fusion
queries [27]).

l We describe the design and implementation of query
operators that are especially suited for adaptive be-
havior - the double pipelined join and the dynamic
collector. We also demonstrate two useful techniques
Tukwila uses to adapt the execution of a double pipe-
lined join when there is insufficient memory for its
execution.

l We use Tukwila to measure the impact of adaptive
execution on data integration performance. We show
that the double pipelined join outperforms the hy-
brid hash join. We demonstrate experimentally the
efficiency gains of interleaving optimization and ex-
ecution over the traditional approach of computing
the entire plan before execution begins. We provide
methods to efficiently resolve memory overflow for the
double pipelined join. Our final experiment demon-
strates the benefits of having the optimizer save state
for subsequent re-optimization.

The success of our adaptive query execution system
suggests a next course of action for the Tukwila project,
which is to explore how the optimizer can best use our
techniques in combination. We plan to discover effec-
tive strategies for generating rules and policies for dy-
namic collectors, as well as for combining interleaving
of planning and execution and the double pipelined join

309

to produce fast resul!ts. In addition, we plan to further
extend the execution system to make use of optimistic
prefetching and cach.ing of source data.

Acknowledgments
We thank Corin And.erson, Luc Bouganim, Rachel Pot-
tinger, and Oren Zamir for comments on the paper, and
Neal Cardwell, Dennis Lee, and especially Andy Collins
for assistance with wide area network simulation.

.

References

PI

PI

[31

[41

[51

161

[71

PI

PI

PO1

Llll

P21

S. Adali, K. Candan, Y. Papakonstantinou, and V. Sub-
rahmanian. Que:ry caching and optimization in dis-
tributed mediator systems. In Proc. of ACM SIGMOD
Conf. on Management of Data, Montreal, Canada,
1996.

G. Antoshenkov and M. Ziauddin. Query process-
ing and optmization in Oracle Rdb. VLDB Journal,
5(4):229-237, 1996.

Y. Arens, C. A. Knoblock, and W.-M. Shen. Query
reformulation for dynamic information integration. In-
ternational Joum#zl on Intelligent and Cooperative In-
formation System.?, (6) 2/3:99-130, June 1996.

J. A. Blakeley. Data access for the masses through OLE
DB. In Proc. of ACM SIGMOD Conf. on Management
of Datu, pages 161.-172, Montreal, Canada, 1996.

L. Bouganim, 0. Kapitskaia, and P. Valduriez.
Memory-adaptive scheduling for large query execu-
tion. In Seventh International Conference on Informa-
tion and Knowledge Management, Bethesda, MD, Nov.
1998.

W. Cohen. Integration of heterogeneous databases
without common domains using queries based on tex-
tual similarity. In Proc. of ACM SIGMOD Conf. on
Management of Data, Seattle, WA, 1998.

C. Evrendilek, A. IDogac, S. Nural, and F. Ozcan. Mul-
tidatabase query optimization. Distributed and Parallel
Databases, 5(1):77--114, 1997.

D. Florescu, D. Koller, and A. Levy. Using probabilistic
information in data integration. In Proc. of the Int.
Conf. on Very Large Data Bases (VLDB), pages 216-
225, Athens, Greece, 1997.

M. Friedman and D. Weld. Efficient execution of in-
formation gathering plans. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence,
Nagoya, Japan, 19,97.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom.
The TSIMMIS project: Integration of heterogeneous
information sources. Journal of Intelligent Information
Systems, 8(2):117-132, March 1997.

G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73-170,
June 1993.

G. Graefe and R. C!ole. Optimization of dynamic query
evaluation plans. In Proc. of ACM SIGMOD Conf. on
Management of Data, Minneapolis, MN, 1994.

Ll31

P41

P51

WI

P71

PI

w-4

PO1

Pll

P21

P31

P41

I251

P61

P71

L. Haas, D. Kossmann, E. Wimmers, and J. Yang. OP-
timizing queries across diverse data’ sources. In-P&.
of the Int. conf. on Very Large Data Bases (VLDB),
Athens, Greece, 1997.

W. Hong and M. Stonebraker. Optimization of par-
allel query execution plans in XPRS. Distributed and
Parallel Databases, 1(1):9-32, 1993.

N. Kabra and D. J. Dewitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. In
Proc. of ACM SIGMOD Conf. on Management of D&a,
pages 106-117, Seattle, WA, 1998.

N. Kushmerick, R. Doorenbos, and D. Weld. Wrapper
induction for information extraction. In Proceedings of
the 15th International Joint Conference on Artificial
Intelligence, 1997.

A. Y. Levy, A. Rajaraman, and J. J. Ordille. Query-
ing heterogeneous information sources using source de-
scriptions. In Proc. of the Int. Conf. on Very Large
Data Bases (VLDB), Bombay, India, 1996.

B. Nag and D. J. Dewitt. Memory allocation strate-
gies for complex decision support queries. In Seventh
International Conference on Information and Knowl-
edge Management, Bethesda, MD, Nov. 1998.

M. T. Gzsu and P. Valduriez. Principles of D’is-
tributed Database Systems. Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 2nd edition, 1999.

M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer,
A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa:
A wide-area distributed database system. VLDB Jour-
nal, 5(1):48-63, 1996.

A. Tomasic, L. Raschid, and P. Valduriez. Scaling
access to distributed heterogeneous data sources with
Disco. IEEE iPransactions On Knowledge and Data E!n-
gineering, 1998.

T. Urhan, M. J. Franklin, and L. Amsaleg. Cost based
query scrambling for initial delays. In Proc. of ACM
SIGMOD Conf. on Management of Data, pages 130-
141, Seattle, WA, 1998.

S. Venkataraman and T. Zhang. Heterogeneous dat,a-
base query optimization in DB2 Universal DataJoiner.
In Proc. of the Int. Conf. on Very Large Data Bases
(VLDB), pages 685-689, Aug. 1998.

A. N. Wilschut and P. M. G. Apers. Dataflow query
execution in a parallel main-memory environment. In
Proc. of the Int. Conf. on Parallel and Distributed In-
formation Systems (PDIS), pages 68-77, Dec. 1991.

D. Woelk, B. Bohrer, N. Jacobs, K. Ong, C. Tomlinson,
and C. Unnikrishnan. Carnot and InfoSleuth: Database
technology and the world wide web. In Proc. of ACM
SIGMOD Conf. on Management of Data, pages 443-
444, San Jose, CA, 1995.

E. Wong and K. Youssefi. Decomposition: A strategy
for query processing. ACM Transactions on Database
Systems, 1(3):223, 1976.

R. Yerneni, Y. Papakonstantinou, S. Abiteboul, artd
H. Garcia-Molina. Fusion queries over internet
databases. In Proc. of the Conf. on Extending Data-
base Technology (EDBT), pages 57-71, Valencia, Spain,
1998.

310

