
A Vision for Management of Complex Models
Philip A. Bernstein
Microsoft Research

Redmond, WA 98052-6399

philbe@microsoft.com

Alon Y. Levy
University of Washington

Seattle, WA, 98195

alon@cs.washington.edu

Rachel A. Pottinger
University of Washington

Seattle, WA, 98195

rap@cs.washington.edu

Technical Report
MSR-TR-2000-53

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com



Abstract

Many problems encountered when building applications of database systems involve the ma-
nipulation of models. By “model,” we mean a complex structure that represents a design artifact,
such as a relational schema, object-oriented interface, UML model, XML DTD, web-site schema,
semantic network, complex document, or software configuration. Many uses of models involve
managing changes in models and transformations of data from one model into another. These uses
require an explicit representation of “mappings” between models. We propose to make database
systems easier to use for these applications by making “model” and “model mapping” first-class
objects with special operations that simplify their use. We call this capability model management.

In addition to making the case for model management, our main contribution is a sketch of a
proposed data model. The data model consists of formal, object-oriented structures for represent-
ing models and model mappings, and of high-level algebraic operations on those structures, such
as matching, differencing, merging, function application, selection, inversion and instantiation. We
focus on structure and semantics, not implementation.



1 Introduction

Many of the problems encountered when building appli-
cations of database systems (DBMSs) involve the manip-
ulation of models. By “model,” we mean a complex dis-
crete structure that repesents a design artifact. For exam-
ple, a model could be an XML DTD, web-site schema, in-
terface definition, relational schema, database transforma-
tion script, workflow definition, semantic network, soft-
ware configuration or complex document. Many uses
of models involve managing the change in models and
the transformation of data from one model into another.
These uses require an explicit representation ofmappings
between models. We believe there is an opportunity to
make DBMSs easier to use for these applications by mak-
ing “model” and “mapping” first-class objects with high-
level operations that simplify their use. We call this capa-
bility model management.

This paper makes two main contributions. First, it ar-
gues that general-purpose model management functions
are needed to reduce the amount of programming required
to manipulate models. We expect the development of
these functions will follow the usual evolution from com-
ponents, to middleware, to integrated system. That is, they
could be implemented initially as a library of reusable
components, on top of a DBMS. If successful in this form,
they could later be tied together in a “model management
system,” implemented first as an extensible framework
separate from the DBMS, and eventually as an integrated
part of the DBMS.

The second contribution is a proposed data model that
captures model management functions. The data model
consists of formal structures for representing models and
mappings between models, and of algebraic operations
on those structures. We present the overall shape of the
data model in just enough detail to justify our thesis that
general-purpose model management is a worthwhile and
achievable goal. We expect the details of the data model
will take years to work out.

Today’s model management applications store models
in either a file system or some form of DBMS, such as a
relational DBMS, object-oriened (OO) DBMS, or repos-
itory system [Ber98]. A DBMS-based solution is an ad-
vance over file systems because, among other things, it al-
lows applications to replace some object-at-a-time naviga-
tion by set-oriented queries. Beyond that, repository sys-
tems help applications avoid navigational code associated
with specialized relationship semantics and versioning.
However, despite these functionality advances in DBMSs,

model management applications still include a lot of com-
plex code for navigating graph-like structures. The main
technical goal of model management is to greatly reduce
the amount of this navigational code.

Producing, understanding, tuning, and maintaining
navigational code is a serious drag on programmer pro-
ductivity, making model management applications expen-
sive to build. Sometimes, it is too hard to write the code at
all, and users simply do not get the applications they need.
In commercially hot areas, where representations and uses
of models change rapidly, some model management appli-
cations cannot be developed fast enough to meet the mar-
ket need, or they’re obsolete before they’re finished being
built.

To solve these problems of development cost and
timeliness, we propose raising the level of abstraction
beyond what’s offered by current DBMSs, by introduc-
ing high-level operations on models and model mappings.
Examples of these operations are matching, merging,
function application, selection, and composition. These
operations are not especially novel. There is research lit-
erature on each of them, in the DB field and elsewhere,
much of which is relevant to the design and implemen-
tation of model management functions. We believe they
can and should be generalized and integrated, to support
a generic model management interface.

To illustrate the pervasiveness and scope of model
management, we offer some examples of models and
model mappings that arise in various applications:

� mapping an XML schema (or DTD) to a relational
schema, to drive transformation of XML elements
into rows of relational tables;

� mapping an XML schema of one application to that
of another, to guide the exchange of XML instances
between the applications;

� mapping a web page wrapper to a DB schema, to
guide the translation of queries on the schema to
the underlying web sites;

� mapping a web site’s content to its page layout, to
drive the generation of web pages;

� mapping a business process definition to a work-
flow description, to generate scripts that execute the
workflow application;

� mapping data sources into data warehouse tables to
generate programs that transform production data
and load it into a data warehouse;

� mapping a query posed against a high-level seman-
tic model into an equivalent query posed against a
logical DB schema;

1



� mapping the DB schema of one software release
into the DB schema of the next release, to guide
the migration of DBs;

� mapping the object model of one application to the
object model of another application, to generate a
wrapper that exposes the first application’s object
model on the second;

� mapping source makefiles into target makefiles,
to drive the transformation of make scripts and
thereby help port complex applications from one
programming environment to another; and

� mapping the components of a complex application
to the components of a system where it will be de-
ployed, to drive the generation of installation, up-
grade, and de-installation programs.

By building generic functions to create models and map-
pings and manipulate them as single objects, we can pro-
vide a better environment for the above tasks. Said dif-
ferently, instead of implementing common model manip-
ulation operations again and again for different schema
types, we can implement them once as generic operations
in a more abstract model management data model.

Although our approach reduces the need for procedu-
ral code that manipulates models, it does not eliminate
it. In particular, it will still be necessary to write cer-
tain custom programs that interpret particular mappings.
Such programs are sensitive to the semantics of mapping
types and are therefore not easily replaced by generic op-
erators. For example, these programs may involve trans-
lating an XML attribute to a table column, a data source
column to a data target column, a wrapper parameter to
a method parameter, etc. Fortunately, these programs are
typically applied to individual objects or small structures.
So, while writing these programs is not trivial, it is a lo-
calized and incremental activity, and far easier than writ-
ing custom code to manipulate entire models. The latter
usually requires traversing a large model structure. This
more complex and performance-sensitive algorithmic part
is addressed by the generic functions we propose.

At least initially, we expect that a model management
system would primarily manipulate models whose home
is on other platforms (see Figure 1). Such a target plat-
form could be another DBMS, a web site, an XML envi-
ronment, a programming environment, etc. — any system
that manipulates models such as those listed in the above
example bullets. The glue between the systems is pro-
vided by simple adapters that (1) import or export a model
in the model management system from or to a schema in
the target platform, or (2) interpret a mapping in the model

management system to transform instances of one target
model to those of another. One of the many challenges in
this area is to find appropriate architectures for coupling
these systems.

We do not exclude the possibility that model manage-
ment is built into the target platforms themselves. How-
ever, we think that most of the benefits can be obtained
with this loosely coupled architecture, which is clearly
less disruptive to target systems.

The leverage of building model management function-
ality is that it is highly generic and therefore widely appli-
cable. Still, to be competitive with more customized ap-
proaches, it must be specializable so it can exploit the se-
mantics of a particular data type (e.g., relational schemas).
Making it both generic and easily specializable is another
challenge.

The types of model management applications dis-
cussed in this paper are usually considered examples
of “metadata management,” where most of the effort in
building the application is in manipulatingdescriptions
of a thing of interest, rather than the thing itself. We in-
tentionally avoid using the term metadata in this paper
because it is so overloaded. One person’s metadata is
another person’s data. Are keywords data or metadata?
Model management takes a different cut at the problem. It
focuses attention on a particular kind of metadata, struc-
ture and semantics of descriptive information. We see
much leverage to be gained looking at this kind of meta-
data in isolation.

In describing the data model, we focus on structure
and semantics. Although we have little to say at this
point about its implementation, we emphasize that we see
model management being implemented on top of today’s
most advanced DB interfaces – OO or object-relational –
exploiting such features as recursion and deduction. It is
not a replacement for these technologies.

We begin with a scenario in Section 2, which both mo-
tivates the need for a coherent system and describes some
of the models and operators that such a system should pro-
vide. In Sections 3, 4, and 5 respectively, we discuss the
formal structure of models, mappings, and operations. Fi-
nally, in Section 6 we discuss how previous work relates to
a model management system and how it can tackle some
of the many open questions.

2 A Motivating Scenario

We begin by describing a scenario in which a model man-
agement system would play a central role and consider-

2



Model 1 Mapping Model 2

Model Managment System
Target Platform 1

schema 1

functions

data

import/export

Target Platform 2

schema 2

functions

data

import/export

Interpret

Figure 1: The High Level Architecture of Model Management

ably reduce the coding burden of the application. We re-
fer here to several model management operations whose
semantics will be elaborated later.

Consider an online merchant selling books. The data
about its titles, customers, and orders are stored in a rela-
tional DB, whose schema is represented as a model, rdb1.
The relational data is mapped into an XML DTD, dtd1,
to serve the data onto their web site and to share data in a
broader marketplace of online merchants. The DTD con-
forms to the standard recommended by the marketplace
participants. Denote the mapping from rdb1 into dtd1 by
map1.

In a model management system, rdb1, dtd1, and
map1 would be represented as first class objects. For
now, consider each one to be a set of objects in an OO
system. This explicit representation enables engineers to
pose queries that help familiarize them with the mapping.
For example, one could ask for all XML element types
that have data originating from the relation Books. An-
other immediate benefit of the representation of the map-
ping is that we can define a generic inversion operator.
Suppose the company strikes a partnership with another
online book merchant and starts receiving data in XML
according to the standard DTD. If map1 includes expres-
sions that tell how to create elements of dtd1 from rows of
rdb1, then map�11 will include expressions that tell how
to create rows in rdb1 from elements of dtd1.

A more complex (and likely) scenario is that the com-
pany starts a partnership in a slightly different domain
(e.g., CDs) with another online merchant, which exports
its data in dtd2. In this case, the DTDs of the two compa-
nies will differ in two ways: (i) while they still both talk
about customers and orders, one has DTD elements con-
cerning books while the other concerns CDs, and (ii) since
nobody fully conforms to standards (and even if they do,
there are many versions of the same standard), the two
DTDs contain slight differences even on customers and
orders.

Suppose our task is to create a relational schema rdb2

for the data from the CD merchant. We will do this by us-
ing the model management operators to create the model
for rdb2. Assume for the moment that only differences of
type (i) exist between the DTDs. In this case, we could
proceed as follows (see Figure 2):

dtd1 dtd2

rdb3

M1
2(a)

m
ap

1

1(a)

1(
c) 2(
b)

m
ap

4

map2

m
ap

5

Legend:

mapping other transformation

rdb1 rdb2
1(

b)

m
ap 3

2(c) map6

2(d)

1(a). map2 = Match(dtd1, dtd2)
1(b). map3 = map1 �map2
1(c). < map4, rdb2> = DeepCopy(map�13 )
2(a). M1 = dtd2 � range(Match(dtd1,dtd2))
2(b). map5 = Default(M1, rdb3)
2(c). map6 = Match(rdb2, rdb3)
2(d). Merge(rdb2, rdb3, map6)

Figure 2: An example sequence of model management opera-
tions.

1. For the parts of the DTDs that match exactly, use
the inverse of map1 to create rdb2. This can be
done in three steps, using the operations on models
and mappings:

(a) Use the generic model matching function
Match to create map2 = Match(dtd1,dtd2),
which is a mapping from dtd1 to dtd2 that
identifies the maximal subsets of the two
DTDs that exactly match.

(b) Create map3 = map1 � map2, the composi-
tion of map1 and map2, from rdb1 to dtd2.
Since map2 includes only exact matches,
map3 maps only to the subset of dtd2 that ex-
actly matches dtd1.

3



(c) Set < map4, rdb2> = DeepCopy(map�13 ),
which creates a new copy ofmap�13 and rdb1,
called map4 and rdb2 respectively. It is
“deep” in the sense that it copies not only ob-
jects in map�13 but also objects map�13 con-
nects to in rdb1.

2. For the parts of dtd2 that don’ t match dtd1, use a
default mapping from DTDs to relational schemas.
Using our operations, this can be done as follows:

(a) Use the set-difference operator to create a
model M1 representing the part of dtd2 that
doesn’ t match with dtd1: M1 = dtd2 �

Range(Match(dtd1,dtd2)).
(b) Instantiate the default DTD-to-RDB trans-

formation by calling map5 = Default(M1,
rdb3), which creates a mapping map5 and a
relational schema rdb3 with new names. The
domain of map5 is M1 and its target is rdb3.

(c) Create map6 = Match(rdb2, rdb3) to align
the overlapping tables and keys of the two
schemas, in preparation for merging them.

(d) Call Merge(rdb2, rdb3, map6) to merge
rdb3 into rdb2 based on map6.

Other model management operations can be useful in
complications of the above situation:

� If there are differences even in the common parts
of the DTDs (of type (ii) above), we would like the
match function to propose a set of possible matches
between the two DTDs and rank them. The engi-
neer can then choose the appropriate one and, possi-
bly, modify it manually. The system should also be
able to take input from the engineer that constrains
the possible matches between the two DTDs.

� After creating rdb2, we have two separate rela-
tional DBs for the two companies. Suppose that
later on, one company acquires the other, and there-
fore wants to merge their DBs. In this case, we
would like a Merge(rdb1,rdb2) operation to pro-
pose a relational schema that merges the original
ones. This is more complex than 2(c,d) above, be-
cause the DB schemas are probably not disjoint and
may have different internal structure. Furthermore,
we would like the system to automatically generate
a mapping from the old schema to the merged one,
to facilitate the migration of applications to the new
merged company.

� There may be several possible mappings from XML
DTDs to relational schemas. In this case, instead of
using Default(dtd,rdb), we may experiment with

several mappings and pose what-if queries on their
results. In particular, we would want to estimate
the cost of processing certain queries on the re-
sulting schemas, using a generic function Esti-
mate(queries, schema).

Companies are facing an increasing need to share data
with others in various contexts, especially with the growth
of business-to-business online applications. Hence, these
operations are becoming more important all the time.

The above scenario might sound like pie-in-the-sky
that is hopeless to achieve. For example, it sounds ex-
tremely hard to develop a generic algorithm that finds the
best match of two distinct models or that inverts an ar-
bitrary mapping. But optimal and complete algorithms
are not essential ingredients for success. Success would
be realized by a platform for manipulating models and
mappings using high level operators that users can fur-
ther customize manually. Since there are many published,
mostly-heuristic algorithms for all the above operations
(cf. Section 6), this goal seems well within reach.

3 Models

In this section we describe a first attempt to design a data
model for model management. We begin by discussing
models. In the next section we discuss mappings between
models.

At an abstract level, we think of models as labeled
directed graphs, where the labels can have rather com-
plex structure. We therefore regard an object-oriented
data model to be the natural platform on which to define
model management functionality. That is, we represent
models by sets of objects that are connected via relation-
ships. Using an OO data model yields the usual bene-
fits: behavioral encapsulation, polymorphism, convenient
sharing of type information, low-impedance language in-
tegration, etc. On the whole, we are agnostic about the
choice of object model. However, to explain the con-
cepts of interest to us, we need some special features in
the object model. Rather than extending an existing ob-
ject model, we will define a simple one that has only the
features we need. For example, we do not include types
(as distinct from classes), inheritance, collection-valued
properties, or structure-valued properties.

Each object has a set of properties whose values de-
scribe the state of the object. To keep things simple, we
assume properties are scalar-valued. Each object also has
relationship properties, each of which consists of a set

4



of relationships. Relationships are binary, so each rela-
tionship is a pair of object references. Each relationship
is directed, from its origin object to its destination ob-
ject, but it can be traversed in either direction. As in
ODMG [CCB+00], relationships are not first-class ob-
jects.

We assume each object is an instance of a class. Each
class definition describes the set of properties and rela-
tionship properties that are defined for instances of that
class. Since relationships are binary, each relationship
property definition has an inverse relationship property
definition on the class to which it connects and is tagged
as either the origin or destination side.

We assume that class definitions are objects. This
makes the data model self-describing. It also means that
a model can be a mixture of class definitions and ordinary
objects.

We use database to refer to a set of objects of interest.
It may be persistent, or may be simply a set of objects in
main memory that are being manipulated by model man-
agement operations.

Model contents: Since we want to define operations on
models, we need to start by defining the set of objects and
relationships contained in a model. We could make this
explicit by defining a model to be a particular object that
has a relationship to every object in the model. But this is
inconvenient, since it implies that every time a submodel
is added to a model (e.g., adding a database schema to
an application program), a relationship would have to be
added from the model object to every object in the sub-
model. We can avoid this maintenance task entirely by
using the ordinary relationships in a model to define the
contents of the model.

We could say that a model is simply the set of objects
that are reachable from its root object. Thus, when adding
a relationship from an object in a model to some sub-
model, all of the objects in the submodel immediately be-
come part of the model. Unfortunately, this doesn’ t quite
work, because some relationships are between pairs of ob-
jects in different models. Our solution is to distinguish
between relationships that imply containment within the
model from those that do not. This is very similar to the
representation of complex objects in some OO DBMSs
and repositories. A model, then, is the transitive closure
of containment relationships emanating from the model’s
root. Formally, we assume that each relationship property
definition in the schema includes a containment flag,
which is set to True for containment relationships, and we

define a model as follows:

Definition 1 A model is a set of objects O that is iden-
tified by a root object, r in O, such that O � frg is the
set of objects that are reachable by following containment
relationships from r. 2

In our experience, it is worth restricting the con-
tainment flag to be settable only on the origin side of
a relationship property, and to require that containment
relationships in a model constitute a directed acyclic
graph [BBC+99]. This makes the definition of contain-
ment correspond to the intuitive notion of set containment.
It simplifies the maintenance of a materialized closure,
which enables the content of a model to be identified effi-
ciently [DS00]. We expect it also simplifies algorithms for
propagating delete, copy and other operations on models
(cf. Section 5.1).

Model schemas: We can “pull up” the definition of
model to the schema level. A model schema consists of
a distinguished root class and all classes that are reach-
able from the root by following a sequence of contain-
ment relationship property definitions. Every model is an
instance of a model schema whose root is the class of the
model’s root.

Cross-model relationships: We define a “cross-model”
relationship to be one that connects two objects that are
contained in different models. By definition of model,
such a relationship cannot be a containment relationship.
It may seem strange that such a relationship is not fully
contained in any model. However, since relationships are
not first-class objects, this fact does not cause any special
problems.

Examples: We illustrate these concepts with relational
schemas and XML DTDs. In the examples, the models
and model schemas are shown graphically. The syntax
and semantics of these models can be described in many
textual languages, the choice of which is irrelevant here.

Example 1 Figure 3 shows a fragment of a model schema
for relational schemas. Nodes represent classes and rela-
tionships represent relationship types. It models which
relations, attributes and integrity constraints exist in the
relational schema, as well as the types of the attributes
and the foreign keys. Figure 4 shows an instance of
the schema in Figure 3, describing a relational DB stor-
ing book orders. 2

5



Buying

Supplier

SupplierPhone# IDName AKey

Supplies

ShipTime AKeyCostSupplierID

Member

Member

ForeignKey

False

Has NameHas KeyHasHasHasFK HasHas

IsPrimary

Key

Member

Book
ISBN

Relation Relation

References ThisAttr

Figure 4: A model describing a relational schema for a relational database storing book orders. This model is an instance of the
model schema shown in Figure 3.

Buying

Supplier

SupplierPhone# IDName

Supplies

Ship
Time

CostSupplierID

Has NameHas HasHasHasSubEltID

Book
ISBN

Has Has

IDRef

True True True False True True TruePhone# Name Supplier 1 Cost
Ship
Time

R
eq

ui
re

d

N
am

e

R
eq

ui
re

d

N
am

e

N
am

e

N
am

e

N
am

e

N
am

e

R
eq

ui
re

d

R
eq

ui
re

d

R
eq

ui
re

d

R
eq

ui
re

d

C
an

R
ep

ea
t

O
rd

er

Book
ISBN

Figure 6: An instance of the model schema of Figure 5, describing XML data for purchasing books.

DB

Relation

Foreign
Key StringKeyAttribute

Constraints

Bool

IsPrimary

MemberThisAttr

Has Key Name

ConstraintsRelation

FKKeyOf

Figure 3: A model schema for relational schemas.

Example 2 Figure 5 shows a fragment of a model schema
for XML DTDs. Figure 6 shows an instance of that
schema, describing a DTD for book orders. 2

Challenge 1 A fundamental challenge in model manage-
ment is to develop a mechanism for representing models
and for storing these representations. A key issue here
is how much of a model’s semantics is expressed in its
representation. For example, an integrity constraint for a
relational schema can be represented as a string in one of

DTD

Entity

Invoker StringDef

Element

Attribute SubElement

Bool IntegerBoolBool String

Version

String

Version Names Has

Invoker Definition IDRefName Has

Required Name Required
Can

Repeat
Order

IsTypeSubEltName

String

ID

Figure 5: A model schema for XML DTDs.

the model’s properties, or as a logical formula whose in-
terpretation is known to the model management system.
Another issue is how much of the semantics of the model
we want to describe. For example, in Figure 3 the model
schema does not express the constraint that a foreign key
can only reference a primary key.

Storing and indexing models also raises challenges.
Different storage schemes can be devised for building a
model management system over an OO, object-relational
or other DBMS. 2

6



4 Mappings Between Models

A key goal of model management is to provide support
for managing change in models and for mapping data be-
tween different models. Hence, we believe it is crucial
that model mappings be manipulated as first-class citi-
zens. Before describing our representation of model map-
pings, we outline the key elements underlying our ap-
proach to modeling mappings.

� We need to manipulate model mappings much like
we manipulate models: copy a mapping, delete a
mapping, select from a mapping, etc. To avoid
defining separate elementary operations on map-
pings, we require that a mapping be a model.

� A mapping consists of connections between in-
stances of two models, which may be instances of
different model schemas (e.g., a mapping between
a relational schema and an XML DTD). While we
could allow a mapping to connect more than two
models, this adds complexity to the data model and
is unnecessary for the applications we know of.

� There may be more than one mapping between a
given pair of models. For example, we can have two
different mappings between a relational schema and
an XML DTD, which represent two different ways
to encode instances of the relational schema as in-
stances of the DTD.

� A mapping may relate a set of objects in one model
to a set of objects in another via a language for
building complex expressions. For example, a map-
ping between two relational schemas M1 and M2

may specify that a view V1 over M1 corresponds
to a view V2 over M2, where the view definitions
are part of the mapping. Moreover, a model may
have an associated language for building complex
expressions over elements in the model, such as a
query language or arithmetic expressions.

� Mappings must be able to nest. This enables the
reuse of mappings. That is, it allows a mapping on
a modelM to be used as a component of a mapping
on models that contain M .

Given these points, we define model mappings as follows.

Definition 2 A model mappingmap from a model M1 to
a model M2 is a model where:

1. map has a distinguished root element that has two
single-valued relationship properties,
domainRoot and rangeRoot, which point to the
root objects of M1 and M2, respectively. These

properties identify the models being related by the
mapping.

2. Each object in map (called a mapping object) has
a property Expr, which is an expression over the
objects of M1 and M2.

3. Each mapping object in map has two relationship
properties, called domain and range, which in-
clude all the objects of M1 and M2 (respectively)
that are referred to in Expr.

2

We do not fix the data of Expr. It could be a string, or it
could be an object that is the root of a complex structure
that represents the expression.

Although a mapping must be a model, the definition of
mapping says nothing about the mapping’s containment
relationships. This degree of freedom is appropriate be-
cause different applications will want to structure map-
pings in different ways. For example, a mapping between
two very similar XML DTDs could mimic the structure of
the DTDs being related. By contrast, a mapping between
two highly dissimilar DTDs might be flat, where all ob-
jects in the mapping are children of the root, since the
mapping is not preserving much of the DTDs’ structure.

Example 3 Figure 7 shows a mapping between the rela-
tional schema and DTD shown in Figures 4 and 6. The
skeleton of the mapping is represented in gray in Fig-
ure 7(a). Its internal containment structure, shown in Fig-
ure 7(b), mimics that of the two models it relates. The root
of Mapping connects only to the root of the relational
schema and XML DTD, as required by the definition of
model mapping. The mapping objects’ Expr properties
are not shown in the figure and are presumed to be empty.
2

An immediate advantage of the explicit representation
of models and mappings is that it allows us to pose queries
such as “Find all attributes in the XML DTD that map to
members of keys in the relational model.” In Figure 7,
this would be ID of the element Supplier. Since we are
formulating our model as a graph, we can answer essen-
tially any queries that follow regular expressions. This is
similar to OQL and many XML query languages when the
SELECT clause is a subset of a single class.

There are several fundamental issues to consider con-
cerning the representation of mappings.

Interpretation of mappings: There is a spectrum of
levels at which to specify mappings. At one extreme, the

7



Buying

Supplier

SupplierPhone# IDName AKey

Supplies

ShipTime AKeyCostSupplierID

Member

ForeignKey

True

Has NameHas KeyHasHasHasFK HasHas Key

Member

Book
ISBN

Relation Relation

References

ThisAttr

Mapping
Phone# Name Supplier

Supplier

Supplies

ID SupplierID Cost
Book
ISBN

ShipTime

Buying

Supplier

SupplierPhone# IDName

Supplies

Ship
Time

CostSupplierID

Has NameHas HasHasHasSubEltID

Book
ISBN

Has Has

IDRef

True True True False True True TruePhone# Name Supplier 1 Cost
Book
ISBN

Ship
Time

R
equired

N
am

e

R
equired

N
am

e

N
am

e

N
am

e

N
am

e

N
am

e

R
equired

R
equired

R
equired

R
equired

C
an

R
epeat

O
rder

IsPrimary

Member

Mapping

Phone#

Name

Supplier

Supplier

Supplies

ID

SupplierID

Cost

Book
ISBN

ShipTime

Has

Has

Has

Has

Has

Has

Has

Has

Has

Has

(a) (b)

Figure 7: A mapping between the XML DTD of Figure 6 and a relational schema of Figure 4. The skeleton and internal contain-
ment structure of the mapping are shown in Figures 7(a) and 7(b) respectively.

mapping could specify the full semantic relationships be-
tween the two models. At the other extreme, a mapping is
purely structural, specifying only its domain and range
(i.e., the objects in the two models that are related to each
other), and no mapping semantics (i.e., Expr is null). In
the latter case, more semantic information can be attached
to the mappings in an application-specific way, but the
semantics are not interpreted by the model management
system. Instead, they are interpreted by custom reasoning
modules that are invoked when necessary.

For example, Figure 7 shows a structural mapping be-
tween two schemas. It could be augmented with an equal-
ity predicate for the Expr property of each mapping ob-
ject that connects a relational attribute to an XML ele-
ment that has no sub-elements. A full semantic relation-
ship between the schema and DTD would need to state
precisely how to translate rows of a relation into XML el-

ements, including those with substructure. The mapping
shown in Figure 7 is consistent with several such transla-
tions (see [FK99, SGT+99, DFS99] for examples).

There are many advantages to interpreting the seman-
tics of the mappings. For example, a mapping that is fully
interpreted (i.e., the Expr property contains formulas in
some mathematical system – a logic, algebra, or gram-
mar) can be transformed into a program that translates
data from an instance of one model to an instance of the
other. Inversion and composition of mappings, as well as
matching of models, also rely heavily on the semantics of
the mapping.

On the other hand, exploiting the semantics of the
mappings adds significant complexity to our data model
and to the definition of operations on models and map-
pings. If we drop the semantics and consider only the
structural aspects of mappings, then a model management

8



system still offers many useful functions, such as certain
kinds of matching and differencing. Furthermore, in some
cases the structural mappings closely mirror the semantics
of mapping (e.g., in UML models). Finally, any useful
operations that consider only the structure can be imple-
mented generically across model and mapping types.

Our representation provides a placeholder for speci-
fying semantic details, namely the property Expr. How-
ever, we do not force the representation of the mapping’s
semantics. This and the above points raise the following
challenge:

Challenge 2 Find appropriate representations of model
mappings that trade off expressiveness of semantics with
the goal of keeping operations generic across a wide set
of model types. 2

Directionality of mappings: A mapping is directional
if it specifies how to transform data from its domain to
its range. However, the general notion of a mapping only
specifies a set of relationships between two models and is
not necessarily directional. For example, in a mapping be-
tween two relational schemas S1 and S2, mapping objects
can statements in Expr properties of the form U i = Vi,
where Ui and Vi are SQL query expressions over S1 and
S2 respectively. Such a mapping is not directional, be-
cause it does not spell out how to transform rows of S1

into rows of S2.
A model management system must be able to ma-

nipulate non-directional mappings (e.g., for differencing).
However, some of the operations on mappings, such as in-
version and some kinds of composition, require mappings
to be directional. Directionality is also a convenience, in
that it enables us to say that a mapping is a function, total,
onto, etc.

We took a middle ground by identifying a domain and
a range for each model, without requiring the model to ac-
tually be directional. Instead, we envision an orientation
operator that takes as input a mapping and produces a di-
rectional mapping from its domain to its range whenever
possible (and returns the best approximation otherwise).

The issue of directionality raises one of the challenge
problems in model management, which can be instanti-
ated to different model and mapping types:

Challenge 3 Develop an algorithm that given a mapping
m between two models M1 and M2 produces the best di-
rectional mapping m0 from M1 to M2. 2

Partial mappings: Often, a mapping does not connect
to all objects in the domain model. For example, when
creating a mapping between two relational schemas, we
cannot always produce a complete directional mapping
from the domain to the range. Moreover, we may want
to manipulate mappings that are inherently partial. For
example, given two relational schemas, an engineer may
have constraints on which relations correspond to each
other in the two models. These constraints represent a par-
tial (possibly directional) mapping between the schemas.
Many model management tasks involve attempting to
complete a partial mapping. Therefore, in our represen-
tation, we have decided not to require that a mapping be
complete. We revisit this issue in Section 5.2 when we
discuss the matching operator.

5 Operations on Models

Recall from Section 1 that our main goal in creating a data
model for model management is to reduce the amount
of programming required to manipulate persistent mod-
els. We do this by defining a set of high-level algebraic
operations on the two main structures of interest, models
and mappings. We have two requirements for these op-
erations. First, each operation should return a model, so
that operations can be composed. Second, each operation
should be generic, so it works for any model schema and
for a wide range of model management applications.

We can think of many useful operations, some of
which are quite standard and others that raise many re-
search challenges. We define many of them here, in vary-
ing levels of detail. In Section 5.1 we consider opera-
tions that generalize basic operations on data to models
and mappings. In Section 5.2 we consider operations that
are more unique to model management. We focus only
on the semantics of the operations. We do not discuss
how best to offer the functionality in a programming lan-
guage. Nor do we discuss implementation, except where
it motivates the need for the operation at all. The overall
challenge is:

Challenge 4 Design an algebra of useful, composable
operations on models. Consider efficient implementations
of each operation as well as of combinations of operators.
2

5.1 Elementary Operations

Operations are needed to create, query and perform basic
manipulations on models.

9



Create: Since a model is fully identified by its root, cre-
ating a model simply requires creating a root. A more
powerful version of this operator, CreateModel, creates
an entire model structure based on a template, with in-
stances of many of the subclasses of the model’s schema.
For example, CreateModel could create an empty model
of a program consisting of a signature, declaration part,
and procedure part. The model’s schema needs to be an-
notated with default values and other (possibly parameter-
ized) directives to create a model instance.

Update: Updates are normally done at a fine grain, by
using the basic operations of the underlying object model
to manipulate individual objects, properties, and relation-
ships.

Delete: Delete is a bulk operation. It involves delet-
ing the root, and then propagating the delete to objects
contained in the model. In effect, it treats containment
relationships like SQL referential constraints with the
cascade option (to propagate a delete to its contained
objects) and restrict option (to deny the propagation to
a contained object if another containment relationship
is still connected to it, i.e., if the contained object is
shared by two models). In SQL, this semantics has some
well known problems, which are manifested here as well
[CPM96, LM98, LML97].

Select: Given a model M , return a model consisting of
the set of submodels of M that conform to a given qual-
ification. The qualification language’s power should be
similar to that of a query language for XML, or at least
OQL. Select also functions as a kind of pattern matching
operation, since qualifications amount to patterns of sub-
models to look for. Folders, tables, and other bulk struc-
tures should be defined as models, so that Selection (and
other operations) can apply to them.

Project: Project a model on a subset of the model’s
schema. Since some classes and relationship property
types are eliminated, this may cause the model to become
disconnected. To handle this, Project could return only
objects that are still reachable from the model’s root. Or
it could return a new root, whose children are the roots of
the disconnected submodels.

SetDifference: Return the objects in one model that are
not contained in the other model. This was needed in step

2(a) in Section 2. The problem of disconnected results
arises here too.

ApplyFunction: Apply a function to all of the objects
in a model. For example, one could apply the function
Append \ 2" to the name property to all of the objects
in rdb2 (cf. Section 2). A more complex example could
be to update the objects in a model to force it to satisfy a
set of constraints.

Copy: Copy is another bulk operation on models. It
is tempting to say that to copy a model, all objects con-
tained in the model are copied. But this is not always what
is wanted. Some contained objects are “embedded,” and
should be copied, while others are “ linked,” and should
only be referenced by the copy. For example, if a model
represents the source code of an application, then some
shared libraries may be regarded as part of the model (i.e.,
the application) with respect to some operations, such as
Diff, but not with respect to Copy. Conversely, some non-
contained objects should be copied. For example, the ap-
plication might reference but not contain a DB schema
that should be copied along with the application. We
therefore need some additional control over which rela-
tionships propagate Copy.

Like containment, we could control this in relation-
ship property definitions. That is, each relationship
property definition could have a copy flag that specifies
whether to propagate Copy across relationships of that
type. This would work well for the examples of the pre-
vious paragraph, but not so well for the scenario in Sec-
tion 2, where we performed a deep copy on a mapping,
map3. In that case, if we set the copy flag on the map-
ping class’s relationship property definition domain (the
one that caused rdb1 to be copied with map3), this would
affect all mappings. So, we can either have map3 be an
instance of a more specialized type of mapping that prop-
agates Copy across domain, or we need to allow control
over copy propagation in the Copy operation itself.

Model enumeration: Although our goal is to capture
as much model management functionality as possible in
set-at-a-time operations, there will undoubtedly be times
when the objects of a model need to be navigated one-by-
one. Since a model is a set of objects, one could navigate
it using the data manipulation language of the underly-
ing DBMS. However, we can simplify the application pro-
grammer’s job by defining an Enumerate operation that
performs the traversal, thereby bridging the programming

10



gap between models and objects within models. Enumer-
ate can optionally ensure that each object in the model
is visited only once, a modest simplification over a man-
ual traversal. Another benefit of Enumerate over manual
traversal is that its implementation can be optimized by
exploiting its predictable access pattern, for example, to
do intelligent prefetch [BPS99].

Enumerate takes a model, M , as parameter plus di-
rectives regarding the order in which objects should be
traversed. It returns a cursor object, which can be used by
get-next operations. There are many useful directives that
Enumerate could offer, such as:

� Depth-first vs. breadth-first
� Pre-order vs. post-order (returning a root before or

after its children)
� Respecting the order of relationships within an or-

dered relationship property
� Ordering the relationships within a relationship

property based on a sort order on certain scalar
properties of the target objects

� Ordering the containment relationship property def-
initions on each class, and using that to drive the
enumeration order of relationship properties for
each instance of that class.

Enumerate should use the containment relationships to
guide the traversal, to avoid straying outside the model.
It is conceivable to use non-containment relationships in-
stead. However, this introduces a potentially expensive
model membership test as each object is returned by a get-
next.

5.2 Matching and Differencing

Since many applications of model management involve
tracking changes in models, a key operation to consider is
one that accepts as input two models, and returns the map-
ping that describes the best match between them. Unlike
the operations described in the previous section, in many
contexts the output of a match operation is just an edu-
cated guess made by the system. The guess can be based
on examining the schema and integrity constraints of the
models, or even by inspecting data instances of the two
models. Such a guess gives an engineer a starting point
for designing a best match.

There are different flavors of the problem of finding
matches between models, depending on whether they fo-
cus on the commonalities or on the differences.

1. Find the best mapping between two models. As we
saw in Section 2, such an operator is useful for find-
ing the parts of two DTDs that match.

2. Find the difference between two models. This is
basically the same as matching, except that the an-
swer needs to highlight the differences. This op-
eration is especially useful for round-trip engineer-
ing. As an example of this scenario, a user designs
a model (e.g., an ER model) and compiles it into
an executable form (e.g., SQL DDL). Later, some-
one modifies the compiled form (they’re not sup-
posed to, but they often do). Now the source model
must be updated to reflect the updates to the com-
piled form (hence the notion of round-trip). There-
fore, the compiled (e.g., DDL) form is reverse-
engineered into the source (e.g., ER) form, produc-
ing an updated source model. The result of reverse-
engineering is often not exactly what the designer
intended, so the designer runs Diff between the up-
dated source model and the original to see what
changed. The result of Diff, called a delta, guides
the designer through the changes so he or she can
clean up the updated source model.

3. The engineer may have some a priori knowledge
about the mapping between the two models, and
may wish to find a best match that is consistent with
the a priori knowledge. For example, the engineer
may know that when two relation names are iden-
tical, except that one ends with V1 and the other
with V2, they refer to the same relation. In some
cases, the knowledge may concern which objects
in one model should not be mapped to the other
model. For example, a designer may know that
“phone number” in one DTD means home phone
while in the other it means business phone.

4. We may already have a partial mapping m between
the two models M1 and M2 and would like the sys-
tem to find the best complete mapping that extends
m. Such a partial mapping can be viewed as an in-
stance of a priori knowledge. For example, starting
with a complete map generated by the system, an
engineer might eliminate parts of the map that look
wrong and add some new parts to the map. Say
she removes from m the bad guess that the class
HomePhone in M1 maps to the class HomeAddress
in M2, and adds to m that HomePhone in M1 maps
to Phone in M2 with an expression that the property
Phone.IsHome = True. Based on this revision and
others, she asks the system to try again to complete
the mapping.

To summarize, the following is one of the key chal-
lenges in model management, which is predicated on the

11



specific type of model.

Challenge 5 Develop algorithms for finding the best
matches between two models. Specifically, given two
models M1 and M2, and a partial mapping m that spec-
ifies a priori knowledge about the mapping from M 1 to
M2, find an extension m0 of m that is the best complete
mapping from M1 to M2. The result may be either a sin-
gle mapping or a set of mappings ranked by some confi-
dence measure. In addition, m 0 may be accompanied by a
justification for how it was generated. 2

Matching: Ideally, a Match operation should be
generic, so it can apply to any type of model. One ap-
proach is to obtain a generic Match operation by encap-
sulating object mapping criteria in a similarity relation,
�=, over pairs of objects. A common semantics for �= is
type and value equality. More complex equivalence re-
lations may also be useful, based on dictionaries of syn-
onyms, equivalence relations of pairs of classes, simple
name transformations, etc. The �= relation can be gener-
alized to range over pairs of sets of objects, though we’ ll
assume not in what follows. The concept of best map-
ping may be based on associating objects of the two mod-
els that are �= and have (nearly) isomorphic relationship
structure.

We can define a Match operation that takes as input
two models and a �= relation and produces a mapping that
is consistent with �=. This is analogous to developing join
algorithms: The join condition is (for the most part) iso-
lated from the semantics of the join, and in many cases
efficient join algorithms can be developed without know-
ing the particular join condition.

Each object in the mapping returned by Match should
include an expression that describes how the domain and
range objects are related. Often, this will require manipu-
lating expressions in some mathematical system, such as a
logic (datalog, description logic), algebra (relational alge-
bra, arithmetic), or grammar (regular expressions, BNF).
Ideally, we would like a generic Match algorithm that
treats the mathematical system as a black box that it calls
to generate a formula (e.g. a view definition) whenever
it identifies a combination of domain and range objects
that match. Alternatively, we may need a repertoire of
Match algorithms, each customized to a particular formal
system.

Rather than generate a best mapping consistent with
�=, a designer may prefer that the system shows all com-
binations of objects in the two models that match, from
which the designer picks the combinations she likes best.

This can be accomplished by an operation Mjoin(M1, M2,
�=), which has essentially the same semantics as a rela-
tional join. We define an equivalence class of M1 and

M2 on �= to be a maximal set of objects in M1 and M2

such that each pair in the set is related by �=. We then
define Mjoin to return a mapping map that consists of

� a root object, which connects to the roots of M1 and
M2, and

� for each equivalence class E of M1 and M2 on �=,
an object o 2 omap such that o’s domain and range
are the objects of M1 and M2 (respectively) in E

and o is a child of the root.
We can extend the Mjoin operation to Left, Right, and
Full OuterMjoin, by insisting that every object in M1,
M2, or both be connected to the resulting mapping. Out-
erMatch can be defined analogously.

The result of Match could be flat, like that of Mjoin,
where all objects in each mapping are children of the root.
More likely, a user would want a mapping to mimic the
structure of the models being matched. Figure 7 shows
such a matching, where the mapping object Supplier con-
nects the element Supplier to the relation Supplier, and the
children of the mapping object Supplier connect the chil-
dren of the element Supplier to the children of the relation
Supplier. By mimicking the model structure in the map-
ping, an application can more easily navigate the mapping
systematically. In Figure 7, it was obvious how to use the
structure of the models to induce a structure on the map-
ping. Often, it will not be obvious, due to structural dif-
ferences between the models being matched.

Challenge 6 What are good structures to use for a match-
ing when the models being matched have different struc-
ture? 2

Differencing: The differencing operation is essentially
a Full OuterMatch, since the latter identifies objects that
appear in one model but not the other, i.e., were inserted
or deleted. The expression in each object of the map re-
turned by Full OuterMatch is still some form of equiva-
lence that explains how the domain and range objects are
related. For example, the expression may say that domain
and range objects represent the same conceptual object,
but some of their property values or relationships differ.
Such an expression has the same meaning as an ordinary
Match, where sameness rather than difference is being
emphasized. However, it may be desirable to phrase the
expression in a way that emphasizes difference rather than
sameness. If a mapping object has an empty domain or
range, then presumably its associated expression is null.

12



Suppose we want to compare two models, M1 and
M2, that are intended to be different versions of the same
model. One way to do this is by comparing each of M1

andM2 to a base model versionMb from which both were
derived. This is known to provide a more accurate view
of insertions and deletions. For example, if comparing
M1 to Mb shows that object o is in M1 but not Mb, then
o was inserted during the process of updating Mb to be-
come M1. If no object p, where p �= o, is in M2, then o

was inserted into M1 but not into M2. By contrast, if Mb

is not available and we assume that a sequence of updates
to M1 produced M2, then we might conclude instead that
o was deleted during the update sequence.

We can express this three-way calculation as two Out-
erMatch operations, so the resulting difference is ex-
pressed as two mappings. Or we could define a new Diff
operation that takes M1, M2, and Mb as input and pro-
duces a single mapping. In that case, the mapping would
need to encode the distinctions of the previous paragraph.
For example, a Boolean property on each mapping object
could say whether the domain object o was inserted when
going from Mb to M1.

In the literature, the result of a Diff is usually a script
that transforms the input model to the output model. The
process of constructing the script sometimes involves first
producing the mapping, as in [CRGMW96, CGM97].

Challenge 7 Is it better to make Diff a separate operation
or a specialization of OuterMatch? Is there a useful way
to express a transformation sequence as a model? Can
script generation be encapsulated into a useful generic op-
eration? 2

5.3 Merge

Merging is the activity of moving the content of a target
model into a source model. If the source and target models
are disjoint, this amounts to taking the union of the source
and target models and assigning it to the source model. In
this case, if the roots of the source and target are identical
or if they are merely placeholders under which to hang the
model, then merging can be achieved by connecting the
root of the target model to the children contained by the
root of the source model. That is, the effect of Merge(M1,
M2) is to make a copy of all of the outgoing containment
relationships from the root of M2 and connect them to the
root of M1. This semantics would be enough to satisfy
the needs of steps 2(b) and 2(c) in the scenario of Section
2.

When the source and target are not disjoint, Merge
faces several issues:

1. Avoiding the creation of duplicate copies of source
objects that are already present in the target, and
choosing property values for such objects when the
source and target state differ.

2. Inserting source objects and relationships that are
not present in the target.

3. Possibly deleting target objects and relationships
that are not in the source.

Addressing these issues in a generic Merge operation is
hard, because many variations are possible, depending on
assumptions about the structures being merged. One way
to address them is to have Merge take a third parameter
which is a delta of the target and source, and use it to drive
the merge activity, following the interpretation presented
for the definition of potential delta.

Challenge 8 Propose a semantics for Merge that ad-
dresses the above issues and is sufficiently generic to sub-
sume most of the known semantic variations. 2

5.4 Mapping Composition

Composition of mappings is relatively easy to define for
mappings that are single-valued functions, i.e., that map
one object of their domain to one object of their range,
since ordinary function composition semantics works
well. However, we want the result to be a model, so we
need containment relationships that connect the objects in
the resulting mapping. One approach is to use the contain-
ment relationships of one of the two mappings involved
in the composition. For example, consider single-valued
functions map1:M1 ! M2 and map2:M2 ! M3. The
result of composing map1 and map2, denoted map1 �

map2, is equivalent to the following:

1. Create a shallow copy map3 of map1 (i.e., copy
the map and its relationships, but not the objects it
connects to).

2. For each object o 2 map3, if 9 object q 2 map2

with q:domain = o:range, then set o:range =
q:range (i.e., replace o:range by q:range). Oth-
erwise set o:range = �.

Notice that map3 includes a mapping object for every ob-
ject in map1. However, it only includes the range of an
object o2 of map2 if an object in map1 composes with
o2. An alternative, equally useful semantics is to guide
the above procedure by map2 instead of map1. Then the
resulting mapping will include every object in map2 but

13



not map1. The latter is what is needed for step 1(b) of
the scenario in Section 2, because in that case, we do not
want the result of the composition to contain any object o
for which o:range = � (i.e., any object in dtd2 that does
not match dtd1).

This definition works even if each object o in map1

maps a set of objects in M1 to an object in M2 (e.g.,
maps a set of web pages to a relation that they reference).
Allowing o:range to be set-valued is more problematic.
There are (at least) two ways to interpret o:range:

1. Treat map1 as a single-valued function whose out-
put is a set. The above definition of composition
works in this case.

2. Treat map1 as a multi-valued function whose out-
put is a set of individual objects. So in step (2) of
the above definition, we can compose o with a set
of objects in map2 the union of whose domains are
covered by o:range.

Both semantics appear to be useful, so variations of the
composition operation are needed for each of them. Fi-
nally, many interesting questions arise when mappings re-
late complex expressions over the two models, and when
we consider composition of non-directional mappings.

6 Related Work

Model management will not be an isolated area of re-
search. Much existing work in the DB literature already
deals with aspects of the problem. Model management of-
fers opportunities to extend these works in new directions.
This section describes how some of that work fits into the
overall vision.

Platforms for model management systems: Many of
today’s advanced DB architectures and features are rel-
evant to developing an appropriate platform for model
management. A model management system should be
implemented on a platform that includes OO and object-
relational functionality. This will enable it to exploit the
usual OO features (inheritance, encapsulation, polymor-
phism), recursive queries, an extensible set of algebraic
operations, an extensible query optimizer, etc. Some
model management functions are likely to run faster in
client cache than on a server, which is more conducive
to today’s OO DBs than object-relational ones. Models
are usually versioned, making techniques from temporal
DBs of interest. Other architectures that combine OO and
deductive capabilities in sophisticated ways can also pro-
vide significant benefits to model management such as,

Telos [MBJK90], ConceptBase [JJ89], Coral [RSSS94],
NAIL! [MUG86], and F-Logic [KLW95].

Inferencing in model management: Several key oper-
ations in model management involve various forms of in-
ference, such as inverting a mapping, completing a map-
ping, and determining equivalence of models. For ex-
ample, a mapping can be thought of as a view of one
model in terms of another. Therefore, inverting a map-
ping resembles the problem of inverting views, which
raises the relevance of work on answering queries using
views [YL87, TSI96, CKPS95, LMSS95, DG97, FRV96].
Even in the relational case these works need to be ex-
tended for the problems faced in model management, not
to mention extensions to other contexts. Description Log-
ics provide another formalism that has been shown to be
useful for modeling DB schemas and interschema con-
straints [CL93, Bor95, LRO96]. They provide a formal-
ism for representing and reasoning about intentionally de-
fined sets. Finally, there is a rich literature on tools for
testing equivalence and containment of queries [Ull97],
starting from the work of Chandra and Merlin [CM77].

Efficient operations on models: A model is the tran-
sitive closure of a graph. In many scenarios, it will be
important to compute this closure and/or maintain it as a
materialized view. There is much literature on computing
transitive closures [ADJ90, AJ87, DP97, DR94, DS95,
Jag90, IRW93]. Probably, some structure in models can
be exploited to improve upon published techniques. For
example, many papers assume there is only one kind of
edge and that all kinds of updates are equally likely. Tran-
sitive closure is also closely related to recursive query pro-
cessing [BMSU86, BR86, DR94]. It will be important to
learn how best to map model management functions on
top of recursion, which is now a part of SQL3.

Differencing models: In many cases, differencing mod-
els is a lot like differencing graph structures. As shown in
[CRGMW96, CGM97], its computational complexity is
sensitive to assumptions about the kind of structure that
the graph can represent and the available mapping oper-
ations. This suggests it will be hard to develop generic
algorithms for differencing that are parameterized by the
kinds of structures of interest. Luckily, there is a substan-
tial research literature on differencing that can be lever-
aged to understand the variations that need to be covered
by a generic solution, or even to understand if a generic
solution is possible [Mye86, SZ90, WSC+97, ZWS95].

14



Modeling change in models: One of most longstand-
ing topics of DB research is data translation [BKKK87,
LCC94, SHT+77]. Recent techniques, such as those of
[CJR98, MZ98], are excellent test cases for a generic
model management system.

Schema integration: There are many approaches to
schema integration which are candidate algorithms for
Match [BCV99, JMN+99, MHH00, MWK00, PSU98,
MMP95, DDL00]. Concepts such as information capacity
of models [MIR93] will also be key to comparing among
models.

7 Final Remarks

In this paper, we presented an outline of a data model for
model management. The data model has two main ab-
stractions

� model, which captures the structure of engineered
information artifacts, such as database schemas, in-
terface definitions, XML DTDs, web site designs,
semantic networks, complex documents, and soft-
ware configurations, and

� mapping, which captures relationships between
models such as transformations and matchings.

The data model includes high-level set-oriented opera-
tions that manipuate models and mappings as first class
objects, such as copy, select, delete, apply-function, enu-
merate, compose, match, and merge. These operations
should greatly reduce the amount of code required for ap-
plications that manipulate models and mappings. More-
over, they should enable people to write model manipula-
tion applications that today seem too daunting.

A modern database system supporting object-oriented
or object-relational functions should be a very suitable
platform on which to implement a model management
data model. However, producing such an implementation
is not a cake walk. As pointed out in this paper, there are
many technical challenges in developing a generic, cus-
tomizable and efficient implementation. Long term, we
expect that a solution to these challenges will result in a
substantial layer of software that we can properly think of
as a new kind of database system.

Applications that manipulate models are complicated
and hard to build. It is slow work. By implementing
generic model management functionality along the lines
presented in this paper, the database field stands a good
chance of improving programmer productivity for these

applications by an order of magnitude. It is an exciting
prospect.

8 Acknowledgements

We gratefully acknowledge many useful suggestions from
Thomas Bergstraesser, Zack Ives, Sergey Melnick, John
Mylopoulos, Arnie Rosenthal, Aamod Sane, and espe-
cially Erhard Rahm.

References

[ADJ90] Rakesh Agrawal, Shaul Dar, and H. V. Jagadish. Di-
rect transitive closure algorithms: Design and performance
evaluation. TODS, 15(3):427–458, 1990.

[AJ87] Rakesh Agrawal and H. V. Jagadish. Direct algorithms
for computing the transitive closure of database relations. In
Peter M. Stocker, William Kent, and Peter Hammersley, edi-
tors, VLDB’87, Proceedings of 13th International Conference
on Very Large Data Bases, September 1-4, 1987, Brighton,
England, pages 255–266. Morgan Kaufmann, 1987.

[BBC+99] P. A. Bernstein, T. Bergstraesser, J. Carlson,
P. Sanders S. Pal, and D. Shutt. Microsoft repository ver-
sion 2 and the open information model. Information Systems,
24(2):71–98, 1999.

[BCV99] Sonia Bergamaschi, Silvana Castano, and Maurizio
Vincini. Semantic integration of semistructured and structured
data sources. SIGMOD Record, 28(1):54–59, 1999.

[Ber98] P. A. Bernstein. Repositories and object-oriented
databases. SIGMOD Record, pages 34–46, 1998.

[BKKK87] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and
Henry F. Korth. Semantics and implementation of schema evo-
lution in object-oriented databases. In Proc. of ACM SIGMOD
Conf. on Management of Data, pages 311–322, 1987.

[BMSU86] François Bancilhon, David Maier, Yehoshua Sagiv,
and Jeffrey D. Ullman. Magic sets and other strange ways
to implement logic programs. In Proc. of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 1–16, 1986.

[Bor95] Alex Borgida. Description logics in data manage-
ment. IEEE Transactions on Knowledge and Data Engineer-
ing, 7(5):671–682, 1995.

[BPS99] Philip A. Bernstein, Shankar Pal, and David Shutt.
Context-based prefetch for implementing objects on relations.
In Malcolm P. Atkinson, Maria E. Orlowska, Patrick Val-
duriez, Stanley B. Zdonik, and Michael L. Brodie, editors,
VLDB’99, Proceedings of 25th International Conference on
Very Large Data Bases, September 7-10, 1999, Edinburgh,
Scotland, UK, pages 327–338. Morgan Kaufmann, 1999.

[BR86] Francois Bancilhon and Raghu Ramakrishnan. An am-
ateur’s introduction to recursive query processing strategies. In
Proc. of ACM SIGMOD Conf. on Management of Data, pages
16–52, 1986.

15



[CCB+00] R.G.G. Cattell, Rick Catell, Douglas K. Barry,
Mark Berler, Jeff Eastman, David Jordan, Craig Russell, Olaf
Schadow, Torsten Stanienda, and Fernando Velez, editors. The
Object Data Standard: ODMG 3.0. Morgan Kaufmann Pub-
lishers, 2000.

[CGM97] Sudarshan S. Chawathe and Hector Garcia-Molina.
Meaningful change detection in structured data. In Proc. of
ACM SIGMOD Conf. on Management of Data, 1997.

[CJR98] Kajal T. Claypool, Jing Jin, and Elke A. Runden-
steiner. Serf: Schema evalution through an extensible, re-
usable and flexible framework. In The Proceedings of the
7th International Conference on Information and Knowledge
Management (CIKM-98), pages 314–321, 1998.

[CKPS95] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros
Potamianos, and Kyuseok Shim. Optimizing queries with ma-
terialized views. In Proc. of Int. Conf. on Data Engineering
(ICDE), Taipei, Taiwan, 1995.

[CL93] T. Catarci and M. Lenzerini. Representing and using
interschema knowledge in cooperative information systems.
Journal of Intelligent and Cooperative Information Systems,
1993.

[CM77] A.K. Chandra and P.M. Merlin. Optimal implemen-
tation of conjunctive queries in relational databases. In Pro-
ceedings of the Ninth Annual ACM Symposium on Theory of
Computing, pages 77–90, 1977.

[CPM96] Roberta Cochrane, Hamid Pirahesh, and Nel-
son Mendonça Mattos. Integrating triggers and declarative
constraints in SQL database sytems. In T. M. Vijayaraman,
Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda,
editors, VLDB’96, Proceedings of 22th International Confer-
ence on Very Large Data Bases, September 3-6, 1996, Mumbai
(Bombay), India, pages 567–578. Morgan Kaufmann, 1996.

[CRGMW96] Sudarshan S. Chawathe, Anand Rajaraman, Hec-
tor Garcia-Molina, and Jennifer Widom. Change detection in
hierarchically structured information. In Proc. of ACM SIG-
MOD Conf. on Management of Data, 1996.

[DDL00] Anhai Doan, Pedro Domings, and Alon Y. Levy.
Learning source descriptions for data integration. In Proceed-
ings of the International Workshop on The Web and Databases
(WebDB), 2000.

[DFS99] Alin Deutsch, Mary Fernandez, and Dan Suciu. Stor-
ing semi-structured data with STORED. In Proc. of ACM SIG-
MOD Conf. on Management of Data, pages 431–442, 1999.

[DG97] Oliver M. Duschka and Michael R. Genesereth. Query
planning in infomaster. In Proceedings of the ACM Symposium
on Applied Computing, San Jose, CA, 1997.

[DP97] Guozhu Dong and Chaoyi Pang. Maintaining transi-
tive closure in first order after node-set and edge-set deletions.
Information Proc. Letters, 62(4):193–199, 1997.

[DR94] Shaul Dar and Raghu Ramakrishnan. A performance
study of transitive closure algorithms. In Proc. of ACM SIG-
MOD Conf. on Management of Data, pages 454–465, 1994.

[DS95] Guozhu Dong and Jianwen Su. Incremental and decre-
mental evaluation of transitive closure by first-order queries.
Information and Computation, 120(1):101–106, 1995.

[DS00] G. Dong and J. Su. Incremental maintenance of recur-

sive views using relational calculus / sql. SIGMOD Record,
pages 44–51, 2000.

[FK99] D. Florescu and D. Kossmann. Storing and querying
xml data using an rdbms. IEEE Data Engeneering Bulletin,
22(3):27–34, September 1999.

[FRV96] Daniela Florescu, Louiqa Rashid, and Patrick Val-
duriez. Answering queries using OQL view expressions. In
Workshop on Materialized Views, in cooperation with ACM
SIGMOD, Montreal, Canada, 1996.

[IRW93] Yannis E. Ioannidis, Raghu Ramakrishnan, and Linda
Winger. Transitive closure algorithms based on graph traver-
sal. TODS, 18(3):512–576, 1993.

[Jag90] H. V. Jagadish. A compression technique to materialize
transitive closure. TODS, 15(4):558–598, 1990.

[JJ89] Matthias Jarke and Manfred A Jeusfeld. Rule represen-
tation and management in ConceptBase. SIGMOD Record,
18(3):46–51, 1989.

[JMN+99] Jan Jannink, Prasenjit Mitra, Erich Neuhold, Srini-
vasan Pichai, Rudi Studer, and Gio Wiederhold. An alge-
bra for semantic interoperation of semistructured data. In
IEEE Knowledge and Data Engineering Exchange Workshop
(KDEX), 1999.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical founda-
tions of object-oriented and frame-based languages. J. ACM,
42(4):741–843, 1995.

[LCC94] Chien-Tsai Liu, Shi-Kuo Chang, and Panos K.
Chrysanthis. Database schema evolution using EVER dia-
grams. In Proceedings of the Workshop on Advanced Visual
Interfaces, pages 123–132, New York, New York, USA, 1994.

[LM98] Bertram Ludascher and Wolfgang May. Referential ac-
tions: From logical semantics to implementation. In Proc. of
the Conf. on Extending Database Technology (EDBT), pages
404–418, 1998.

[LML97] Bertram Ludäscher, Wolfgang May, and Georg
Lausen. Referential actions as logic rules. In Proceedings
of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 12-14, 1997, Tucson,
Arizona, pages 217–227. ACM Press, 1997.

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sa-
giv, and Divesh Srivastava. Answering queries using views. In
Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), San Jose, CA, 1995.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille.
Querying heterogeneous information sources using source de-
scriptions. In Proc. of the Int. Conf. on Very Large Data Bases
(VLDB), Bombay, India, 1996.

[MBJK90] John Mylopoulos, Alexander Borgida, Matthias
Jarke, and Manolis Koubarakis. Telos: Representing knowl-
edge about information systems. ACM TOIS, 8(4):325–362,
1990.

[MHH00] Renee J. Miller, Laura Haas, and Mauricio Hernan-
dez. Schema mapping as query discovery. In Proc. of the Int.
Conf. on Very Large Data Bases (VLDB), 2000.

[MIR93] Renne J. Miller, Yannis E. Ioannidis, and Raghu Ra-
makrishnan. The use of information capacity in schema inte-
gration and translation. In Proc. of the Int. Conf. on Very Large
Data Bases (VLDB), pages 120–133, 1993.

16



[MMP95] John Mylopoulos and Renate Motschnig-Pitrik. Par-
titioning information bases with contexts. In Proceedings of
3rd CoopIS, pages 44–54, 1995.

[MUG86] Katherine A. Morris, Jeffrey D. Ullman, and
Allen Van Gelder. Design overview of the NAIL! system. In
Third International Conference on Logic Programming, 1986.

[MWK00] Prasenjit Mitra, Gio Wiederhold, and Martin L. Ker-
sten. A graph-oriented model for articulation of ontology in-
terdependencies. In Proc. of the Conf. on Extending Database
Technology (EDBT), pages 86–100, 2000.

[Mye86] E. Myers. An o(nd) difference algorithm and its vari-
ations. Algorithmica, 1(2):251–266, 1986.

[MZ98] Tova Milo and Sagit Zohar. Using schema matching
to simplify heterogeneous data translation. In Proc. of the
Int. Conf. on Very Large Data Bases (VLDB), New York City,
USA, 1998.

[PSU98] L. Palopoli, D. Saccà, and D. Ursino. Semi-automatic,
semantic discovery of properties from database schemes.
In Proceedingsof IDEAS’98, pages 244–253. IEEE Press,
Cardiff, United Kingdom, 1998.

[RSSS94] Raghu Ramakrishnan, Divesh Srivastava, S. Sudar-
shan, and Praveen Seshadri. The CORAL deductive system.
VLDB Journal, 3(2):161–210, 1994.

[SGT+99] J. Shanmugasundaram, H. Gang, K. Tufte,
C. Zhang, D. J. DeWitt, and J. Naughton. Relational
databases for querying xml documents: Limitations and
opportunities. In Proc. of the Int. Conf. on Very Large Data
Bases (VLDB), 1999.

[SHT+77] N.C. Shu, B.C. Housel, R.W. Taylor, S.P. Ghosh,
and V.Y. Lum. Express: A data extraction, processing and re-
structuring system. ACM Transactions on Database Systems,
2(2):134–174, 1977.

[SZ90] Dennis Shasha and Kaizhong Zhang. Fast algorithms
for the unit cost editing distance between trees. J. Algorithms,
11(4):581–621, 1990.

[TSI96] Odysseas G. Tsatalos, Marvin H. Solomon, and Yan-
nis E. Ioannidis. The GMAP: A versatile tool for physical
data independence. VLDB Journal, 5(2):101–118, 1996.

[Ull97] Jeffrey D. Ullman. Information integration using log-
ical views. In Proc. of the Int. Conf. on Database Theory
(ICDT), Delphi, Greece, 1997.

[WSC+97] Jason Tsong-Li Wang, Dennis Shasha, George Jyh-
Shian Chang, Liam Relihan, Kaizhong Zhang, and Girish Pa-
tel. Structural matching and discovery in document databases.
In Proc. of ACM SIGMOD Conf. on Management of Data,
pages 560–563, 1997.

[YL87] H. Z. Yang and P. A. Larson. Query transformation for
PSJ-queries. In Proc. of the Int. Conf. on Very Large Data
Bases (VLDB), pages 245–254, Brighton, England, 1987.

[ZWS95] Kaizhong Zhang, Jason Tsong-Li Wang, and Dennis
Shasha. On the editing distance between undirected acyclic
graphs and related problems. In Proceedings of CPM, pages
395–407, 1995.

17


