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The goal of data integration is to provide a uniform interface, called a mediated schema, to 

a set of autonomous data sources, which allows users to query a set of databases without 

knowing the schemas of the underlying data sources. 

This thesis describes two aspects of data integration: an algorithm for answering queries 

posed to a mediated schema and the process of creating a mediated schema. First, we present 

the MiniCon algorithm for answering queries in a data integration system and explain why 

MiniCon outperforms previous algorithms by up to several orders of magnitude.  

Second, given two relational schemas for data sources, we propose an approach for using 

conjunctive queries to describe mappings between them. We analyze their formal semantics, 

show how to derive a mediated schema based on such mappings, and show how to translate 

user queries over the mediated schema into queries over local schemas. We then show a 

generic Merge operator that merges schemas and mappings regardless of data model or 

application. Finally, we show how to implement the derivation of mediated schemas using the 

generic Merge operator. 
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Chapter 1  

Introduction 

Initially databases were largely self-contained. Each database had its own locus of expertise, 

and in that locus of expertise, that database was the sole arbiter of facts and how those facts 

should be expressed. This meant, among other things, that each database was required to 

interact with only one schema, a representation of the concepts contained in the database. A 

schema consists of a set of relations, each of which is represented as a table. For example, if the 

database was used to make airplane reservations, the database would store airport data in 

exactly one representation, and that representation would be described by one or more relations. 

In this situation, interaction between databases was very uncommon. One reason is that it was 

extremely manually intensive to set up multiple databases talking to one another. In addition 

because such care was invested in how to set up the database schema, people were very loath to 

change it.  

However, the falling cost of disks, fast processors, and fast and stable network connections 

have led to many sources of overlapping information, such as different sources available to find 

out about airfares. In order to determine what the correct answer to a query – a question over the 

database – is, the answer must now be asked over multiple sources. Consider Example 1.1: 

Example 1.1: Figure 1.1 shows a scenario that might occur if the reader were 

trying to plan a beach vacation. Three different elements might need to be 

incorporated (1) where to find a beach (2) where there is good weather and (3) 

where cheap flights can be found. Each of these pieces of information can in 

turn be found from a number of different sources. For example, cheap flight 

information can come from the travel websites AAA, Expedia, Orbitz, or any of 

a number of other sources.  □ 
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Figure 1.1: A typical data management scenario today often requires incorporating data 
from multiple sources. 

In addition to the existence of many different data sources, there are many more database 

users with different goals. Because there are so many different queries that users may be 

interested in, it is not feasible to decide a priori how to partition each user query into queries 

over the data sources; the user queries must be reformulated at query time into queries over 

each of the different data sources.  

Example 1.2: Continuing with Example 1.1, if there were a small number of 

types of queries that were to be asked, it would be easy to figure out how to 

reformulate such queries. For example, if the goal of the system was only to 

find cheap flights, it would be relatively easy to figure out how to translate a 

query that the user would ask over the system into queries over AAA, Expedia, 

or Orbitz. However, there are a large number of queries that users may want to 

ask over the system, so it is impractical to pre-compute how to reformulate all 

possible user queries.  □ 

This process is similar but distinct from the traditional process of query optimization. In 

query optimization the user’s query is asked over a declarative language (such as SQL), and 

then the query is rewritten in a procedural form. In both query reformulation and query 

optimization the goal is to create query plans on the fly, hence some of the same techniques that 
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are helpful in query optimization are also useful in query reformulation. Query reformulation, 

however is a separate process. Even after a data integration query over the mediated schema has 

been reformulated, it will still need to be optimized for efficient execution. 

This scenario where many users are accessing many different databases simultaneously is 

very common these days, and not just across the World Wide Web. For example, in order to 

perform their work, bio-medical researchers may need to combine information about genes with 

information about proteins, each of which can be found in any number of data sources. 

Similarly, researchers from other fields such as astronomy and literature require information 

from many different sources. These two examples typify today’s data management challenges: 

in today’s world, there is a vast user base wishing to combine data from many overlapping 

databases without having to know where that data comes from. In this thesis we describe 

mechanisms to make querying multiple databases simultaneously faster for users and how to 

improve system construction for administrators.  

1.1 Data Warehouses and Data Integration  

Data
Source

Data
Source

Data Warehouse

Data Extraction,
Transformation, Loading

Application

Data
Source  

Figure 1.2: Data warehouse architecture 
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When querying multiple databases simultaneously there are two main data modeling 

choices; Either (1) the data can be gathered in a central location and then queried over that 

central repository or (2) the data can be left in the individual sources, queries can be rewritten to 

be over each of the individual sources, and then the data can be combined. The former approach 

is taken by data warehousing systems, such as the system in Figure 1.2. The latter approach is 

taken by data integration systems such as the system shown in Figure 1.3.  

1.1.1 Data Warehouses 
The goal of a data warehouse is to gather all of the data relevant to a particular set of queries 

in the same place. An example data warehouse architecture is shown in Figure 1.2. The 

application talks to the data warehouse. In order to render the data warehouse usable, all data is 

processed as a batch through a data extraction, transformation, and loading (ETL) module. This 

module operates in a batch fashion. At some point when the warehouse is not being queried, the 

ETL module extracts the data from the base sources through querying the underlying sources, 

cleans the data such that the data is internally consistent, transforms it to be in the schema of the 

data warehouse rather than being in the schemas of the individual data sources, and then loads 

the data into the data warehouse. Queries are asked over the data warehouse’s schema and then 

immediately executed over the warehouse’s contents without needing to refer to the original 

data sources. Because the data has all been stored together and the ETL layer has pre-computed 

many of the transformations that must occur, data warehouses are particularly good for 

answering queries that require particularly costly computations that reuse much of the same 

data. For example, the prototypical data warehouse example is that of seeing what different 

regions have different characteristics for Wal-Mart sales data. However, because the data has to 

go through the ETL level before it can be queried, data in data warehouses is often stale. Hence 

data warehouses are inappropriate for queries that require fresh data. 
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1.1.2 Data Integration 

Data
Source

Data
Source
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Wrapper
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Figure 1.3: Data integration architecture 

A data integration system, unlike a data warehouse, leaves the data at the sources. One 

example of a data integration architecture is shown in Figure 1.3. As such, querying in a data 

integration system is more complex than querying in data warehousing. As with data 

warehousing, user queries are asked through some application. This application asks queries 

over a mediated schema, which is a schema that has been designed to represent data from all the 

data sources in the data integration system, much like the data warehouse’s schema.  

Since the data has not been pre-computed to be in the mediated schema, the application 

queries must be reformulated into queries over the data sources that the data is stored in. The 

query reformulator is responsible for looking at the data source catalog to determine what 

sources are relevant to the query. Following Example 1.1, if a query asked for cheap airfares, 

the query reformulator would determine from the data source catalog that the AAA, Orbitz, and 

Expedia sources were relevant, and would translate the query over the mediated schema into a 
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reformulated query over the data sources. This reformulated query would then be given to the 

query processor which would determine the best way to execute the query (e.g., which data 

source should be contacted when and how the results should be combined) using statistics from 

the data source catalog.  

Query processing is complicated by the unpredictability of network delays, inaccuracy of 

statistics, and individual variance from the capabilities of different sources. Work on processing 

distributed queries has been studied extensively in such projects as eddies and (Avnur et al. 

2000) adaptive query processing (Ives 2002) and surveyed, e.g., (Kossmann 2000). When the 

query processor is ready for data from an individual data source, the query processor queries the 

data source’s wrapper, which translates the data from its native format to the format required by 

the query processor (Kushmerick et al. 1997). For example, if the data was from the web, the 

wrapper might change it from HTML to relational data. The query processor then combines the 

data returned from each data source’s wrapper and passes that data back to the application. 

Because the data is not cached ahead of time as it is in data warehouses, the data can be 

fresher than data that is stored in a data warehouse. In addition, there is no requirement to store 

all the data, which may be very large, or it may even be impossible to warehouse all the data 

because the data sources do not want you to have their entire database (e.g., the web retailer 

Amazon does not want anyone to have their entire database, though they are happy to expose 

parts of it for people to build applications on top of). Hence data integration systems are good 

for queries where freshness is paramount or the overall amount of data is very large but the 

amount needed to answer the queries is relatively small. Conversely data integration, like many 

distributed systems, is not good for applications that require very large quantities of data to be 

processed or for systems requiring strict performance guarantees. 

In this thesis, though we discuss creating the schema for a data warehouse, our primary 

contributions are making querying data integration systems faster for users and improving 

system construction for administrators. 

1.2 Querying in a Data Integration System 
Since queries are asked over the mediated schema but the data is stored in the source 

schemas, queries are posed over the mediated schema and then translated into queries over the 
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source schemas in which the data is stored. For this translation to occur, we need to know how 

the source schemas are related to the mediated schema. There are two solutions that are 

commonly proposed in database literature, both of which use the concept of a view – a query 

that has been named for reuse. In the first solution, Global-As-View (GAV), the mediated 

schema is formalized as a set of views over the local sources; this approach simply uses 

traditional views as has been used extensively in database literature. For a recent survey of 

GAV approaches see (Lenzerini 2002). In the second solution, Local-As-View (LAV) (Levy et 

al. 1996), the local sources are formalized as a set of views over the mediated schema.  

In GAV, each mediated schema relation is defined in terms of the local sources that 

correspond to it. For example, continuing with the scenario in Example 1.1, in GAV the data 

integration system would store that the mediated schema relation of “airfare” can be found by 

asking a query over AAA, Orbitz and Expedia.  

Translating a query in GAV requires only replacing the mediated schema relation in the 

query with the set of local sources that can provide data for that mediated schema relation. 

Continuing with the scenario in Example 1.1, translating a query about finding the cheapest 

airfare to Maui would require only replacing the occurrence of the relation “airfare” with the 

view (i.e., stored query) defining how to find information about airfares in AAA, Orbitz, and 

Expedia. Unfortunately, because GAV describes the mediated schema in terms of the local 

sources, adding new sources is a complicated procedure; the definition for each mediated 

schema relation may need to be modified to describe how to retrieve data from the new sources. 

In the continuing example, for instance, if the system were going to add on Air Canada, the 

view defining airfare would have to change, as would the view defining any other concept to 

which Air Canada could contribute. 

LAV, on the other hand, describes each source as a view over the mediated schema. In our 

continuing example, there might be a view explaining that AAA could give information about 

flights that could be bought at the same time as a rental car was rented. Hence, adding a new 

source to the data integration system requires only adding new queries describing how the local 

source can answer queries over the mediated schema relations. Again, following our continuing 

example, if Air Canada were to be added to a LAV system, the information about AAA, Orbitz, 
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and Expedia would all remain the same, and new queries would be added only to define what 

data Air Canada contains.  

Unfortunately answering queries in LAV is much more complex; since the local sources are 

described in terms of the mediated schema rather than the other way around, translating queries 

over the mediated schema into queries over the local source schemas is not as simple. In the 

running example, to find the cheapest airfare to get to a destination with good weather in LAV, 

we would have to look at the views defining airfare described above and then decide how to 

combine those sources of information with information about which destinations have good 

weather. Rewriting a query over the mediated schema into queries over the source schema relies 

on a technique known as answering queries using views; for a survey on answering queries 

using views see (Halevy 2001). 

Answering queries using views is also used in query optimization – the process of 

transforming a declarative query into a procedure for executing the query – in order to reduce 

execution time for traditional database systems. In query optimization the input is a declarative 

explanation of what parts of the schema need to be used, and the output is a procedural plan that 

explains how the query can be executed efficiently. Here views can be used as caches of pre-

computed information and can speed up the procedural plan considerably, though the 

underlying relations are available as well.  

In Chapter 3 we present the first contribution of this thesis: the MiniCon Algorithm, a fast 

algorithm for answering queries using views in the context of data integration and show how it 

can be extended to the case of query optimization. Prior to the MiniCon Algorithm, many 

researchers believed that using LAV to describe a data integration architecture would be 

prohibitively slow since answering queries using views is NP-Complete in the size of the query, 

even for query languages with limited expressiveness (Levy et al. 1995). Chapter 3 shows not 

only the MiniCon algorithm but also shows – in the first large-scale experiments on answering 

queries using views – that MiniCon is practical in many cases and faster than previous 

algorithms for answering queries using views, sometimes by orders of magnitude. Thus 

assuming that the mediated schema is related to the source schemas using LAV, answering 

queries over it is sufficiently fast for users. Next we turn our attention to how to create the 

mediated schema initially. 
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1.3 Mediated Schema Creation 
Mediated schema creation today is often ad-hoc. Mediated schemas are typically formed by 

a committee deciding what concepts should be represented in the mediated schema and how to 

represent those concepts. The designers can guarantee that the mediated schema will meet their 

requirements. On the other hand, it is problematic for a number of reasons: 

• If the mediated schema is related through the mapping languages of GAV or LAV, 

these languages may overly restrict the way in which the sources can be related to one 

another.  

• Mediated schema creation in this fashion is very expensive. Experts cost money, and 

bringing them together costs time and money. This means that not only will it take 

considerable effort to create the mediated schema in the first place, but updating it will 

be much more expensive in the long run. Because sources change over time, the 

mediated schema must be flexible enough to add new concepts, which is difficult in this 

situation. Though using experts to build the mediated schema may be required in some 

circumstances, in other scenarios such as coordinating disaster relief, the mediated 

schema may need to be built up much more quickly and automatically. 

• There is no guarantee that the mediated schema satisfies any requirements about what 

should be in the mediated schema. 

Mechanisms for creating a mediated schema out of sources have previously been studied in 

database research; such projects generally focus on how to resolve conflicts such as synonyms 

and homonyms in relation names or how to ensure that the resulting schema is valid in a 

particular data model – e.g., SQL. Batini, Lenzerini, and Navathe provide a survey of such 

methods (Batini et al. 1986). Buneman, Davidson, and Kosky (Buneman et al. 1992) provide a 

general theory of what it means to merge two source schemas to create a third schema. Others 

have approached the problem from a more pragmatic point of view, such as the Database 

Design and Evaluation Workbench (Rosenthal et al. 1994) that allow users to manipulate 

schemas, including combining multiple views into one schema. Still others have created formal 

criteria for when two schemas consist of the same information, both for data integration and 
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other applications (Hull 1984; Kalinichenko 1990; Miller et al. 1993). But none of these papers 

have tackled the following problem: given two schemas, how should we create a mediated 

schema and also the mappings from the mediated schema to the sources. 

In Chapter 4 we describe the second contribution of this thesis. We define a set of Mediated 

Schema Criteria to which any mediated schema must adhere. We then provide the first 

investigation of creating a data integration system from such criteria. We then explain that 

creating a mediated schema requires at a minimum two source schemas and information relating 

the two schemas. The intuition for this is shown in Example 1.3: 

Example 1.3: Continuing with Example 1.2, in order to create the mediated 

schema we must know not only the schemas but where they overlap. For 

example, in order to create a mediated schema for Expedia and Orbitz we must 

know that both of them represent airfare information and how that airfare 

information is stored, and which elements of those representations correspond 

to each other.  □ 

In Chapter 4 we show that the information relating the local sources drives the choice of 

mediated schema. Moreover, the language that is used to describe the relationship between the 

local sources affects the choice of language needed to relate the mediated schema and the 

source schemas (e.g., GAV or LAV). In particular, we show that even in the case where two 

schemas are related to one another through a very simple language, neither GAV nor LAV are 

expressive enough to relate the mediated schema to the source schemas if the Mediated Schema 

Criteria are satisfied. 

1.4 Generically Merging Schemas 
While Chapter 4 concentrates only on creating a mediated schema for data integration in the 

context of the relational data model, merging complex descriptions such as schemas happens in 

a number of contexts in addition to data integration. Some examples are:  

• In data warehouse creation, one can view creating the data warehouse as the problem of 

merging schemas.  
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• Ontology merging is increasingly important due to the proliferation of large ontologies 

through such efforts as medical informatics and the growing interest in the semantic 

web.  

• In software engineering, current trends toward aspect-oriented programming or subject-

oriented programming require merging class definitions. 

In each of these examples, two or more schemas are merged to create a third schema, and in 

particular their meta-data — data about how other data is stored, i.e., schema information — is 

merged. Managing meta-data is integral to creating database applications, yet meta-data 

functionality is often built from scratch for each new application. Chapter 5 contributes Merge, 

a generic merge solution that describes how to merge schemas not only across different 

applications, but also across different meta-models (i.e., XML DTDs, relational schemas, etc.). 

Merge is designed to be part of a larger system called Model Management. The goal of Model 

Management is to reduce the effort of creating meta-data applications (e.g., building a data 

warehouse or propagating changes in schema evolution) with three key abstractions: models, 

mappings, and operators. A model is a formal description of a complex application artifact, such 

as a database schema, an application interface, a UML model, or an ontology. A mapping 

describes the relationship between two models. An operator (e.g., Merge, Match, Compose, 

Diff) manipulates models and mappings as objects. As an example of how Model Management 

helps with meta-data applications, Model Management can create the mediated schema for data 

integration by first using Match to create a mapping between two local schemas and then Merge 

the autonomous local schemas to create the common schema. Similarly, applying more 

operators can create a common schema if there are more than two local schemas.  

Merge combines two input models based on a mapping between them. For instance, suppose 

the data integration example in Example 1.1 merged the customer account databases for two 

travel agencies. These models, though potentially very similar, can contain many differences. 

Consider customers’ names. One travel agency might store FirstName and LastName while the 

other stores simply Name. How should names be represented in the merged model? In addition, 

suppose that one bank uses a relational database and the other uses XML; not only must the 

models be merged, the merge must be performed across different types of models. Although this 
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example uses database schemas, Merge is designed for other model types as well, such as 

merging ontologies and merging classes in object-oriented programming. 

Previous merging algorithms either concentrated on resolving data-model-specific conflicts 

(e.g., a column in a relational model cannot have sub-columns) or used data models that were 

not rich enough to express many relevant conflicts. In Chapter 5 we describe a Merge that is 

generic enough to be useful in many different data models yet specific enough to resolve 

application-specific conflicts. To do so we show three levels of detail. At the most abstract 

level, we define the input, output, and desired properties of Merge with respect to typical 

merging scenarios. At a more detailed level we show a representation for models and show that 

Merge in this representation, when used with other Model Management operators, subsumes 

many previous merging algorithms. Even though the previous algorithms were designed 

specifically for the data models from different merging problems (e.g., view integration and 

ontology merging), Merge can subsume them.  

Chapter 6 contributes the most detailed Merge analysis; how Merge interacts with the 

semantics of the applications in which it will be used. We take the inputs defined in Chapter 4 

and show that for most cases Merge as defined in Chapter 5 can be used to build the output 

defined in Chapter 4, particularly when building the mediated schema is concerned, though 

building the mappings from the mediated schema to the local sources is more difficult. This first 

attempt at encoding a semantic operation in Model Management gives us a glimpse into when it 

succeeds at its goals of allowing users not only to build up the schemas they require but the rest 

of the application as well, and when human intervention is required. 

1.5 Outline of Dissertation 
The remainder of this dissertation is structured as follows.  

Chapter 2 provides background of terminology that is used throughout the thesis. 

Chapter 3 introduces the MiniCon Algorithm, a fast algorithm for answering queries using 

views in data integration. We also show that the MiniCon Algorithm outperforms previous 

algorithms for answering queries using views, sometimes by orders of magnitude. In addition, 

we show how to extend the algorithm to the traditional problem of query optimization. 
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In Chapter 4 we describe how to create the mediated schema based on a set of Mediated 

Schema Requirements we have created. We show why traditional GAV or LAV mappings 

between local sources are insufficient to express the relationship between mediated schemas. 

We then show the first bottom-up mediated schema creation algorithm, and show how to 

rewrite queries over that schema. 

In Chapter 5 we describe how to extend mediated schema creation to a more general 

problem: how to merge to schemas. We describe an algorithm for merging schemas that can be 

in data integration, view integration, ontology merging, and other database and non-database 

applications. We describe the semantics of Merge in general and for a specific representation, 

Vanilla, in which Merge subsume previous algorithms. Finally, we merge two large anatomy 

ontologies to show that Merge scales and is useful in practice. 

In Chapter 6 we show how to emulate the mediated schema creation of Chapter 4 using 

Model Management operators, especially Merge as defined in Chapter 5. We concentrate on 

showing one method that can be done entirely through encoding the mapping and schemas in 

multiple Model Management operators. 

Chapter 7 concludes. 
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Chapter 2  

Background 

In this chapter we present background terminology used throughout this thesis. In much of 

this thesis we are concerned with relational database schemas:  

Definition 2.1: (Relational database schema). A relational database schema is a 

set of relations. Each relation r consists of an ordered list of attributes attributesr 

= [ar1, …, arm]. We use the term relation state when referring to the set of tuples 

in a relation, i.e., the database of the relational database schema □ 

In the remainder of this chapter we define concepts used throughout the thesis. As in the 

bulk of the thesis, we describe these concepts within the context of relational database schemas: 

queries and views (Section 2.1), query containment and equivalence (Section 2.2), answering 

queries using views (Section 2.3) and query rewriting in data integration (Section 2.4).  

2.1 Queries and Views 
One of the chief goals of a database system is to answer queries: an application asks a query 

over a database and then the database system returns values to the application. Queries are 

expressed in a query language. Throughout this thesis we use conjunctive queries (i.e., select-

project-join queries without arithmetic comparisons) when a query language is required.  

Definition 2.2: (Conjunctive query). A conjunctive query Q has the form q( X )  

:- n ne ( X ),...,e ( X )1 1  where q and e1, ..., en are predicate names referring to 

database relations. The atoms n ne ( X ),...,e ( X )1 1  are collectively the body of the 

query, denoted body(Q) or Subgoals(Q). Each i ie ( X )  is a subgoal or 

Extensional Database Predicate (EDB). The atom q( X )  is called the head. Its 

predicate name, q, is called the IDB name of Q, denoted IDB(Q), which is the 
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name of the answer relation. The tuples nX ,X ,...,X1  contain either variables or 

constants.  

We require that the query Q be safe, i.e., that ⊆ ∪ ∪… nX X X1  (that is, 

every variable that appears in the head must also appear in the body). The 

variables in X  are the distinguished variables of the query, and all the others 

are existential variables, denoted distinguished(Q) or existential(Q) respectively. 

Join predicates in this notation are expressed by multiple occurrences of the 

same variables; i.e., if a variable appears multiple times in the same conjunctive 

query, we require that the value of the variable be the same each time it 

appears. For a query Q we denote the variables that have multiple occurrences 

by Joined(Q). 

We denote individual variables by lowercase letters and constants appear in 

quotation marks. The semantics of conjunctive queries requires that the 

database values that satisfy the restrictions required by the body are returned in 

a relation with the name of the head of the query. Unions are expressed by 

conjunctive queries having the same head predicate. We use Vars(Q) to refer to 

the set of variables in Q, and Q(D) to refer to the result of evaluating the query Q 

over the database D. □ 

Example 2.1: Consider the following schema that we use throughout this 

chapter and Chapter 3. The relation cites(p1,p2) stores pairs of publication 

identifiers where p1 cites p2. The relation sameTopic stores pairs of papers that 

are on the same topic. The unary relations inSIGMOD and inVLDB store ids of 

papers published in SIGMOD and VLDB respectively. The following query 

asks for pairs of papers on the same topic that also cite each other. 

Q(x,y) :- sameTopic(x,y), cites(x,y), cites(y,x)  □ 

A view is a named query. If the query result is stored, we refer to it as a materialized view, 

and we refer to the result set as the extension of the view. Occasionally we consider queries that 
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contain subgoals with comparison predicates <, ≤, ≠. In this case, we require that if a variable x 

appears in a subgoal of a comparison predicate, then x must also appear in an ordinary subgoal. 

2.2 Query Containment and Equivalence  
The concepts of query containment and equivalence enable us to compare the values that 

two queries will return if they are both asked over the same database instance. In this thesis we 

primarily use these concepts to determine when a query over a mediated schema is correctly 

translated into a query over source schemas. We say that a query Q1 is contained in the query 

Q2, denoted by Q1  Q2, if the answer to Q1 is a subset of the answer to Q2 for any database 

instance. We say that Q1 and Q2 are equivalent if Q1  Q2 and Q2  Q1, i.e., they produce the 

same set of tuples for any given database. 

Query containment and equivalence have been studied extensively for conjunctive queries 

and unions of conjunctive queries (Chandra et al. 1977; Sagiv et al. 1981), conjunctive queries 

with arithmetic comparison predicates (Klug 1988; Kolaitis et al. 1998; Levy et al. 1993; Zhang 

et al. 1993), and recursive queries (Chaudhuri et al. 1992; Chaudhuri et al. 1994; Levy et al. 

1993; Sagiv 1988; Shmueli 1993).  

In this thesis we demonstrate containment using containment mappings, which provide a 

necessary and sufficient condition for testing query containment (Chandra et al. 1977).  

Definition 2.3: (Containment mapping). Given a partial mapping τ on the 

variables of a query, we extend τ to apply to subgoals of the query as follows: 

If all the variables of a subgoal g are in the domain of τ and map to a subgoal 

with the same predicate name and arity, we say that τ maps g. A mapping τ 

from Vars(Q2) to Vars(Q1) is a containment mapping if (1) τ maps every subgoal 

in the body of Q2 to a subgoal in the body of Q1, and (2) τ maps the head of Q2 

to the head of Q1. The query Q2 contains Q1 if and only if there is a containment 

mapping from Q2 to Q1 (Chandra et al. 1977).  □ 
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2.3 Answering Queries Using Views  
Informally speaking, the problem of answering queries using views is the following. 

Suppose we are given a query Q over a database schema, and a set of view definitions V1, ..., Vn 

over the same schema. Is it possible to answer the query Q using only the answers to the views 

V1, ..., Vn, and if so, how? The problem of answering queries using views has recently received 

significant attention because of its relevance to a wide variety of data management problems 

(Halevy 2001): query optimization (Chaudhuri et al. 1995; Levy et al. 1995; Zaharioudakis et 

al. 2000), maintenance of physical data independence (Yang et al. 1987) (Tsatalos et al. 1996) 

(Popa et al. 2000), data integration (Duschka et al. 1997b; Kwok et al. 1996; Lambrecht et al. 

1999; Levy et al. 1996), and data warehouse and web-site design (Harinarayan et al. 1996; 

Theodoratos et al. 1997). For a recent survey on answering queries using views, see (Halevy 

2001). There are two main contexts in which the problem of answering queries using views has 

been considered. In the first context, where the goal is query optimization or maintenance of 

physical data independence (Chaudhuri et al. 1995; Tsatalos et al. 1996; Yang et al. 1987), we 

search for an expression that uses the views and is equivalent to the original query as defined in 

Definition 2.4. The second context is that of data integration, where views describe a set of 

autonomous heterogeneous data sources; we discuss the goals in this context in Section 2.4 

Formally, given a query Q and a set of view definitions V = V1, …,Vm, a rewriting of the 

query using the views is a query expression Q′ whose body predicates are either V1, …,Vm or 

comparison predicates. 

Definition 2.4: (Equivalent rewriting). Let Q be a query, and V =V1, …,Vn be a 

set of views, both over the same database schema. A query Q′ is an equivalent 

rewriting of Q using V if for any database D, the result of evaluating Q′ over 

V1(D), …,Vn(D) is the same as Q(D).  □ 

To tell if two queries are equivalent, we depend on the notion of unfolding or expanding a 

query as defined in Definition 2.5: 
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Definition 2.5: (Unfolding or expanding a query). Let Q be a query q( X )  :- 

n ne ( X ),...,e ( X )1 1 . Q' is an expansion or unfolding of Q if for each i ie ( X )  s.t. ei 

is defined by view Vi, we replace each occurrence of ei with the definition of Vi, 

substituting either the values of iX  for distinguished variables in Vi and fresh 

variable names for the existential variables in Vi.  □ 

Remark 2.1. Since different views may have similar definitions, they may 

evaluate to the same values even though the view name is different. Thus it is 

often necessary to unfold a query asked over a view in order to check on 

whether or not it is equivalent to another query. Example 2.2 gives an example 

of both the concept of finding an equivalent rewriting and view unfolding.  □ 

Example 2.2: Consider the query from Example 2.1 and the following views. 

The view V1 stores pairs of papers that cite each other, and V2 stores pairs of 

papers on the same topic, each of which cites at least one other paper.  

Q(x,y) :- sameTopic(x,y), cites(x,y), cites(y,x)  

V1(a,b) :- cites(a,b), cites(b,a) 

V2(c,d) :- sameTopic(c,d), cites(c,c1), cites(d,d1)  

The following is an equivalent rewriting of Q : 

Q′ (x,y) :- V1(x,y), V2(x,y).  

To check that Q′ is an equivalent rewriting, we unfold Q′ w.r.t. the view 

definitions to obtain Q′′, and show that Q is equivalent to Q′′ using a 

containment mapping (in this case it is the identity on x and y and x1  y, y1  

x).  

Q′′(x,y) :- cites(x,y), cites(y,x), sameTopic(x,y), cites(x,x1), cites(y,y1)  □ 

2.4 Query Rewriting in Data Integration 
As explained in Chapter 1, one of the main uses of algorithms for answering queries using 

views is in the context of data integration systems that provide their users with a uniform 
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interface to a multitude of data sources (Friedman et al. 1997; Kwok et al. 1996; Lambrecht et 

al. 1999; Levy et al. 1996; Ullman 1997). Since users pose queries in terms of a mediated 

schema and the data is stored in the sources, in order to be able to translate users’ queries into 

queries on the data sources, the data integration system needs a description of the contents of 

the sources. One of the approaches to specifying such descriptions is to describe a data source 

as a view over the mediated schema, specifying which tuples can be found in the source, an 

approach known as Local-As-View (LAV) (see Chapter 1). For example, in the domain 

described in Example 2.1, we may have two data sources, S1 and S2, containing pairs (p1, p2) 

of SIGMOD and VLDB papers (respectively) such that p1 cites p2 and p2 cites p1. The sources 

can be described as follows: 

S1(a,b) :- cites(a,b), cites(b,a), inSIGMOD(a), inSIGMOD(b) 

S2(a,b) :- cites(a,b), cites(b,a) inVLDB(a), inVLDB(b)  

Given a query Q, the data integration system first needs to reformulate Q to refer to the data 

sources, i.e., the views. There are two differences between this application of answering queries 

using views and that considered in the context of query optimization. First, the views in data 

integration are assumed to adhere to the open world assumption (Definition 2.6): 

Definition 2.6: (Open world assumption). A complete view definition is one for 

which a view provides all tuples that match the view’s definition. A sound view 

definition is any view definition for which the results of the view are those 

tuples defined by the body of the view; all view definitions are assumed to be 

sound. A view definition under the open world assumption is assumed to be 

sound but not complete. □ 

Due to the open world assumption, views in a LAV data integration system are not assumed to 

contain all the tuples in their definition since the data sources are managed autonomously; i.e., 

LAV view definitions are not complete. For example, the source S1 may not contain all the 

pairs of SIGMOD papers that cite each other. Because of the open world assumption the goal is 

to find what is known as certain answers:  
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Definition 2.7: (Certain answers). Let V be a view definition over a schema S, I 

be an instance of the view V and Q a query over S. A tuple t is a certain answer 

to Q under the open world assumption if t is an element of Q(D) for each 

database D with I ⊆ V(D) (Abiteboul et al. 1998).  □ 

Second, we cannot always find an equivalent rewriting of the query using the views because 

there may be no data sources that contain all of the information the query needs. Instead, we 

consider the problem of finding a maximally-contained rewriting (Duschka et al. 1997c). 

Maximally-contained rewritings are defined with respect to a particular query language in 

which we express rewritings. Intuitively, a maximally-contained rewriting is one that provides 

all the answers possible from a given set of sources. Formally, it is defined as follows.  

Definition 2.8: (Maximally-contained rewriting). The query Q′ is a maximally-

contained rewriting of a query Q using the views V = V1, …,Vn w.r.t. a query 

language L if  

1. for any database D, and extensions v1, …,vn of the views such that vi ⊆ 

Vi(D), for 1 ≤ i ≤ n, then Q′(v1, …,vn) ⊆ Q(D),  

2. there is no other query Q1 in the language L, such that for every 

database D and extensions v1, …,vn as above (a) Q′(v1, …,vn) ⊆ Q1(v1, 

…, vn) and (b) Q1(v1, …,vn) ⊆ Q(D), and (c) there exists at least one 

database for which 1. is a strict set inclusion.  

3. Q1 and Q′ are in L. 

Q does not have to be in L. □ 

Given a conjunctive query Q and a set of conjunctive views V, the maximally-contained 

rewriting of a conjunctive query may be a union of conjunctive queries (we refer to the 

individual conjunctive queries as conjunctive rewritings). Hence, considering Definition 2.8, if 

the language L is less expressive than non-recursive Datalog, there may not be a maximally-

contained rewriting of the query. When the queries and the views are conjunctive and do not 
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contain comparison predicates, it follows from (Levy et al. 1995) that we need only consider 

conjunctive rewritings Q′ that have at most the number of subgoals in the query Q. 

Example 2.3: Continuing the example begun in Example 2.1, assuming we 

have the data sources described by S1, S2 and V2 and the same query Q, the 

rewriting that will generate the most sound answers given the sources is: 

Q′(x,y) :- S1(x,y), V2(x,y) 

Q′(x,y) :- S2(x,y), V2(x,y)  □ 

The rewriting in Example 2.3 is a union of conjunctive queries, describing multiple ways of 

obtaining an answer to the query from the available sources. The rewriting is not an equivalent 

rewriting, since it misses any pair of papers that is not both in SIGMOD or both in VLDB, but 

we do not have data sources to provide us such pairs. Furthermore, since the sources are not 

guaranteed to have all the tuples in the definition of the view, our rewritings need to consider 

different views that may have similar definitions. For example, suppose we have the following 

source S3:  

S3(a,b) :- cites(a,b), cites(b,a), inSIGMOD(a), inSIGMOD(b) 

The definition of S3 is identical to that of S1. However, because of source incompleteness, it 

may contain different tuples than S1. Hence, our rewriting will also have to include the 

following in addition to the other two rewritings. 

Q′(x,y) :- S3(x,y), V2(x,y) 

The ability to find a maximally-contained rewriting depends in subtle ways on other 

properties of the problem. It follows from (Abiteboul et al. 1998) that if (1) the query contains 

comparison subgoals, or (2) the views are assumed to be complete (i.e., the closed world 

assumption holds), then there may not be a maximally-contained rewriting if we consider L to 

be the language of unions of conjunctive queries or even if we consider Datalog with recursion. 

In addition, even if a maximally-contained rewriting exists, a maximally-contained rewriting 

with respect to L (Definition 2.8) will only provide all certain answers if L is monotone 

(Duschka et al. 1998). A query Q over a schema R is monotonic if ∀ states σi, σj of R, σi ⊆ σj 
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implies that Q(σi) ⊆ Q(σj) (Abiteboul et al. 1995). However, given that in all cases that we 

consider the queries and views are monotone, a maximally-contained rewriting is guaranteed to 

return all certain answers. 

Given these definitions we are now ready to present the rest of the thesis. 
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Chapter 3  

MiniCon 

 

3.1 Introduction 
In Chapter 1, we motivated the problem of answering queries using views as a method for 

reformulating queries asked in a Local-As-View (LAV) data integration system. In this chapter, 

we assume that a data integration system has been set up using LAV as the mapping language 

between the mediated schema and the data sources, and focus on how to translate user queries 

into queries over the data sources using a technique called answering queries using views (a.k.a. 

rewriting queries using views). We defined answering queries using views in Chapter 2, both 

for finding equivalent rewritings (Definition 2.4) in query optimization of physical data 

independence and for data integration where the goal is to find maximally-contained rewritings 

(Definition 2.8). While the problem is NP-Complete in the number of subgoals of the query, the 

number of query subgoals is generally quite small. On the other hand, in some data integration 

applications, the number of data sources may be quite large – for example, data sources may be 

a set of web sites, a large set of suppliers and consumers in an electronic marketplace, or a set of 

peers containing fragments of a larger data set in a peer-to-peer environment. Hence, the 

challenge in this context is to develop an algorithm that scales up in the number of views. 

We consider the problem of answering conjunctive queries using a set of conjunctive views 

in the presence of a large number of views. In general, this problem is NP-Complete because it 

involves searching through a possibly exponential number of rewritings (Levy et al. 1995). 

Previous work has mainly considered two algorithms for this purpose. The bucket algorithm, 

developed as part of the Information Manifold System (Levy et al. 1996), controls its search by 

first considering each subgoal in the query in isolation, and creating a bucket that contains only 

the views that are relevant to that subgoal. The algorithm then creates rewritings by combining 

one view from every bucket. As we show, the combination step has several deficiencies, and 
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does not scale up well. The inverse-rules algorithm, developed in (Duschka et al. 1997a; Qian 

1996), is used in the InfoMaster System (Duschka et al. 1997a). The inverse-rules algorithm 

considers rewritings for each database relation independent of any particular query. Given a 

user query, these rewritings are combined appropriately. We show that the rewritings produced 

by the inverse-rules algorithm need to be further processed in order to be appropriate for query 

evaluation. Unfortunately, in this additional processing step the algorithm must duplicate much 

of the work done in the second phase of the bucket algorithm. 

Based on the insights into the previous algorithms, we introduce the MiniCon algorithm, 

which addresses their limitations and scales up to a large number of views. The key idea 

underlying the MiniCon algorithm is a change of perspective: instead of building rewritings by 

combining rewritings for each query subgoal or database relation, we consider how each of the 

variables in the query can interact with the available views. The result is that the second phase 

of the MiniCon algorithm needs to consider drastically fewer combinations of views. Hence, as 

we show experimentally, the MiniCon algorithm scales much better. The specific contributions 

of this chapter are the following:  

• We describe the MiniCon algorithm and its properties. 

• We present a detailed experimental evaluation and analysis of algorithms for answering 

queries using views. The experimental results show (1) the MiniCon algorithm 

significantly outperforms the bucket and inverse-rules algorithms, and (2) the MiniCon 

algorithm scales up to hundreds of views, thereby showing for the first time that 

answering queries using views can be efficient on data integration systems with many 

sources. We believe that our experimental evaluation in itself is a significant 

contribution that fills a void in previous work on this topic. 

• We describe an extension of the MiniCon algorithm to handle comparison predicates 

and experimental results on its performance. 

• We describe an extension of the MiniCon algorithm to the context of cost-based query 

optimization, where the goal is to find the single cheapest plan for the query using the 

views. In doing so we distinguish the role of two sets of views: those that are needed for 

the logical correctness of the plan, and those that are only needed to reduce the cost of 
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the plan. We show that different techniques are needed in order to identify each of these 

sets.  

This chapter focuses on answering queries using views for select-project-join queries under 

set semantics. While such queries are quite common in data integration applications, many 

applications will need to deal with queries involving grouping and aggregation, semi-structured 

data, nested structures and integrity constraints. Indeed, the problem of answering queries using 

views has been considered in these contexts as well (Calvanese et al. 1999; Cohen et al. 1999; 

Duschka et al. 1997c; Grumbach et al. 1999; Gryz 1998; Gupta et al. 1995; Papakonstantinou et 

al. 1999; Srivastava et al. 1996). In contrast to the above works, our focus is on obtaining a 

scalable algorithm for answering queries using views and the experimental evaluation of such 

algorithms. Hence, we begin with the class of select-project-join queries. 

Remark 3.1: It is important to emphasize at this point that this chapter 

concentrates on ensuring that the rewriting of the query obtains as many 

answers as possible from a set of views, which is the main concern in the 

context of data integration. The bulk of this chapter is not concerned with the 

problem of finding the rewriting that yields the cheapest query execution plan 

over the views, which would be the main concern if our goal was query 

optimization. In Section 3.6 we present an extension of the MiniCon algorithm 

to the context of query optimization, and show how the ideas underlying the 

MiniCon algorithm apply in that context as well. In addition, we do not 

consider here the issue of ordering the results from the sources.  □ 

The chapter is organized as follows. Section 3.2 discusses the limitations of the previous 

algorithms. Section 3.3 describes the MiniCon algorithm, and Section 3.4 presents the 

experimental evaluation. Section 3.5 describes an extension of the MiniCon algorithm to 

comparison predicates. Section 3.6 describes how to extend the MiniCon algorithm to context 

of query optimization, and Section 3.7 concludes. The proof of the MiniCon algorithm is 

described in Appendix A.  
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3.2 Previous Algorithms 
The theoretical results on answering queries using views (Levy et al. 1995) showed that 

when there are no comparison predicates in the query, the search for a maximally-contained 

rewriting can be confined to a finite space: an algorithm needs to consider every possible 

conjunction of n or fewer view atoms, where n is the number of subgoals in the query. Two 

previous algorithms, the bucket algorithm and the inverse-rules algorithm, attempted to find 

more effective methods to produce rewritings that do not require such exhaustive search. In this 

section, we briefly describe these algorithms and point out their limitations. In Section 3.4, we 

compare these algorithms to our MiniCon algorithm and show that the MiniCon algorithm 

significantly outperforms them. We describe the algorithms for queries and views without 

comparison subgoals. 

3.2.1  The Bucket Algorithm 
The bucket algorithm was developed as part of the Information Manifold System (Levy et al. 

1996). The key idea underlying the bucket algorithm is that the number of query rewritings that 

need to be considered can be drastically reduced if we first consider each subgoal in the query 

in isolation and determine which views may be relevant to a particular subgoal. The bucket 

algorithm is even more effective in the presence of comparison subgoals because comparison 

subgoals often enable the bucket algorithm to deem many views as being irrelevant to a query.  

We illustrate the bucket algorithm with the following query and views. Note that the query 

now only asks for a set of papers, rather than pairs of papers.  

Q1(x) :- cites(x,y),cites(y,x),sameTopic(x,y)  

V4(a) :- cites(a,b), cites(b,a) 

V5(c,d) :- sameTopic(c,d) 

V6(f,h) :- cites(f,g),cites(g,h),sameTopic(f,g) 

In the first step, the bucket algorithm creates a bucket for each subgoal in Q1. The bucket for 

a subgoal g contains the views that include subgoals to which g can be mapped in a rewriting of 

the query. If a subgoal g unifies with more than one subgoal in a view V, then the bucket of g 
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will contain multiple occurrences of V.1 The bucket algorithm would create the buckets in Table 

3.1. 

Table 3.1: Example buckets created by Bucket Algorithm 

cites(x,y) cites(y,x) sameTopic(x,y) 

V4(x) V4(x) V5(x,y) 

V6(x,y) V6(x,y) V6(x,y) 

Note that it is possible to unify the subgoal cites(x,y) in the query with the subgoal cites(b,a) 

in V4, with the mapping x  b, y  a. However, the algorithm did not include the entry V4(y) 

in the bucket because it requires that every distinguished variable in the query be mapped to a 

distinguished variable in the view. 

 In the second step, the algorithm considers conjunctive query rewritings, each consisting of 

one conjunct from every bucket. Specifically, for each element of the Cartesian product of the 

buckets, the algorithm constructs a conjunctive rewriting and checks whether it is contained (or 

can be made to be contained by adding join predicates) in the query. If so, the rewriting is added 

to the answer. Hence, the result of the bucket algorithm is a union of conjunctive rewritings. 

In our example, the algorithm will try to combine V4 with the other views and fail (as we 

explain below). Then it will consider the rewritings involving V6, and note that by equating the 

variables in the head of V6 a contained rewriting is obtained. Finally, the algorithm will also 

discover that V6 and V5 can be combined. Though not originally described as part of the bucket 

algorithm, it is possible to add an additional simple check that will determine that the resulting 

rewriting will be redundant (because V5 can be removed). Hence, the only rewriting in this 

example (which also turns out to be an equivalent rewriting) is: 

                                                      
1 If we have knowledge of functional dependencies in the schema, then it is often possible to 

recover the values of attributes that have been projected away, but we do not consider this case 

here. 
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Q1′(x) :- V6(x,x) 

The main inefficiency of the bucket algorithm is that it misses some important interactions 

between view subgoals by considering each subgoal in isolation. As a result, the buckets contain 

irrelevant views, and hence the second step of the algorithm becomes very expensive. We 

illustrate this point on our example. 

Consider the view V4, and suppose that we decide to use V4 in such a way that the subgoal 

cites(x,y) is mapped to the subgoal cites(a,b) in the view, as shown below: 

Q1(x) :- cites(x,y), cites(y, x), sameTopic(x,y) 

                       ↓           ↓                           ? 

V4(a) :-cites(a,b), cites(b, a) 

 

We can map y to b and be able to satisfy both cites predicates. However, since b does not 

appear in the head of V4, if we use V4, then we will not be able to apply the join predicate 

between cites(x,y) and sameTopic(x,y) in the query. Therefore, V4 is not usable for the query, 

but the bucket algorithm would not discover this. 

Furthermore, even if the query did not contain sameTopic(x,y), the bucket algorithm would 

not realize that if it uses V4, then it has to use it for both of the query subgoals. Realizing this 

would save the algorithm exploring useless combinations in the second phase. 

As we explain later, the MiniCon algorithm discovers these interactions in the first phase. In 

this example, MiniCon will determine that V4 is irrelevant to the query. In the case in which the 

query does not contain the subgoal sameTopic(x,y), the MiniCon algorithm will discover that 

the two cite subgoals need to be treated atomically.  

3.2.2 The Inverse-Rules Algorithm 
Like the bucket algorithm, the inverse-rules algorithm (Duschka et al. 1997a; Qian 1996) 

was also developed in the context of a data integration system. The key idea underlying the 

algorithm is to construct a set of rules that invert the view definitions, i.e., rules that show how 

to compute tuples for the database relations from tuples of the views. Given the views in the 

previous example, the algorithm would construct the following inverse rules: 

R1: cites(a, f1(a)) :- V4(a) 
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R2: cites(f1(a), a) :- V4(a) 

R3: sameTopic(c,d) :- V5(c,d) 

R4: cites(f, f2(f,h)) :- V6(f,h) 

R5: cites(f2(f,h), h) :- V6(f,h) 

R6: sameTopic(f, f2(f,h)) :- V6(f,h) 

Consider the rules R1 and R2; intuitively, their meaning is the following. A tuple of the form 

V4(p1) in the extension of the view V4 is a witness of two tuples in the relation cites. It is a 

witness in the sense that V4(p1) tells that the relation cites contains a tuple of the form (p1, Z), 

for some value of Z, and that the relation also contains a tuple of the form (Z, p1), for the same 

value of Z. 

In order to express the information that the unknown value of Z is the same in the two atoms, 

we refer to it using the functional Skolem term f1(Z). Note that there may be several values of Z 

in the database that cause the tuple (p1) to be in the self-join of cites, but all that we know is that 

there exists at least one such value. 

The rewriting of a query Q using the set of views V is simply the composition of Q and the 

inverse rules for V. Hence, one of the important advantages of the algorithm is that the inverse 

rules can be constructed ahead of time in polynomial time, independent of a particular query. 

The rewritings produced by the inverse-rules algorithm, as originally described in (Duschka 

et al. 1997a), are not appropriate for query evaluation for two reasons. First, applying the 

inverse rules to the extension of the views may invert some of the useful computation done to 

produce the view. Second, we may end up accessing views that are irrelevant to the query. To 

illustrate the first point, suppose we use the rewriting produced by the inverse-rules algorithm in 

the case where the view V6 has the extension {(p1, p1), (p2, p2)}. 

First, we would apply the inverse rules to the extensions of the views. Applying R4 would 

yield cites(p1, f2(p1,p1)), cites(p2, f2(p2,p2)), and similarly applying R5 and R6 would yield the 

following tuples: 

cites(p1, f2(p1,p1)), 

cites(f2(p1,p1),p1), 
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cites(f2(p2,p2),p2), 

sameTopic(p1,p1), 

sameTopic(p2,p2). 

Applying the query Q1 to the tuples computed above obtains the answers p1 and p2. 

However, this computation is highly inefficient. Instead of directly using the tuples of V6 for the 

answer, the inverse-rules algorithm first computed tuples for the relation cites, and then had to 

re-compute the self-join of cites that was already computed for V6. Furthermore, if the 

extensions of the views V4 and V5 are not empty, then applying the inverse rules would produce 

useless tuples as explained in Section 3.2.1. 

Hence, before we can fairly compare the inverse-rules algorithm to the others, we need to 

further process the rules. Specifically, we need to expand the query with every possible 

combination of inverse rules. However, expanding the query with the inverse rules turns out to 

repeat much of the work done in the second phase of the bucket algorithm. In our example, 

since we have four rules for cites and two rules for sameTopic, we may need to consider 32 such 

expansions in the worst case.  

In the experiments described in Section 3.4 we consider an extended version of the inverse-

rules algorithm that produces a union of conjunctive queries by expanding the definitions of the 

inverse rules. We expanded the subgoals of the query one at a time, so we could stop an 

expansion of the query at the moment when we detect that a unification for a subset of the 

subgoals will not yield a rewriting (thereby optimizing the performance of the inverse-rules 

algorithm). We show that the inverse-rules algorithm can perform much better than the bucket 

algorithm, but the MiniCon algorithm scales up significantly better than either algorithm. 

Remark 3.2: It is important to clarify why our study considers the extended 

version of the inverse-rules algorithm, rather than the original version. It is easy 

to come up with (real) examples in which the execution of plan generated by 

the original inverse-rules algorithm would be arbitrarily worse than that of the 

bucket algorithm or the MiniCon algorithm. Hence, we face the usual tradeoff 

between spending significant time on optimization, but with much more 

substantial savings at run-time. An optimizer that would accept the result of the 
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original inverse-rules algorithm would definitely try to optimize the plan by 

trying to reduce the number of joins it needs to perform. By using the extended 

version of the inverse-rules algorithm we are putting all three algorithms on 

equal footing in the sense that one does not need more optimization than the 

other. Optimizations will still be applied to them, but the same optimizations 

can be applied to the results of each of the algorithms.  □ 

3.3 The MiniCon Algorithm 
The MiniCon algorithm begins like the bucket algorithm, considering which views contain 

subgoals that correspond to subgoals in the query. However, once the algorithm finds a partial 

mapping from a subgoal g in the query to a subgoal g1 in a view V, it changes perspective and 

looks at the variables in the query. The algorithm considers the join predicates in the query 

(which are specified by multiple occurrences of the same variable) and finds the minimal 

additional set of subgoals that need to be mapped to subgoals in V, given that g will be mapped 

to g1. This set of subgoals and mapping information is called a MiniCon Description (MCD), 

and can be viewed as a generalization of buckets. In the second phase, the algorithm combines 

the MCDs to produce the rewritings. It is important to note that because of the way we construct 

the MCDs, the MiniCon algorithm does not require containment checks in the second phase, 

giving it an additional speedup compared to the bucket algorithm. Section 3.3.1.1 describes the 

construction of MCDs, and Section 3.3.2 describes the combination step. For ease of exposition 

we describe the MiniCon algorithm for queries and views without constants. The proof of 

correctness of the MiniCon algorithm can be found in Appendix A. 

3.3.1.1 Forming the MCDs 
We begin by introducing a few terms that are used in the description of the algorithm. Given 

a mapping τ from Vars(Q) to Vars(V), we say that a view subgoal g1 covers a query subgoal g if 

τ(g)=g1. 

A MCD is a mapping from a subset of the variables in the query to variables in one of the 

views. Intuitively, a MCD represents a fragment of a containment mapping from the query to 
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the rewriting of the query. The way in which we construct the MCDs guarantees that these 

fragments can later be combined seamlessly. 

As seen in our example, we need to consider mappings from the query to specializations of 

the views, where some of the head variables may have been equated (e.g., V6(x,x) instead of 

V6(x,y) in our example). Hence, every MCD has an associated head homomorphism. A head 

homomorphism h on a view V is a mapping h from Vars(V) to Vars(V) that is the identity on the 

existential variables, but may equate distinguished variables, i.e., for every distinguished 

variable x, h(x) is distinguished, and h(x)=h(h(x)). Note that the consideration of the head 

homomorphisms adds no complexity to the MiniCon algorithm. Since the MiniCon algorithm 

must check to see if each view subgoal can cover each query subgoal, the least restrictive head 

homomorphism (which is the one that the MiniCon algorithm uses) follows immediately from 

looking at which positions in the view the query variables must be assigned to in order for the 

view to be used in a partial containment mapping.  

Formally, we define MCDs as follows. 

Definition 3.1: (MCD). A MCD, C for a query Q over a view V is a tuple of the 

form (hC, CV(Y ) , φC, GC) where: 

• hC is a head homomorphism on V, 

• CV(Y )  is the result of applying hC to V, i.e., = CY h ( A) , where A  are 

the head variables of V, 

• φC is a partial mapping from Vars(Q) to hC(Vars(V)), 

• GC is a subset of the subgoals in Q which are covered by some subgoal 

in hC(V) using the mapping φC (note: not all such subgoals are 

necessarily included in GC).  □ 

In words, φC is a mapping from Q to the specialization of V obtained by the head 

homomorphism hC. GC is a set of subgoals of Q that we cover by the mapping φC. Property 3.1 

below specifies the exact conditions we need to consider when we decide which subgoals to 

include in GC. Note that CV(Y )  is uniquely determined by the other elements of a MCD, but is 

part of a MCD specification for clarity in our subsequent discussions. Furthermore, the 
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algorithm will not consider all the possible MCDs, but only those in which hC is the least 

restrictive head homomorphism necessary in order to unify subgoals of the query with subgoals 

in a view. 

The mapping φC of a MCD C may map a set of variables in Q to the same variable in hC(V). 

In our discussion, we sometimes need to refer to a representative variable of such a set. For each 

such set of variables in Q we choose a representative variable arbitrarily, except that we choose 

a distinguished variable whenever possible. For a variable x in Q, ECφC(x) denotes the 

representative variable of the set to which x belongs. ECφC(x) is defined to be the identity on any 

variable that is not in Q. 

The construction of the MCDs is based on the following observation on the properties of 

query rewritings. The proof of this property is a corollary of the correctness proof of the 

MiniCon algorithm. 

Property 3.1: Let C be a MCD for Q over V. Then C can only be used in a non-

redundant rewriting of Q if the following conditions hold:  

C1. For each head variable x of Q which is in the domain of φC, φC(x) is a 

head variable in φC(V).  

C2. If φC(x) is an existential variable in hC(V), then for every g, subgoal of Q, 

that includes x (1) all the variables in g are in the domain of φC, and (2) 

φC(g) ∈ hC(V)  □ 

Clause C1 is the same as in the bucket algorithm. Clause C2 captures the intuition we 

illustrated in our example, where if a variable x is part of a join predicate which is not enforced 

by the view, then x must be in the head of the view so the join predicate can be applied by 

another subgoal in the rewriting. In our example, clause C2 would rule out the use of V4 for 

query Q1 because the variable b is not in the head of V4, but the join predicate with 

sameTopic(x,y) has not been applied in V4.  
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Figure 3.1: First phase of the MiniCon algorithm: Forming MCDs.  

The algorithm for creating the MCDs is shown in Figure 3.1. Consider the application of the 

algorithm to our example with the query Q1 and the views V4, V5, and V6. The MCDs that will 

be created are shown in Table 3.2. 

We first consider the subgoal cites(x,y) in the query. As discussed above, the algorithm does 

not create a MCD for V4 because clause C2 of Property 3.1 would be violated (the property 

would require that V4 also cover the subgoal sameTopic(x,y) since b is existential in V4). For the 

same reason, no MCD will be created for V4 even when we consider the other subgoals in the 

query.  

Table 3.2: MCDs formed as part of our example of the MiniCon Algorithm 

V( Y ) h Φ G 

V5(c,d) c c, d d x c, y d 3 

V6(f,f) f f, h f x f, y g 1,2,3 

procedure formMCDs(Q,V) 
/* Q and V are conjunctive queries. */  

C = ∅ 
For each subgoal g ∈ Q 

For view V ∈ V and every subgoal v ∈ V 
Let h be the least restrictive head homomorphism on V such that there exists a mapping φ, s.t. 

φ(g)=h(v).  
If h and φ exist, then add to C any new MCD C that can be constructed where: 

(a) φC respectively hC is an extension of φ (respectively h),  
(b) GC is the minimal subset of subgoals of Q such that GC, φC and hC satisfy Property 3.1 
(c) It is not possible to extend φ and h to φC′ and hC′ s.t. (b) is satisfied and GC′, as defined in 

(b), is a subset of GC. 
Return C  
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In a sense, the MiniCon algorithm shifts some of the work done by the combination step of 

the bucket algorithm to the phase of creating the MCDs. The bucket algorithm will discover that 

V4 is not usable for the query when combining the buckets. However, the bucket algorithm 

needs to discover this many times (each time it considers V4 in conjunction with another view), 

and every time it does so, it uses a containment check, which is much more expensive. Hence, 

as we show in the next section, with a little more effort spent in the first phase, the overall 

performance of the MiniCon algorithm outperforms the bucket algorithm and the inverse-rules 

algorithm. 

Another interesting observation is the difference in performance in the presence of repeated 

occurrences of the same predicate in the views or the query. For the bucket algorithm repeated 

occurrences lead to larger buckets, and hence more combinations to check in the second phase. 

For the inverse-rules algorithm, repeated occurrences mean there are more expansions to check 

in the second phase. In contrast, the MiniCon algorithm can more often rule out the 

consideration of certain occurrences of a predicate due to violations of Property 3.1. 

Remark 3.3: When we construct a MCD C, we must determine the set of 

subgoals of the query GC that are covered by the MCD. The algorithm includes 

in GC only the minimal set of subgoals that are necessary in order to satisfy 

Property 3.1. To see why this is not an obvious choice, suppose we have the 

following query and views: 

Q1′(x) :- cites(x,y),cites(z,x), inSIGMOD(x) 

V7(a) :- cites(a,b), inSIGMOD(a) 

V8(c) :- cites(d,c), inSIGMOD(c)  

One can also consider including the subgoal inSIGMOD(x) in the set of covered 

subgoals for the MCD for both V7 and V8, because x is in the domain of their 

respective variable mappings anyway. However, our algorithm will not include 

inSIGMOD(x), and will instead create a special MCD for it. 

The reason for our choice is that it enables us to focus in the second phase 

only on rewritings where the MCDs cover mutually exclusive sets of subgoals 
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in the query, rather than overlapping subsets. This yields a more efficient 

second phase.  □ 

3.3.2 Combining the MCDs 
Our method for constructing MCDs pays off in the second phase of the algorithm, where we 

combine MCDs to build the conjunctive rewritings. In this phase we consider combinations of 

MCDs, and for each valid combination we create a conjunctive rewriting of the query. The final 

rewriting is a union of conjunctive queries. 

The following property states that the MiniCon algorithm need only consider combinations 

of MCDs that cover pair-wise disjoint subsets of subgoals of the query. The proof of the 

property follows from the correctness proof of the MiniCon algorithm. 

Property 3.2: Given a query Q, a set of views V, and the set of MCDs C for Q 

over the views in V, the only combinations of MCDs that can result in non-

redundant rewritings of Q are of the form C1, …, Cl, where  

D1. 
1CG ∪ … ∪ 

lCG = Subgoals(Q),  

For every i ≠ j, 
iCG  ∩ 

jCG  = ∅.  □ 

The fact that we only need to consider sets of MCDs that provide partitions of the subgoals 

in the query drastically reduces the search space of the algorithm. Furthermore, even though we 

do not discuss it here, the algorithm can also be extended to output the rewriting in a compact 

encoding that identifies the common sub-expressions of the conjunctive rewritings, and 

therefore leads to more efficient query evaluation. We note that had we chosen the alternate 

strategy in Remark 3.3, clause D2 would not hold.  

Given a combination of MCDs that satisfies Property 3.2, the actual rewriting is constructed 

as shown in Figure 3.2.  

In the final step of the algorithm we tighten up the rewritings by removing redundant 

subgoals as follows. Suppose a rewriting Q′ includes two atoms A1 and A2 of the same view V, 

whose MCDs were C1 and C2, and the following conditions are satisfied: (1) whenever A1 

(respectively A2) has a variable from Q in position i, then A2 (respectively A1) either has the 



37 

 

 

 

 

same variable or a variable that does not appear in Q in that position, and (2) the ranges of 
1

ϕC  

and 
2

ϕC do not overlap on existential variables of V. In this case we can remove one of the two 

atoms by applying to Q′ the homomorphism τ that is (1) the identity on the variables of Q and 

(2) is the most general unifier of A1 and A2. The underlying justification for this optimization is 

discussed in (Levy et al. 1995), and it can also be applied to the bucket algorithm and the 

inverse-rules algorithm. 

Even after this step, the rewritings may still contain redundant subgoals. However, removing 

them involves several tests for query containment; both inverse-rules algorithm and the bucket 

algorithm require these removal steps as well. 

  

 

Figure 3.2: MiniCon second phase: Combining the MCDs. 

procedure combineMCDs(C)  
/* C are MCDs formed by the first step of the algorithm. */  

/* Each MCD has the form (hC, CV(Y ) , φC, GC, ECC). */ 
Given a set of MCDs, C1, …,Cn, we define the function EC on Vars(Q) as follows:  
If for i ≠ j, 

i
ECϕ  (x) ≠ 

j
ECϕ  (x), define ECC (x) to be one of them arbitrarily but consistently across all 

y for which 
i

ECϕ  (y) = 
i

ECϕ  (x)  

Let Answer = ∅  
For every subset C1, …, Cn of C such that 

1 2 nC C CG G G∪ ∪ ∪…  = subgoals(Q) and for every i ≠ j, 

i jC CG G∩  = ∅ 

Define a mapping φi on the iY 's as follows: 
If there exists a variable x ∈ Q such that φi=y 
Ψi(y) = x 

Else 
Ψi is a fresh copy of y 

Create the conjunctive rewriting 

n nC C C CQ'( EC( X )) : V ( EC( (Y ))),...,V ( EC( (Y )))− Ψ Ψ
1 11 1  

Add Q′ to Answer.  
Return Answer 
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In our example, the algorithm will consider using V5 to cover subgoal 3, but when it realizes 

that there are no MCDs that cover either subgoal 1 or 2 without covering subgoal 3, it will 

discard V5. Thus the only rewriting that will be considered is  

Q1′(x) :- V6(x,x).  

Constants in the query and views: When the query or the view include constants, we make 

the following modifications to the algorithm. First, the domain and range of φC in the MCDs 

may also include constants. Second, a MCD also records a (possibly empty) set of mappings ψC 

from variables in Vars(Q) to constants. 

When the query includes constants, we add the following condition to Property 3.1:  

• If a is a constant in Q it must be the case that either (1) φC(a) is a distinguished variable 

in hC(V) or (2) φC(a) is the constant a.  

When the views have constants, we modify Property 3.2 as follows: 

• We relax clause C1: a variable x that appears in the head of the query must either be 

mapped to a head variable in the view (as before) or be mapped to a constant a. In the 

latter case, the mapping x  a is added to ψC. 

• If φC(x) is a constant a, then we add the mapping x  a to ψC. (Condition C2 only 

applies to existential variables, and therefore if φC(x) is a constant that appears in the 

body of V but not in the head, a MCD is still created).  

Next, we combine MCDs with some extra care. Two MCDs, C1 and C2, both of whom have x 

in their domain, can be combined only if they (1) either both map x to the same constant, or (2) 

one (e.g., C1) maps x to a constant and the other (e.g., C2) maps x to distinguished variable in the 

view. Note that if C2 maps x to an existential variable in the view, then the MiniCon algorithm 

would never consider combining C1 and C2 in the first place, because they would have 

overlapping GC sets. Finally, we modify the definition of EC, such that whenever possible, it 

chooses a constant rather than a variable.  

The following theorem summarizes the properties of the MiniCon algorithm. Its full proof is 

given in Appendix A.  



39 

 

 

 

 

Theorem 3.1: Given a conjunctive query Q and conjunctive views V, both 

without comparison predicates or constants, the MiniCon algorithm produces 

the union of conjunctive queries that is a maximally-contained rewriting of Q 

using V.  □ 

It should be noted that the worst-case asymptotic running time of the MiniCon algorithm is 

the same as that of the bucket algorithm and of the inverse-rules algorithm after the 

modification described in Section 3.2.2. In all cases, the running time is O(nmM)n, where n is the 

number of subgoals in the query, m is the maximal number of subgoals in a view, and M is the 

number of views.  

The next section describes experimental results showing the differences between the three 

algorithms in practice. 

3.4 Experimental Results 
The goal of our experiments was twofold. First, we wanted to compare the performance of 

the bucket algorithm, the inverse-rules algorithm, and the MiniCon algorithm in different 

circumstances. Second, we wanted to validate that MiniCon can scale up to large number of 

views and large queries. Our experiments considered three classes of queries and views: (1) 

chain queries, (2) star queries and (3) complete queries, all of which are well known in the 

literature (Steinbrunn et al. 1997).  

 To facilitate the experiments, we implemented a random query generator which enables us 

to control the following parameters (1) the number of subgoals in the queries and views, (2) the 

number of variables per subgoal, (3) the number of distinguished variables, and (4) the degree 

to which predicate names are duplicated in the queries and views. The results are averaged over 

multiple runs generated with the same parameters (at least 40, and usually more than 100). All 

graphs either contain 95% confidence intervals or the intervals were less than twice as thick as 

the line in the graph and were thus excluded. An important variable to keep in mind throughout 

the experiments is the number of rewritings that can actually be obtained. 
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In most experiments we considered queries and views that had the same query shape and 

size. Our experiments were all run on a dual Pentium II 450 MHz running Windows NT 4.0 

with 512MB RAM. All of the algorithms were implemented in Java and compiled to an 

executable. 

3.4.1 Chain Queries 

Chain queries with 10 subgoals and two 
distinguished variables
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Figure 3.3: Running times for chain queries with two distinguished variables in the views. 
It shows that the MiniCon algorithm and the inverse-rules algorithms both scale up to 
hundreds of views. The MiniCon algorithm outperforms the inverse-rules algorithm by a 
factor of 2. 

In the context of chain queries we consider several cases. In the first case, shown in Figure 

3.3, only the first and last variables of the query and the view are distinguished. Therefore, in 

order to be usable, a view has to be identical to the query, and as a result there are very few 

rewritings. The bucket algorithm performs the worst, because of the number and cost of the 

query containment checks it needs to perform (it took on the order of 20 seconds for 5 views of 

size 10 subgoals, and hence we do not even show it on the graph). The inverse-rules algorithm 

and the MiniCon algorithm scale linearly in the number of views, but the MiniCon algorithm 

outperforms the inverse-rules algorithm by a factor of about 2 (and this factor is independent of 

query and view size). In fact, the MiniCon algorithm can handle more than 350 views with 10 
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subgoals each in less than one second. Since executing a query over 350 sources would likely 

take considerably more time than one second, this should be sufficiently fast. 

Chain queries; 2 variables distinguished, 
Query of length 12 Views of lengths 2, 3, and 4
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Figure 3.4: Running times for chain queries where the views are of lengths 2, 3 and 4, and 
the query has 12 subgoals. 

The difference in the performance between the inverse-rules algorithm and the MiniCon 

algorithm in this context and in others is due to the second phases of the algorithms. In this 

phase, the inverse-rules algorithm is searching for a unification of the subgoals of the query 

with heads of inverse rules. The MiniCon algorithm is searching for sets of MCDs that cover all 

the subgoals in the query, but cover pair-wise disjoint subsets. Hence, the MiniCon algorithm is 

searching a much smaller space, because the number of subgoals is smaller than the number of 

variables in the query. Moreover the MiniCon algorithm is performing better because in the first 

phase of the algorithm it already removed from consideration views that may not be usable due 

to violations of Property 3.1. In contrast, the inverse-rules algorithm must try unifications that 

include such views and then backtrack. The amount of work that the inverse-rules algorithm 

will waste depends on the order in which it considers the subgoals in the query when it unifies 

them with the corresponding inverse rules. If a failure appears late in the ordering, more work is 

wasted. The important point to note is that the optimal order in which to consider the subgoals 

depends heavily on the specific views available and is, in general, very hard to find. Hence, it 
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would be hard to extend the inverse-rules algorithm such that its second phase would compare 

in performance to that of the MiniCon algorithm. 

In the second case we consider, shown in Figure 3.4, the views are shorter than the query (of 

lengths 2, 3 and 4, while the query has 12 subgoals).  
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Figure 3.5: Running times for chain queries where all variables in the views are 
distinguished. The containment check required by the bucket algorithm causes it to be 
roughly twice as slow as either the MiniCon algorithm or inverse-rules algorithm. 

Finally, as shown in Figure 3.5, we also considered another case in which all the variables in 

the views are distinguished. In this case, there are many rewritings (often more than 1000), and 

hence the performance of the algorithms is limited because of the sheer number of rewritings. 

Since virtually all combinations produce contained rewritings, any complete algorithm is forced 

to form a possibly exponential number of rewritings; for queries and views with 8 subgoals, the 

algorithms take on the order of 100 seconds for 5 views. The graph in Figure 3.5, shows that on 

average the MiniCon algorithm performs better than the inverse-rules algorithm by anywhere 

between 10% and 25%. However, in this case the variance in the results is very high, and hence 

it is hard to draw any general conclusions. (The confidence intervals cannot be shown in the 

graph without cluttering it.) The reason for the large variance is that some of the queries in the 

workload have a huge number of rewritings (and hence take much more time), while others 

have a very small number of rewritings. Other experiments showed that the savings for the 

MiniCon algorithm over the inverse-rules algorithm, as expected, grew with the number of 
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views and the number of subgoals in the query; this is because the number of combinations that 

was considered was much higher and thus the smaller search space that the MiniCon algorithm 

considered was much more evident. 

3.4.2 Star and Complete Queries 

Star queries with 10 subgoals with 
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Figure 3.6: Running times for star queries, where the distinguished variables in the views 
are those not participating in the joins. The MiniCon algorithm significantly outperforms 
the inverse-rules algorithm. 

In star queries, there exists a unique subgoal in the query that is joined with every other 

subgoal, and there are no joins between the other subgoals. In the cases of two distinguished 

variables in the views or all view variables being distinguished, the performance of the 

algorithms mirrors the corresponding cases of chain queries. Hence, we omit the details of these 

experiments. Figure 3.6 shows the running times of the inverse-rules algorithm and the 

MiniCon algorithm in the case where the distinguished variables in the views are the ones that 

do not participate in the joins. In this case, there are relatively few rewritings. We see that the 

MiniCon algorithm scales up much better than the inverse-rules algorithm. For 20 views with 

10 subgoals each, the MiniCon algorithm runs 15 times faster than the inverse-rules algorithm. 

Here the explanation is that the first phase of the MiniCon algorithm is able to prune many of 
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the irrelevant views, whereas the inverse-rules algorithm discovers that the views are irrelevant 

only in the second phase, and often it must be discovered multiple times. 

Complete queries with 10 subgoals and three 
distinguished variables
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Figure 3.7: Running times for complete queries where three variables are distinguished. 
As in Figure 3.6, the MiniCon algorithm significantly outperforms the inverse-rules 
algorithm 

An experiment with similar settings but for complete queries is shown in Figure 3.7. In 

complete queries every subgoal is joined with every other subgoal in the query. As the figure 

shows, the MiniCon algorithm outperforms the inverse-rules algorithm by a factor of 2.3 for 20 

views, and by a factor of 3 for 50 views, which is less of a speedup than with of star queries. 

The explanation for this is that there are more joins in the query, and thus the inverse-rules 

algorithm is able to detect useless views earlier in its search because failures to unify occur 

more frequently. Finally, we also ran some experiments on queries and views that were 

generated randomly with no specific pattern. The results showed that the MiniCon algorithm 

still scales up gracefully, but the behavior of the inverse-rules algorithm was too unpredictable 

(though always worse than the MiniCon algorithm) due to the nature of when the algorithms 

discover that a rule cannot be unified.  

3.4.3 Summary of Experiments  
In summary, our experiments showed the following points. First, the MiniCon algorithm 

scales up to large numbers of views and significantly outperforms the other two algorithms. 
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This point is emphasized by Table 3.3, where we tried to push the MiniCon algorithm to its 

limits. The table considers the number of subgoals and number of views that the MiniCon 

algorithm is able to process given 10 seconds. In some cases, the algorithm can handle 

thousands of views, which is a magnitude that was clearly out of reach of previous algorithms. 

Table 3.3: The number of views that the MiniCon algorithm can process in under 10 
seconds in various conditions 

Query type Distinguished # of subgoals # of views 

Chain All 3 45 

Chain All 12 3 

Chain Two 5 9225 

Chain Two 99 115 

Star Non Joined 5 12235 

Star Non Joined 99 35 

Star Joined 10 4520 

Star Joined 99 75 

 

Second, the experiments showed that the bucket algorithm performed much worse than the 

other two algorithms in all cases. More interesting was the comparison between the MiniCon 

algorithm and the inverse-rules algorithm. In all cases the MiniCon algorithm outperformed the 

inverse-rules algorithm, though by differing factors. In particular, the performance of the 

inverse-rules algorithm was very unpredictable. The problem with the inverse-rules algorithm is 

that it discovers many of the interactions between the views in its second phase, and the 

performance in that phase is heavily dependent on the order in which it considers the query 
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subgoals. However, since the optimal order depends heavily on the interaction with the views, a 

general method for ordering the subgoals in the query is hard to find. Finally, all three 

algorithms are limited in cases where the number of resulting rewritings is especially large since 

a complete algorithm must produce a possibly exponential number of rewritings. 

Although we have shown how to expect MiniCon to behave in a large number of classes of 

queries and views, in order to draw conclusions for how MiniCon would perform in a real data 

integration application we would need access both to the query workload and to the data 

sources. In particular, while we expect that many sources would have existential variables and 

thus lead to faster query rewriting, we would need to do a thorough investigation.  

3.5 Comparison Predicates 
The effect of comparison predicates on answering queries using views is quite subtle. If the 

views contain comparison predicates but the query does not, then the MiniCon algorithm 

without any changes still yields the maximally-contained query rewriting. On the other hand, if 

the query contains comparison predicates, then it follows from (Abiteboul et al. 1998) that there 

can be no algorithm that returns a maximally-contained rewriting, even if we consider 

rewritings that are recursive Datalog programs (let alone unions of conjunctive queries). 

In this section we present an extension to the MiniCon algorithm that would (1) always find 

only correct rewritings (2) find the maximally-contained rewriting in many of the common 

cases in which comparison predicates are used, and (3) is guaranteed to produce the maximally-

contained rewriting when the query contains only semi-interval constraints, i.e., when all the 

comparison predicates in the query are of the form x ≤ c or x < c, where x is a variable and c is 

a constant (or they are all of the form x ≥ c or x > c). We refer to this algorithm as MiniCon IP. 

We show experiments demonstrating the scale up of the extended algorithm. Finally, we show 

an example that provides an intuition for which cases the algorithm will not capture.  

In our discussion, we refer to the set of comparison subgoals in a query Q as I(Q). Given a set 

of variables X , we denote by 
X

I (Q )  the subset of the subgoals in I(Q) that includes (1) only 

variables in X  or constants and (2) contains at least one existential variable of Q. Intuitively, 

X
I (Q ) denotes the set of comparison subgoals in the query that must be satisfied by the view if 
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X is the domain of a MCD. We assume without loss of generality that I(Q) is logically closed, 

i.e., that if I(Q)╞ g, then g∈I(Q). We can always compute the logical closure of I(Q) in time that 

is quadratic in the size of Q (Ullman 1989). 

We make three changes to the MiniCon algorithm to handle comparison predicates. First, we 

only consider MCDs C that satisfy the following conditions: 

1. If x ∈ Vars(Q), φC(x) is an existential variable in hC(V) and y appears in the same 

comparison atom as x, then y must be in the domain of φC.  

2. If X is the set of variables in the domain of the mapping φC, then I(hC(V))╞ φC X( I ) . 

The first condition is an extension of Property 3.1, and the second condition guarantees the 

comparison subgoals in the view logically entail the relevant comparison subgoals in the query. 

Because of the second condition, the only subgoals in 
X

I (Q )  that may not be satisfied by V 

must include only variables that φC maps to distinguished variables of V. As a result, such a 

subgoal can simply be added to the rewriting after the MCDs are combined. 

The second change is that we disallow all MCDs that constrain variables to be incompatible 

with the variables they map in the query. For example, if a query has a subgoal x > 17 and a 

MCD maps x to a view variable a, and a < 5 is in the view, then we can ignore the MCD.  

The third change we make to the MiniCon algorithm is the following: after forming a 

rewriting Q′ by combining a set of MCDs, we add the subgoal EC(g) for any subgoal of I(Q) that 

is not satisfied by Q′. 

Example 3.1: Consider a variation on our running example, where the 

predicate year denotes the year of publication of a paper. 

Q2(x) :- inSIGMOD(x), cites(x,y), year(x,r1), year(y,r2), r1 ≥ 1990, r2 ≤ 1985 

V9(a,s1) :- inSIGMOD(a), cites(a,b), year(a,s1), year(b,s2), s2 ≤ 1983  

V10(a,s1) :- inSIGMOD(a), cites(a,b), year(a,s1), year(b,s2), s2 ≤ 1987  

Our algorithm would first consider V9 with the mapping {x  a, y  b, r1  

s1, r2  s2}. In this case, the subgoal r2 ≤ 1985 is satisfied by the view, but r1 
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≥ 1990 is not. However, since s1 is a distinguished variable in V9, the 

algorithm can create the rewriting:  

Q2′(x) :- V9(x,r1), r1 ≥ 1990 

When the algorithm considers a similar variable mapping to V10, it will notice 

that the constraint on r2 is not satisfied, and since it is mapped to an existential 

variable in V10, no MCD is created.  □ 

 

Example 3.2: The following example provides an intuition for which 

rewritings our extended algorithm will not discover. Consider the following 

query and view: 

Q3(u) :- e(u,v), u ≤ v 

V11(a) :- e(a,b), e(b,a)  

The algorithm will not create any MCD because the subgoal u ≤ v in the query 

is not implied by the view. However, the following is a contained rewriting of 

Q3.  

Q3'(u) :- V11(u)  

In general, in order to find a containment mapping in the presence of 

comparison predicates, (Klug 1988) shows that we must find a mapping for 

every ordering of the variables. For example, we must consider two different 

containment mappings, depending on whether a ≤ b or a >b. In each of these 

mappings, the subgoal e(u,v) may be mapped to a different subgoal. Our 

algorithm will only find rewritings in which the target of the mapping for a 

subgoal in the query is the same for any possible order on the variables.  □ 
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Figure 3.8: Experiments with the MiniCon algorithm and comparison predicates. The 
query and view shapes are the same as in Figure 3.3. The graph shows that adding 
comparison predicates does not appreciably slow the MiniCon algorithm, and the 
additional views that can be pruned cause the algorithm to speed up overall. 
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Figure 3.9: Running times for the MiniCon algorithm and comparison predicates when all 
of the variables in the views are distinguished 

Figure 3.8 and Figure 3.9 show sample experiments that we ran on the extended algorithm in 

the case of chain queries. In the experiments, we took the identical queries and views and added 
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a number of comparison subgoals of the form x < c or x > c to the queries under consideration 

by MiniCon IP. 

The experiments show that the same trends we saw without comparison predicates appear 

here as well. In general, the addition of comparison predicates reduces the number of rewritings 

because more views can be deemed irrelevant. This is illustrated in Figure 3.9 where all of the 

variables in the views are distinguished and therefore without comparison predicates there 

would be many more rewritings. However, since the comparison predicates reduce the number 

of relevant views, the algorithm with comparison predicates scales up to a larger number of 

views. In Figure 3.8, the number of rewritings is very small, but the addition of the overhead to 

deal with comparison predicates does not appreciably slow the MiniCon algorithm. 

3.6 Cost-Based Query Rewriting 
The previous sections considered the problem of answering queries using views for the 

context of data integration, where the incompleteness of the data sources required that we 

consider the union of all possible rewritings of the query. In this section we show how the 

principles underlying the MiniCon Algorithm can also be used for answering queries using 

views in the context of query optimization (as in (Tsatalos et al. 1996) (Chaudhuri et al. 1995)), 

and in the process, shed some light on query optimization with views. The fundamental 

difference in this context is that we want the cheapest rewriting of the query using the views. 

Since the views are assumed to be complete (i.e., include all the tuples satisfying their 

definition) and since we are looking for an equivalent rewriting, we can limit ourselves to a 

single rewriting. 

The following example shows how considering cost affects the result of a rewriting 

algorithm. 

Example 3.3: Suppose we have the following query and views:  

Q4(x,y) :- e1(x,y), e2(y,z), e3(z,x)  

V12(a,b,c) :- e1(a,b), e2(b,c) 

V13(d,e,f) :- e2(d,e), e3(e,f)  

V14(g) :- e1(g,h), e3(i, g) 
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If the join of e1 and e3 is very selective, the cheapest rewriting of the query 

may be the following (assuming the subgoals are joined from left to right):  

Q4′(x,y) :- V14(x), V12(x,y,z), V13(y,z,x)  

Here, the view V14 does not contribute to the logical correctness of the query, 

but only to reducing the cost of the query plan. The MiniCon Algorithm would 

not consider V14(x) because it would not create a MCD for V14, since Property 

3.1 would not be satisfied.  □ 

In general, the problem of answering queries using views in the context of query 

optimization requires that we consider views for two different roles: the logical correctness of 

the query, and the reduction in the cost of the rewriting. In fact, it is shown in (Chirkova et al. 

2001) that the optimal query execution plan may include an exponential (in the size of the query 

and schema) number of views in the second role, while it follows from (Levy et al. 1995) that 

the number of views in the first role is bounded by the number of subgoals in the query.  

We proceed in two steps. In Section 3.6.1 we show how the information captured in MCDs 

can be used to improve the bottom-up dynamic-programming algorithm used in (Tsatalos et al. 

1996) for query optimization using materialized views. However, the algorithm we describe in 

Section 3.6.1 only considers views that contribute to the logical correctness of the rewriting, and 

therefore may not produce the optimal rewriting. In Section 3.6.2 we show how we can augment 

the resulting rewriting with cost-reducing views. Note that the approach we describe in Section 

3.6.2 is inherently heuristic, and its goal is to avoid the exhaustive enumeration whose cost 

(according to (Chirkova et al. 2001)) would be prohibitive.  

3.6.1  Modifying GMAP to Consider MCDs 
In the context of query optimization, we may have access to the database relations in 

addition to the views. In order to uniformly treat database relations and views, we assume that 

for every database relation E we define a view of the form EV ( X )  :- E( X ) , where X  is a 

tuple of distinct variables. In our running example we will assume that we do not have access to 

the database relations.  
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We first briefly recall the principles underlying the GMAP algorithm (Tsatalos et al. 1996), 

and then describe how we modify it to exploit MCDs. The GMAP algorithm is a modification 

of System-R style bottom-up dynamic programming, except that the optimizer builds query 

execution plans by accessing a set of views, rather than a set of database relations. Hence, in 

addition to the meta-data that the query optimizer has about the materialized views (e.g., 

statistics, indexes) the optimizer is also given as input the query expressions defining the views. 

The GMAP algorithm begins by considering only views that can be used in a rewriting of 

the query (e.g., pruning views that refer to relations not mentioned in the query or do not apply 

necessary join predicates). The algorithm distinguishes between partial query execution plans 

of the query and complete execution plans, that provide an equivalent rewriting of the query 

using the views. The enumeration of the possible join trees terminates when there are no more 

unexplored partial plans.  

The GMAP algorithm grows the plans by combining a partial plan (using all join methods) 

with an additional view. A partial plan P is pruned from further consideration if there is another 

plan P′ such that (1) P′ is cheaper than P, and (2) P′ contributes the same or more to the query 

than P. Informally, a plan P′ contributes more to the query than the plan P if it covers more of 

the relations in the query and selects more of the attributes that are needed further up the query 

tree. 

Our algorithm precedes the join enumeration phase by the creation of MCDs, but it considers 

only a subset of the views that were considered in the data integration context.  

In our discussion, we use the following notation to make use of the variable mappings used 

in procedure combineMCDs (Figure 3.2). Given a set of MCDs, C = C1, ...,Cl, we denote by 

VtoQC, the set of atoms Ψ Ψ
l lC C C l CV ( EC( (Y ))),...,V ( EC( (Y )))

1 11 , as defined in procedure 

combineMCDs. VtoQC effectively creates a set of atoms of the heads of the views in C, such 

that the atoms use the variables of Q whenever possible. Hence, VtoQC makes explicit exactly 

which join predicates need to be applied between view atoms in the rewriting. So, in our 

example, if C1 denotes the set of MCDs created for the views in the rewriting Q4', then VtoQ
1C

 is 

V12(x,y,z), V13(y,z,x), V14(x).  

Given a query Q and a set of views, V1, …, Vn, our algorithm proceeds as follows: 
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1. We prune from further consideration any view V for which there does not exist a 

variable mapping Ψ from the variables of V to the variables of Q, such that for every 

subgoal g ∈ V, Ψ(g) is a subgoal in Q. (This condition is similar to that of a 

containment mapping (Chandra et al. 1977), except that we do not require that Ψ 

map the head of V to the head of Q.) Views that do not satisfy this condition cannot 

be part of an equivalent rewriting of Q using the views. In our example, if we also 

had a view defined as:  

V15(m,n) :- e1(m,n), e4(m) 

then we would prune V15 because it cannot be part of an equivalent rewriting of Q 

(the subgoal e4 cannot be mapped to Q). 

2. With the views selected in the first step, we construct the MCDs as described in 

Section 3.3.1.1. In our example we would create MCDs for V12 and V13, but we do 

not create a MCD for V14 because it does not satisfy Property 3.1. 

3. We now begin the bottom-up construction of candidate solutions. A candidate 

solution is a query execution plan over the views, which may either be a partial or 

complete plan for the query.2 

a. For the base case, we start with plans that access a single view. Specifically, for 

every MCD C, we create the atom VtoQ{C}. We then select the best access path 

to (the single atom in) VtoQ{C}. In our example, we create the atoms V12(x,y,z) 

and V13(y,z,x). 

b. With every candidate solution P, we associate a subset of the subgoals of the 

query, denoted by PG. Intuitively, this set specifies which subgoals in the query 

are covered by the solution P, and this information is gleaned from the MCDs. 

In the base case, the set PG associated with the candidate solution constructed 

for the view in MCD C is GC. 

                                                      
2 We describe the algorithm for the case where we construct only left-linear trees, but the 

generalization to arbitrary bushy trees is straightforward. 
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We combine a candidate solution P with a candidate solution (of size 1) P' 

only if the union of PG and P'G contains strictly more subgoals than either PG or 

P'G. Using the information in PG and P'G enables us to significantly prune the 

number of candidate solutions we consider compared to the GMAP algorithm. 

For example, suppose our example also included the view:  

V16(k,l) :- e1(k,l) and we had a partial solution, P, that included the single atom 

V12(x,y,z). Then, we would not combine P with V16(x,y) since V16 does not 

cover any more subgoals than V12. On the other hand, we would consider 

adding V13(y,z,x) to P since V13 covers e3, which is not covered by P, and P 

covers e1 which is not covered by V13. 

Given the views in P (whose corresponding MCDs are C) and the view V in 

P', whose MCD is CV, we compute ∪ V{ { C }}VtoQ C . This tells us exactly which 

join predicates need to be applied between P and P' (specifically, whenever P 

and P' share a variable, a join predicate needs to be applied). We will try 

combining P and P' using every possible join method for every join predicate 

that needs to be applied. 

c. As in the GMAP algorithm, we distinguish complete solutions, which 

correspond to equivalent rewritings of the query using the views, and partial 

solutions which can possibly be extended to complete solutions. Furthermore, 

as in GMAP, we compare every pair of candidate solutions P and P'. If P is both 

cheaper than P' and contributes as much or more to the query, then we prune P'. 

For example, if we had two candidate solutions P1, which consists of V12(x,y,z) 

and the candidate solution P2 which consists of V16(x,y), if P1 is cheaper than 

P2 we would prune P1 because P1 is both cheaper than P2 and contributes more 

than P1. However, if P2 is cheaper than P1, we would prune neither candidate 

solution because P1 contributes more than P2. 

d. We terminate when there are no new combinations of partial solutions to be 

explored.  
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3.6.2 Adding Cost-Reducing Views 
As stated earlier, the algorithm in Section 3.3 may not produce the cheapest plan because it 

only considers views that are needed for the logical correctness of the plan, and not cost-

reducing views. (Note, however, that the algorithm will always find a plan if one exists even 

when we do not have access to the database relations). In this section we describe a heuristic 

approach to augmenting the plan produced in the previous section with cost-reducing views. 

Informally, we consider each cost-reducing view in turn, and try to place it in the places in the 

plan where it may have an effect. For example, consider the view V14(x) in our example. This 

view can only be useful if it is placed before the atom V12(x,y,z) (in order to reduce the number 

of values of x) or after the atom V12(x,y,z) (to reduce the size of the join with V13(y,z,x). 

However, V14(x) is useless if placed after V13(y,z,x). 

We denote the plan produced by the algorithm in the previous section by Pmg. Recall that we 

are considering left-linear plans in our description. We create cost-reducing view atoms as 

follows:  

1. As in the previous section, we consider only views that can be part of an equivalent 

rewriting of the query using the views.  

2. We create MCDs for these views, except that we do not require the MCDs to satisfy 

Property 3.1. Denote the resulting MCDs by C1, ...,Ck. In our example we would create 

MCDs for V12(x,y,z), V13(y,z,x), V14(x). 

3. Let the set of MCDs corresponding to the views in the plan Pmg be Cmg. For every MCD 

Cj, 1 ≤ j ≤ k, we compute ∪mg j{ { C }}VtoQ C , and we denote by Uj the atom corresponding to 

Cj in ∪mg j{ { C }}VtoQ C  (recall that ∪mg j{ { C }}VtoQ C computes an atom for every MCD). We 

will now try to insert the atoms U1, ...,Uk in the plan Pmg. 

4. With every join operation in Pmg we can associate a set of variables, specifically, the 

variables that occur in the sub-tree of the join operator. The positions in Pmg that are 

relevant to the atom Uj are the join operators beginning with the first operator whose 
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variable set includes any of the variables in Uj, and ending with the first join operator 

that includes all the variables in Uj. 

For every j, 1 ≤ j ≤ k, we proceed as follows. We consider the cheapest plan P'mg, 

that results from inserting Uj in one of the positions relevant to Uj. If a variable in Uj 

appears in the left-most leaf of the join tree, then we also consider the plan in which Uj 

is the left child of the first join operator in the plan. If Pmg is cheaper than Pmg, we 

replace Pmg by the plan P'mg.3 

5. We continue iterating through the cost-reducing view atoms until no change is made to 

the resulting plan. 

In our example, we would consider placing the atom V14(x) as the first or second left-most 

leaf of the tree (i.e., either before V12(x,y,z) or immediately after it).  

It is important to note that our algorithm may still not obtain the cheapest plan. The main 

reason is that we are beginning from the plan Pmg, and only modifying it locally, while the 

cheapest plan may actually be an augmentation of a plan that was found to be more expensive 

than Pmg in the cost-based join enumeration. It is possible to consider applying our algorithm to 

several plans from the cost-based join enumeration, rather than only to the cheapest one. 

However, in general, obtaining the cheapest plan may involve a prohibitively expensive search. 

3.7 Related Work 
Algorithms for rewriting queries using views are surveyed in (Halevy 2001). Most of the 

previous work on the problem focused on developing algorithms for the problem, rather that on 

studying their performance. In addition to the algorithms mentioned previously, algorithms have 

been developed for conjunctive queries with comparison predicates (Yang et al. 1987), queries 

and views with grouping and aggregation (Cohen et al. 1999; Grumbach et al. 1999; Gupta et al. 

                                                      
3 For ease of exposition, we chose to describe a relatively conservative condition on the 

positions in which we can insert a cost-reducing view atom. Several further optimizations are 

possible the most obvious of which is that we would not insert a cost-reducing view atom in a 

plan after all the joins performed in the view have already been performed in the plan. 
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1995; Srivastava et al. 1996), queries over semi-structured data (Calvanese et al. 1999; 

Papakonstantinou et al. 1999), and OQL queries (Florescu et al. 1996). The problem of 

answering queries using views has been considered for schemas with functional and inclusion 

dependencies (Duschka et al. 1997c; Gryz 1998), languages that query both data and schema 

(Miller 1998), and disjunctive views (Afrati et al. 1999). Clearly, each of the above extensions 

to the basic problem represents an opportunity for a possible extension of the MiniCon 

algorithm. Two works (Abiteboul et al. 1998; Grahne et al. 1999) examine the complexity of 

finding all the possible answers from a set of view extensions. They show that if the views are 

assumed to be complete, then finding the maximal set of answers is NP-hard in the size of the 

data. Hence, finding a maximally-contained rewriting may not be possible if we consider query 

languages with polynomial data complexity. Mitra (Mitra 1999) developed a rewriting 

algorithm that also captures the intuition of Property 3.1, and thus would likely lead to better 

performance than the bucket algorithm and the inverse-rules algorithm. He also considered an 

optimization similar to our method for removing redundant view subgoals. 

Several works discussed extensions to query optimizers that try to make use of materialized 

views in query processing (Afrati et al. 2001; Chaudhuri et al. 1995; Tsatalos et al. 1996) (Bello 

et al. 1998; Popa et al. 2000; Zaharioudakis et al. 2000). In some cases, they modified the 

System-R style join enumeration component (Chaudhuri et al. 1995; Tsatalos et al. 1996), and 

in others they incorporated view rewritings into the rewrite phase of the optimizer (Popa et al. 

2000; Zaharioudakis et al. 2000). These works showed that considering the presence of 

materialized views did not negatively impact the performance of the optimizer. However, in 

these works the number of views tended to be relatively small. In (Afrati et al. 2001) the authors 

consider the problem of finding the most efficient rewriting of the query using a set of views, in 

the context of query optimization. The paper considers three specific cost models, and for each 

describes an algorithm that produces the cheapest plan. The algorithm we describe in Section 

3.6 is independent of a particular cost model, and can incorporate the models described in 

(Afrati et al. 2001). In addition, our algorithm can also handle cost models that consider relation 

sizes, special orders and specific join implementations, as done in traditional query optimizers. 
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In (Popa et al. 2000), the authors consider a more general setting where they use a constraint 

language to describe views, physical structures and standard types of constraints.  

A commercial implementation of answering queries using views is described for Oracle 8i in 

(Bello et al. 1998). Their algorithm works in two phases. In the first phase, the algorithm applies 

a set of rewrite rules that attempt to replace parts of the query with references to existing 

materialized views. The result of the rewrite phase is a query that refers to the views. In the 

second phase, the algorithm compares the estimated cost of two plans: the cost of the result of 

the first phase, and the cost of the best plan found by the optimizer that does not consider the 

use of materialized views. The optimizer chooses to execute the cheaper of these two plans. The 

main advantage of this approach is its ease of implementation, since the capability of using 

views is added to the optimizer without changing the join enumeration module. On the other 

hand, the algorithm considers the cost of only one possible rewriting of the query using the 

views, and hence may miss the cheapest use of the materialized views.  

3.8 Conclusions 
This chapter makes two important contributions. First, we present a new algorithm for 

answering queries using views, and second, we present the first experimental evaluation of such 

algorithms. We began by analyzing the two existing algorithms, the bucket algorithm and the 

inverse-rules algorithm, and found that they have significant limitations. We developed the 

MiniCon algorithm, a novel algorithm for answering queries using views, and showed that it 

scales gracefully and outperforms both existing algorithms. As a result of our work, we have 

established that answering queries using views can be done efficiently for large-scale problems. 

Finally, we described an extension of our algorithm to handle comparison predicates, and 

showed that the techniques underlying the MiniCon algorithm are also useful for the context of 

cost-based query optimization using views. 

We close by briefly discussing another important extension of the MiniCon algorithm. In 

data integration applications, where views represent data sources, we often have limited access 

patterns to the data. For example, if Amazon.com has a relation Book(title, price), we cannot ask 

for all tuples in the relation. Instead, we need to provide a value for the title in order to get a 

price. The problem of answering queries using views in this context has been considered in 
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(Duschka et al. 1997c; Kwok et al. 1996; Lambrecht et al. 1999; Rajaraman et al. 1995). In 

(Rajaraman et al. 1995) it is shown that when we consider equivalent rewritings, the rewriting 

may be longer than the query. In (Duschka et al. 1997c) it is shown that if we are looking for 

the maximally-contained rewriting, it may have to be a recursive Datalog program over the 

views. 

The MiniCon algorithm can be adapted in a straightforward fashion to the presence of 

binding patterns. Specifically, we can follow the same strategy of (Duschka et al. 1997c), where 

inverse rules were augmented by domain rules. In our case, we produce the rewriting by the 

MiniCon algorithm by first ignoring the binding pattern limitations. Then we add domain rules, 

and augment the rewriting by adding domain subgoals where necessary.  

Hence, given that the mediated schema is related to the source schema through LAV 

mappings, MiniCon can provide a fast method of rewriting the queries. In Chapter 4, Chapter 5, 

and Chapter 6 we consider how mediated schemas are created. 
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Chapter 4  

Creating a Mediated Schema 

4.1 Introduction 
In Chapter 3 we discussed how to answer queries when the mediated schema is related to the 

source schemas using Local-As-View (LAV) mappings. We assumed that the mediated schema 

had been created in some other process. In this chapter, we consider how to create the mediated 

schema and the mappings to the source schemas for data integration.  

Mechanisms for creating a mediated schema out of sources have previously been studied. 

Such projects generally focus on how to resolve conflicts such as synonyms and homonyms in 

relation names or how to ensure that the resulting schema is valid in a particular data model – 

e.g., SQL. Batini, Lenzerini, and Navathe provide a survey of such methods (Batini et al. 1986). 

Buneman, Davidson, and Kosky (Buneman et al. 1992) provide a general theory of what it 

means to merge two source schemas to create a third schema. Others have approached the 

problem from a more pragmatic point of view, such as the Database Design and Evaluation 

Workbench (Rosenthal et al. 1994) that allow users to manipulate schemas, including 

combining multiple views into one schema. Still others have created formal criteria for when 

two schemas consist of the same information, both for data integration and other applications 

(Hull 1984; Kalinichenko 1990; Miller et al. 1993). But none of these papers have tackled the 

problem we describe in this chapter: given two schemas, how should we create a mediated 

schema and also the mappings from the mediated schema to the sources. 

Most research on querying data integration systems, such MiniCon (see Chapter 3), assumes 

that the mediated schema has been created elsewhere and the mappings from the mediated 

schema to the source schemas can be expressed in a particular language such as LAV or GAV. 

However, systems constructed by a priori choosing GAV or LAV as the mapping language 

restrict how the sources can be related to the mediated schema. This means that the mediated 

schema may be less than ideal, since a mediated schema can only include information that can 

be mapped to the data sources. For example, it might mean that the mediated schema has 
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information duplicated because there is no single representation of that information in the 

mediated schema that can be mapped to the two representations in the two overlapping sources.  

Others have previously noted that LAV and GAV have different expressive power, and 

indeed are incomparable if no constraints are present in the mediated schema (Calì et al. 2002). 

As well, additional, richer mapping languages such as GLAV (Friedman et al. 1999) and BAV 

(McBrien et al. 2003) have been created. However, previous work has not examined how the 

expressive power of relationships between elements in the source schemas affects the 

expressive power required in the mediated schema to source schema mappings. 

Regardless of how the mediated schema is created, the main goal of data integration is to 

have users be able to query multiple databases without knowing where the data comes from. 

Hence it is imperative that there be a common representation in the mediated schema of 

concepts that come from different data sources and overlap. Thus, building the mediated 

schema requires knowing how the source schemas are related to one another.  

Example 4.1: In a data integration system helping passengers make airline 

reservations, the mediated schema should include a unified representation of 

airfares, regardless of whether the airfare came from the travel agent websites 

Travelocity, or Expedia, or from an airline website, or from some other source; 

the user just wants to find the cheapest fare, regardless of its source. In 

addition, the mediated schema may contain concepts having no direct 

correlation in any other local source. For example, if Travelocity gives the gate 

information about a specific flight and Expedia does not, we may still wish to 

include the gate information in the airfare representation.  □ 

We propose that to create a mediated schema and the mapping from mediated schema to 

source schemas, we must first understand the relationships between the sources and how this 

drives the mediated schema creation. Our goal in this chapter is to study mediated schema 

creation based on the above observations. We describe a simple version of the problem: Given 

two schemas, E and F, and a mapping MapE_F that specifies how E and F are related to one 

another, create a mediated schema G and mappings MapG_E and MapG_F where the mappings can 
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be used to translate queries over G into queries over E and F. How to find how two schemas are 

is another problem, called schema matching; it is a major topic of ongoing research and is not 

covered in this thesis; see (Rahm et al. 2001) for a recent survey and (He et al. 2003), (Kang et 

al. 2003) and (Dhamankar et al. 2004) for examples of work since then. In this chapter we 

concentrate only on data integration, though this work could be extended to other data 

management problems. 

Section 4.2 describes mediated schema creation for data integration of relational schemas. 

Section 4.3 refines the problem for the specific case where MapE_F is a conjunctive mapping. 

Section 4.4 describes alternate definitions and metrics. Section 4.5 discusses extensions to the 

problem for relational schemas, including Section 4.5.1 which focuses on creating a mediated 

schema for more than two sources. Section 4.6 discusses LAV and GAV as choices for data 

integration systems in light of this work. Section 4.7 concludes.  

4.2 Generic Mediated Schema Creation 
In this section, we describe relational mediated schema creation for data integration without 

pinning down the language for the mapping. That is, given two relational source schemas, E and 

F, what other inputs are needed to create the mediated schema, and what kinds of properties 

would we like the mediated schema to have? Allowing overlapping concepts in the mediated 

schema to be accessed in the same fashion is a matter of convenience – if the goal were simply 

to preserve all the information from the input sources, then the mediated schema could be 

simply a union of the source schemas. Because of this, traditional metrics for schema design – 

such as ensuring that the schema is in a normal form – are orthogonal to this issue, so we must 

create a new set of criteria. Because we want these correctness criteria to be as independent of 

the type of mapping between sources as possible, we define the correctness criteria first for a 

very general class of mappings. In later sections, we build on this definition for the specific case 

of a conjunctive mapping relating E and F to allow us to see what the semantics of a specific 

mapping imply for the mediated schema and the mappings from the mediated schema to the 

source schemas. 

Recall the definition of a relational schema from Definition 2.1. We define a function Order 

that describes the position of each attribute in its relation, that is, given a relational schema Σ 
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Order(arj) = j for all r ∈ Σ and arj ∈ attributesr. We also define a function n that maps each 

element in Σ (e.g., relation or attribute) into a name. We occasionally abuse notation by equating 

a schema object with its name. 

Notice that by “relation,” we mean a schema for a relation. We use the word “state” to refer 

to a set of tuples that conforms to a relation (i.e. its schema). Thus, we define the state of a 

relation r (or relation state) to be a set or bag of m-tuples, where r has m attributes. The state of 

a schema is a set of states of relations, one relation state for each relation in the schema. For a 

relational schema Σ, I(Σ) is the set of all states of Σ. Thus, each σΣ ∈ I(Σ) denotes a state of Σ. For 

each relation r ∈ Σ, we use πr(σ) to denote the state of r in schema state σ (i.e., the projection of 

σ on r).  

Given that we do not consider integrity constraints, states of relational schemas are closed 

under union. Formally, given schema Σ, if σΣ1 ∈ I(Σ) and σΣ2 ∈ I(Σ), then σΣ1 ∪ σΣ2 ∈ I(Σ). Since 

a schema is a set of relations, taking the union of two states σΣ1 and σΣ2 of a schema Σ amounts 

to taking the union of the states of the relations in σΣ1 and σΣ2. That is, for each relation r in Σ, 

πr(σΣ1 ∪ σΣ2) = πr(σΣ1) ∪ πr(σΣ2).  

Without loss of generality, we assume that the relation names in different schemas are 

disjoint. That is, given relations r1 and r2 of schemas Σ1 and Σ2 respectively, we assume that r1 

and r2 have different names. This assumption can be enforced simply by assigning a unique 

name to each schema and appending the unique schema name to the name of each relation in 

that schema. It follows that if Σ1 and Σ2 are schemas, then Σ1 ∪ Σ2 is a (well-formed) schema 

that consists of the union of the relations of Σ1 and Σ2. Since every two schemas are disjoint, we 

can represent the state of the union of two schemas by a pair of states, one for each schema in 

the union. That is, I(Σ1∪Σ2) = I(Σ1) × I(Σ2), so ∀σΣ1∈I(Σ1) ∀σΣ2 ∈I(Σ2), (σΣ1, σΣ2) ∈ I(Σ1 ∪Σ2).  

We are now ready to define the information provided as input to the process of mediated 

schema creation. Given two relational source schemas, E and F, the goal is to create a mediated 

schema G over E and F. In addition to E and F, two other inputs are required: (1) how concepts 

in E and F overlap and (2) how concepts independently of interest in E and F should be 

expressed in the mediated schema along with the overlapping information. We express (1) as a 
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query over E and F that returns the same concept from E or F. We call such a query an 

intersection, which we define in Definition 4.2. We express (2) as queries over E and F. Each 

such query is called a component and is defined in Definition 4.3. Although intersections and 

components are both expressed as queries, we give them different names to clarify their 

different roles. We do not want to restrict our definitions of correctness to a particular query 

language. Instead we define the notion of a generic query which is an arbitrary function over a 

given relational schema, and therefore can be specialized to any concrete query language. 

Definition 4.1: (Generic Query). A generic query Q over a relational schema Σ 

is a function I(ΣQ)  I(T) where ΣQ is the set relations in Q and a subset of the 

relations in Σ and T is a relation (which may not be in Σ), called the target 

relation for Q. Given a state σ′ ∈ I(ΣQ), the value returned by generic query Q on 

σ′ is Q(σ′). If σ ∈ I(Σ), then we define Q(σ) to be equal to Q( ΣQ
( ))π σ . □ 

For example, in a conjunctive query, the head of the query is the target, T, the relations in 

the body of the query are ΣQ, and the query’s conjunctive formulas define the function I(ΣQ)  

I(T). 

Definition 4.2: (Intersection). Let schema Σ = Σ1 ∪…∪ Σn. An intersection is a 

generic query QN = qn1 ∪ … ∪ qnm s.t. m > 1 and each generic query qni is over 

some schema Σj, 1 ≤ j ≤ n and the target relations of all qni are the same. Given 

a state σ ∈ I(Σ), the state of an intersection QN over Σ is QN(σ).  □ 

Example 4.2: an intersection for Undergrad may be described as follows, where 

UBCUgrad and UWUgrad are in different schemas: 

Undergrad(FirstName,LastName) :-UBCUgrad(FirstName,LastName,year), year < 5 

Undergrad(FirstName, LastName) :- UWUgrad(FirstName,LastName, major)  □ 

Definition 4.3: (Component). A component of a schema Σ is a generic query QC 

over Σ. Given a state σ ∈ I(Σ), the state of a component QC of is QC(σ).  □ 
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Example 4.3: a component may be used to express that the concept “seniors at 

UBC” should be represented separately in the meditated schema even though 

that information is not explicitly represented in the input schemas: 

UBCSenior(FirstName,LastName):-UBCUgrad(FirstName,LastName,year), year=4□ 

Intersections and components may overlap in the relations they contain; for example, a 

relation may appear in the domain of both an intersection and a component. For example, 

Undergrad and UBCSenior in Example 4.2 and Example 4.3 both use the relation UBCUgrad. 

When this occurs, we want to eliminate the redundancy of the overlap to produce a minimal 

output schema, G. Therefore we require a formal way to describe that overlap, which we do 

using the concept of subsumption (Definition 4.4) to compare the states and schema definitions 

of intersections and components. 

Definition 4.4: (Generic query subsumption). Let component QC and 

intersection QN be defined over the same schema Σ and have target relations 

name TC and TN respectively. Suppose TC and TN have the same name, and 

attributesTC ⊆ attributesTN. Then QC is subsumed by QN if for all σ ∈ I(Σ), QC(σ) 

⊆ π(QN(σ)). □ 

Note that the definition of subsumption differs from the notion of containment because we 

allow for QC(σ) to be a projection of QN(σ). 

Example 4.4: The component: 
Grad(FirstName,LastName) :-UBCGrad(FirstName, LastName)  

is subsumed by the intersection below: 
Grad(FirstName,LastName):-UWGrad(FirstName,LastName, Office) 

Grad(FirstName,LastName):-UBCGrad(FirstName,LastName) □ 

At this point we have all of the formalism required to describe the input. However, the input 

alone is not enough to solve the problem; we must define a set of criteria telling what the output 

should be. The output is the mediated schema G and how G is related to each of the source 
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schemas. To relate G to the source schemas, we rely on the definition of a mapping in Definition 

4.5. 

Definition 4.5: (Mapping). A mapping MapΣ1_Σ2 over schemas Σ1 and Σ2 is an 

expression that defines a subset of I(Σ1) × I(Σ2). 4 □ 

Definition 4.5 is broader than some of the common definitions of mappings. Hull (Hull 

1986) would define a mapping MapΣ1_Σ2 over schemas Σ1 and Σ2 as a transformation from I(Σ1) 

 I(Σ2). In many cases a Hull mapping suffices. However, as we show later sometimes we 

require the additional expressiveness in Definition 4.5.  

Consider a relation in the mediated schema that pulls information from more than one source 

relation. The reason for combining those source relations into one mediated schema relation is 

because we have identified an intersection or a component, QC, over the source relations that 

characterize information that should be put together. The mediated schema relation may contain 

more attributes than those required by that intersection or component over the source relations 

because there may be other intersections or components over other sets of source relations that 

overlap QC. We are interested in easily accessing each intersection or component. Thus, given a 

component or intersection defined by a generic query QC, the mediated schema should have a 

relation over which one can write a generic query Q that can be rewritten as an equivalent 

generic query Q' over the local sources. We call this a canonical query for QC. We express this 

formally in Definition 4.6. Note that we do not require that the canonical query be unique. 

Canonical queries are defined for any generic query over E ∪ F, not just components or 

intersections. 

                                                      
4 MapΣ1_Σ2 is a function if for every state σ1 ∈ I(Σ1) there is at most one state σ2 ∈ I(Σ2) s.t. 

<σ1, σ2> ∈ I(MapΣ1_Σ2). If MapΣ1_Σ2 and its inverse are functions, then MapΣ1_Σ2 is injective. 

MapΣ1_Σ2 is surjective if ∀σ2 ∈ I(Σ2), ∃ σ1 ∈ I(Σ1) s.t. <σ1, σ2> ∈ I(MapΣ1_Σ2). MapΣ1_Σ2 is total if ∀ 

σ1 ∈ I(Σ1), ∃ σ2 ∈ I(Σ2) s.t. <σ1, σ2> ∈ I(MapΣ1_Σ2). Examples of the definitions are included in 

Appendix B. 
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This situation is somewhat backwards from the normal situation. We are trying to ensure that 

we can capture all values for E ∪ F in G rather than that queries over G will get all values from 

E ∪ F. Hence we restate certain answers (Definition 2.7) for our situation to avoid confusion: 

Given an instance σEF ∈ I(ΣEF), a tuple t is a certain answer for a generic query Q over G w.r.t. 

MapG_EF if t is an element of Q(σG) for every σG s.t. σEF s.t. MapG_EF(σG, σEF). 

Definition 4.6: (Canonical queries). Let QN be a generic query over schema Σ2 

with target T ; QN may be a component, an intersection, or any other query over 

Σ2. Let MapΣ1_Σ2 be a mapping over schemas Σ1 and Σ2. We say that Q is a 

canonical query for generic query QN over schema Σ1 and mapping MapΣ1_Σ2 if 

(1) the body of Q contains exactly one relation and (2) ∀ σΣ1∈ I(Σ1), ∀ σΣ2 ∈ 

I(Σ2) such that MapΣ1_Σ2(σΣ1, σΣ2), Q(σΣ1) computes the certain answers to 

QN(σΣ2). □ 

Example 4.5: Assume the intersection defining Undergrad in Example 4.2. If 

MergedUndergrad is the name of a relation in the mediated schema, and 

querying MergedUndergrad using the query Q yields all of the certain answers 

for Undergrad, then Q is a canonical query for Undergrad. □ 

We only want to allow relations in the input to be represented by the same relation in the 

mediated schema if they are related through the mapping. To define this formally we rely on the 

concept of connected relations in Definition 4.7. In Definition 4.8 we define a partial order on 

schemas to allow us to compare two schemas: 

Definition 4.7: (Connected relations). Two relations r1 and r2 are connected in 

a set of generic queries M if 

• r1 ∈ ΣQ and r2 ∈ ΣQ for some generic query Q ∈ M over ΣQ, or 

• r1, r3 ∈ ΣQ1 and r2, r4 ∈ ΣQ2 for some generic queries Q1, Q2 ∈ M 

and r3 and r4 are connected.  □ 
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Example 4.6: Suppose we had the intersection for Undergrad in Example 4.2 

and the following component for UWStudent: 

UWStudent(FirstName,LastName,Major) :- UWUgrad(FirstName,LastName,major) 

UWStudent(FirstName,LastName,Major) :- UWgrad(FirstName,LastName, major) 

UWGrad is connected to UBCUgrad because UWGrad appears with UWUgrad in 

the component UWStudent and UWUgrad appears with UBCUgrad in the 

intersection Undergrad. □ 

Definition 4.8: (Partial order of schemas). We define a partial order << over 

schemas as follows: Given two schemas Σ1 and Σ2, we define that Σ1 << Σ2 if 

the relations of Σ1 are a subset of the relations in Σ2 and for each relation r1 ∈ 

Σ1 and r2 ∈ Σ2 s.t. ns1 = ns2, attributess1 ⊆ attributess2. (Buneman et al. 1992) □ 

Given these definitions, we define the mediated schema creation problem as follows:  

Definition 4.9: (Mediated schema creation problem). Given E, F, INT and 

COMP, where INT is a set of intersections over E and F and COMP is a set of 

components over E and F, produce G, MapG_E, and MapG_F satisfying Mediated 

Schema Criteria (MSCs) 1-5 (below) where G is a schema, MapG_E is a mapping 

over G and E, and MapG_F is a mapping over G and F.  □ 

To help us define MSC 1-5, we define a mapping MapG_EF that represents the union of MapG_E 

and MapG_F. Let schema EF = E ∪ F. Recall that a state σEF ∈ I(EF) is a pair (σE, σF), where σE ∈ 

I(E), σF ∈ I(F). We define MapG_EF = {(σG, (σE, σF)) ∈ I(G) × (I(E) ×I(F)) | (σG, σE) ∈ MapG_E and (σG, 

σF) ∈ MapG_F}; in some sense, MapG_EF represents the union of MapG_E and MapG_F. We are now 

ready to define the Mediated Schema Criteria (MSCs) as follows. We first define each one 

briefly and then examine each one in more detail: 

MSC 1: Completeness: G is complete. That is, there are total, injective, functional 

mappings from I(E) to I(G) and from I(F) to I(G). 

MSC 2: Intersection accessibility: For every intersection QN in INT, there exists a 

canonical query for QN over G and MapG_EF.  
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MSC 3: Component accessibility: For every component QC in COMP not subsumed by 

any intersection in INT, there exists a canonical query for QC over G and 

MapG_EF. 

MSC 4: Connectivity required: For every generic query Q:I(ΣQ)  I(T) over EF where 

the relations in Q = EF' ⊆ EF and |EF' | > 1, if there is a canonical query for Q 

over G and MapG_EF then every pair of relations in ΣQ is connected in MapE_F. 

MSC 5: Minimality: G is a minimal schema that satisfies MSCs 1-4. That is, there 

exists no G' satisfying MSCs 1-4 such that  

1. G' << G or |G' | < G (i.e., G' contains fewer relations than G) 

2. ∀ relations g ∈ G ∃/  sets of attributes p1 ⊆ attributesg, p2 ⊆ 

attributesg s.t. p1 ∩ p2 = ∅ and ∀ σG ∈ I(G) πp1(πg(σG)) ⊆ 

πp2(πg(σG)) 

We now describe each MSC in more detail. We begin the discussion of each MSC by 

providing its label and then quoting the full text of the MSC. 

MSC 1: Completeness: “That is, there are total, injective, functional mappings from I(E) to 

I(G) and from I(F) to I(G).” Information capacity is a metric describing when information can be 

preserved in applications that span multiple schemas (Hull 1986). Miller, Ioannidis, and 

Ramakrishnan (Miller et al. 1993) show that data integration requires (1) the ability to query the 

source schemas E and F from the mediated schema G and (2) the ability to view through G all 

tuples stored under E and F. They show that these goals in turn require that G dominates EF – 

that there exists an information capacity preserving mapping from EF to G. An information 

capacity preserving mapping M: I(EF) I(G) must be total, injective, and functional. Since E and 

F are disjoint schemas, there is a total, injective function from E ∪ F into G if MapE_G and MapF_G 

are total, injective functions. Hence completeness is equivalent to ensuring that the information 

capacity required by data integration – G dominates EF – is preserved. The notion of 

completeness in creating a merged or mediated schema is common, not just for information 

capacity but in other generic algorithms such as the specification by Buneman, Davidson, and 

Kosky (Buneman et al. 1992). 
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MSC 2: Intersection accessibility: “For every intersection QN in INT, there exists a 

canonical query for QN over G and MapG_EF. MSC 2 ensures that overlapping information can be 

accessed uniformly.” For example, in Example 4.1, we would define an intersection of 

Travelocity and Expedia that includes airfare information. In this case, MSC2 would require 

that there is a canonical query able to provide information about airfares, regardless of whether 

they come from Travelocity or Expedia. 

MSC 3: Component accessibility: “For every component QC in COMP not subsumed by any 

intersection in INT, there exists a canonical query for QC over G and MapG_EF.” MSC 3 ensures 

that additional non-overlapping information described by a component is expressed in a single 

relation. For example, in representing a common concept of "student" in the mediated schema 

when the source schemas only consist of relations for "grad student" and "undergrad student", 

the user may wish to include the office number of the graduate students in the student 

representation, even though there is no direct correlation between the grad and undergrad 

students and undergrad students do not have office numbers. A component corresponds to the 

notion of being a semantically necessary relationship (Rosenthal et al. 1994) – a concept that the 

user would like to have easy access to, but does not necessarily alter the information content of 

the schema. Because intersections and components may overlap, they may be defined in the 

same relation in G. Since an intersection is required to return information from all relevant 

sources, if there is an intersection that subsumes a component, the component may not be able 

to be retrieved separately from the intersection. Hence MSC 3 applies only to components that 

are not subsumed by an intersection. 

MSC 4: Connectivity required: “For every generic query Q:I(ΣQ)  I(T) over ΣQ ⊆ EF 

where |ΣQ | > 1, if there is a canonical query Q′ for Q over ΣQ′ ⊆G and MapG_EF then every pair of 

relations in ΣQ′ is connected in MapE_F.” MSCs 2 and 3 ensure that concepts defined in MapE_F are 

not broken apart in G. By contrast, MSC 4 ensures that attributes in E and F should be 

represented by the same relation of G only if the input requires it. MSC 4 ensures this by 

requiring that the relations in EF be connected, which allows relations in related components or 

intersections to be included in the same relation in G. To determine what concepts in EF are 

being related to one another in G, we see what queries over EF we can answer by using a single 

relation in G – a canonical query.  
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The condition works as follows. We want to allow easy querying in G to each relation in EF, 

particularly since MSC 1 requires completeness. Therefore we restrict our consideration of what 

queries over EF should not be easily accessible in G to those queries that are over more than one 

relation in EF. The intuition for the rest of the statement is that there is a canonical query for a 

generic query Q only if Q is either a projection of or contained in an intersection or component, 

i.e., there is a reason for them to be related in G. MSC 4 specifies this intuition more generically 

and succinctly without referring to either projections or containment of queries by relying on the 

definition of connected relations (Definition 4.7). 

MSC 5: Minimality: “G is a minimal schema that satisfies MSCs 1-4. That is, there exists 

no G' satisfying MSCs 1-4 such that (1) G' << G or |G' | < G (i.e., G' contains fewer relations than 

G), and (2) ∀ relations g ∈ G ∃/  sets of attributes p1 ⊆ attributesg, p2 ⊆ attributesg s.t. p1 ∩ p2 = ∅ 

and ∀ σG ∈ I(G) πp1(πg(σG)) ⊆ πp2(πg(σG)). ” We begin by considering the first requirement. In 

addition to requiring that there be no schema G' << G satisfying the MSCs, we require that there 

is no schema G' satisfying the MSCs with fewer relations than G because we wish to ensure that 

concepts are split into as few relations as possible. The partial order (<<) alone does not 

guarantee this. The notion that a mediated schema must not include extraneous information is 

also common in mediated schema creation algorithms such as those surveyed in (Batini et al. 

1986) and the generic merged schema creation algorithm of (Buneman et al. 1992). The second 

bullet ensures that no relation in E or F is represented in two different ways in the same relation 

in G. 

4.3 Creating a Relational Mediated from Conjunctive Mappings 
Section 4.2 gives correctness criteria for creating a mediated schema in data integration with 

respect to an arbitrary query language that satisfies the definition of a generic query (Definition 

4.1). We now consider the more specific case of conjunctive mappings. We refine the case to 

conjunctive mappings to allow a thorough analysis of what the semantics of a particular type of 

mappings means for both the mediated schema and the mappings from the mediated schema to 

the source schemas. Section 4.3.1 defines conjunctive mappings. Section 4.3.2 refines the MSCs 

for conjunctive mappings. Section 4.3.3 defines G, MapG_E and MapG_F that satisfy the 
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requirements in Section 4.3.2, and Section 4.3.4 proves that the requirements are indeed 

satisfied. 

4.3.1 Conjunctive Mappings 
We assume there are two input schemas, E ={e1, …, en} and F ={f1, …, fm}, and MapE_F, a 

mapping that relates E and F. MapE_F is a conjunctive mapping if it consists of a set of 

conjunctive queries (Definition 2.2). We consider conjunctive queries that contain only 

variables; i.e., the queries can contain no constants and hence no selection predicates. 

In many scenarios, such as transforming data from a source schema to a target schema, the 

mapping MapE_F would be used to constrain the set of states that can be valid simultaneously in 

E and F.  

Example 4.7: Assume we are given two input schemas E and F, and MapE_F was 

used to populate E with tuples from F. MapE_F might be: 

e1(x,y) :- f1(x,y) 

e1(x,y) :- f2(x,y) 

In this case, MapE_F is an exact mapping; if there exists a tuple f1(1,2) or f2(1,2), 

there must exist a tuple e1(1,2), and there are no other tuples in e1. This 

mapping constrains the valid states of E with respect to the states of F. □ 

GAV and LAV mappings are examples of mappings types that adhere to the open world 

assumption (Definition 2.6) on the instances of the schemas they relate; a tuple in the mediated 

schema state must appear in a tuple or set of tuples in one or more local sources. However, 

when creating the mediated schema for data integration, a direct mapping between E and F is 

inappropriate since the states of E and F are not required to be the same or even overlapping. 

Thus, the role of MapE_F between a pair of source schemas is not to constrain the states of either 

E or F. Rather, MapE_F describes how E and F are related to a helper schema, D :  

Definition 4.10: (Helper schema). Given two schemas E and F, D is a helper 

schema for MapE_F if MapE_F constrains the states of E and F with respect to the 

states of D . □ 
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4.3.1.1 Syntax of Conjunctive Mappings 
A conjunctive mapping is a set of conjunctive queries restricted as follows. We require that 

each conjunctive query Q ∈ MapE_F in a conjunctive mapping MapE_F is over exactly one of E or 

F. We refer to each Q ∈ MapE_F as a mapping statement.  

We make some additional restrictions for ease of exposition. These three rules are not 

required in order for the mapping to be conjunctive, nor do they affect the expressive power of 

the queries allowed. The goal of the rules is to make it easier to name the attributes of the 

relations in G. Any set of conjunctive queries can be made to satisfy the restrictions simply by 

renaming variables. The restrictions are as follows: 

1. If an IDB appears more than once in a mapping, then for each variable position of the 

IDB, the same variable name must be used in all appearances. Hence, definitions q5(x,y) 

:- e1(x,y), and q5(z,y) :- f2(x,y) cannot be in the same mapping since the variable in the 

first position of q5 is named x in the first definition and z in the second. This restriction 

is made so that it is clear what the corresponding attribute should be named in G. 

2. An existential variable name may appear in at most one mapping statement for a given 

IDB name. For example, q15(x) :- e1(x,y) and q15(x) :- f1(x,y) cannot exist in the same 

mapping since y is existential in both. This restriction is made so that it is clear what the 

corresponding attributes should be named in G. 

3. Each relation name appears in at most one of E, F, and the IDB names of MapE_F. This 

can be accomplished by doing a predicate re-name if necessary. 

There are two additional restrictions that make mappings less powerful than the full range of 

conjunctive queries, but that we use to simplify the problem: 

1. A relation can appear at most once within a mapping. For example, q17(x) :- e1(x,y) and 

q18(w) :- e1(w,u) cannot appear in the same mapping because they both map e1. 

Similarly q19(x) :- e1(x,y), e1(y,z) cannot appear in a mapping because e1 is again 

mapped twice. 
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2. An EDB must not repeat variables. For instance q7(x) :- e1(x,x) cannot be in a mapping 

because x appears twice in e1. 

To refer to the IDBs in a mapping we define the concept formally in Definition 4.11:  

Definition 4.11: (IDBs in a mapping). We define IDB(MapE_F) = {idb | ∃ ms ∈ 

MapE_F s.t. IDB(ms) = idb}  □ 

4.3.1.2 Semantics of Conjunctive Mappings  
MapE_F defines the valid states of the helper schema, D. Specifically, we consider the schema 

D to be created by reifying the IDBs of MapE_F into relations. We define the tuples of D as a 

function of the tuples in E and F, as follows.  

Let D be the schema consisting of one relation for each IDB j ∈ IDB(MapE_F). That is, for 

each IDB j ∈ IDB(MapE_F), there exists a relation r ∈ D s.t. 

1. nr = nj 

2. attributesr = Vars(j)  

By definition of conjunctive mapping, each mapping statement in MapE_F consists of EDBs 

from exactly one of E or F. Thus, we can partition MapE_F into two sub-mappings: MapE_D and 

MapF_D, where MapE_D consists of all mapping statements that contain EDBs from E, and MapF_D 

consists of all mapping statements that contain EDBs from F. So MapE_D ∪ MapF_D = MapE_F. 

Given states σE ∈ I(E) and σF ∈ I(F), we define σD = MapE_D(σE) ∪ MapF_D(σF). That is, the 

union of the queries in MapE_F applied to σE and σF yield the tuples in σD. 

4.3.2 Refining the MSCs to the Conjunctive Mapping Case 
The mediated schema creation problem requires components and intersections as input. 

Since these are not explicitly defined in a conjunctive mapping MapE_F, as defined in Section 

4.3.1.1, we must determine how to tease intersections and components from conjunctive 

mapping MapE_F. 

The intersections are easy to determine: each IDB name induces an intersection which is 

comprised of all the statements with that IDB name; Example 4.8 declares an intersection on the 

first attributes of e1 and f1. 
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Example 4.8: 

q2(x) :- e1(x,y) 

q2(x) :- f1(x,z)  □ 

The mapping in Example 4.8 is just one of many possible between these two relations. Example 

4.9 shows another possibility: 

Example 4.9: 

q2(x,y) :- e1(x,y) 

q2(x,y) :- f1(x,y)  □ 

Example 4.9 declares an intersection on both the first and second attributes of e1 and f1. Note 

that because we have artificially restricted the conjunctive queries allowed in MapE_F the 

variable y is now used for the second variable in both appearances of q2, though this could be 

easily achieved through a variable renaming. 

Because we need to ensure canonical queries for intersections, we must return to the notion 

of a canonical query. However, now that we have specified MapE_F to be a conjunctive mapping, 

we can be more specific in the conjunctive statement of the MSCs. To simplify what follows, 

Definition 4.12 defines a canonical query for an IDB: 

Definition 4.12: (Canonical query for an IDB). Given IDB i in IDB(MapE_F), let 

MSidb = {msj ∈ MapE_F | IDB(msj) = idb}. If there exists a query Q over G such 

that Q is a canonical query for MSidb w.r.t. and MapG_EF, then we say that Q is a 

canonical query for idb.  □ 

The components are slightly more difficult to determine because conjunctive queries must be 

safe; the variables that appear in the head can only include attributes that are in all of the 

statements with that IDB name. For example, in the definition of q2 in Example 4.8, we cannot 

express that y should be present in a component by having it appear in the head of the first 

mapping statement, because it would then make the second mapping statement unsafe. 
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However, because we assume that the mediated schema is complete and we are not “breaking 

apart” relations from EF in G, we know that there exists some way to access the values of the 

existential variables in Example 4.8 via a canonical query, so there is no problem in accessing 

the component e1(x,y). 

Now let us extend Example 4.8 slightly. Suppose E includes the relation e2(y,z) and we want 

the input to the mediated schema creation problem to include a component that includes the join 

of e1 and e2 which says that their attributes appear in one relation of the mediated schema. 

Suppose we also want to relate the tuples in the join of e1 and e2 to the tuples in f1. We would 

want to create the mapping in Example 4.10: 

Example 4.10: 

q17(x,y,z) :- e1(x,y), e2(y,z) 

q17(x,z) :- f1(x,z)  □ 

However, this mapping gives q17 both an arity of two and an arity of three, which is counter 

to the definition of conjunctive queries. Instead we are forced to make the mapping as in 

Example 4.11 and simply require that all of the attributes of each mapping statement appear in 

the mediated schema in a single relation. 

Example 4.11: 

q3(x,z) :- e1(x,y), e2(y,z) 

q3(x,z) :- f1(x,z)  □ 

In contrast to the example with the existential y value in Example 4.8, in Example 4.11, we 

are not assured to have all the values for e1(x,y), e2(y,z) accessible via a canonical query. 

Therefore we require that there be a canonical query for each projection-free component: 

Definition 4.13: (Projection-free components). For each mapping statement ms 

let q equal IDB(ms). We say that the projection-free component of ms, denoted 

pfms, is the query q(Vars(ms)) :- body(ms), where Vars(ms) and body(ms) are the 

variables and body of ms, respectively.  □ 
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Notice that pfms is identical to ms except that all variables of pfms are distinguished. In 

addition, as shown in Section 4.4.2, the assumption that each mapping statement defines 

projection-free components allows G to contain fewer relations than it would otherwise. We 

discuss alternate semantics where we assume that mapping statements do not define projection-

free components in Section 4.4.2. 

Given the definitions of inputs, we can now refine the MSCs for the conjunctive mapping 

case as follows: 

CreateMediatedSchema(E, F, MapE_F)  G, MapG_EF is said to satisfy the Conjunctive 

Mediated Schema Criteria (CMSCs) if: 

CMSC 1: Conjunctive completeness: G is complete. There are total, injective, functional 

mappings from E to G and from F to G. 

CMSC 2: Conjunctive intersection accessibility: For each IDB idb in IDB(MapE_F), let 

MSidb = {msj ∈ MapE_F | IDB(msj) = idb}. Then there exists a query Q over G and 

MapG_EF such that Q is a canonical query for MSidb.  

CMSC 3: Conjunctive component accessibility: For every mapping statement ms in 

MapE_F, let Q = q(Vars(ms)) :- body(ms)). If ms has an existential variable, then 

there exists a canonical query for Q over G and MapG_EF. 

CMSC 4: Conjunctive connectivity required: every query Q:I(ΣQ)  I(T) over ΣQ ⊆ EF 

where |ΣQ | > 1, if there is a canonical query Q′ for Q over ΣQ′ ⊆G and MapG_EF 

then for every pair of relations r1, r2 ∈ EF' there exist mapping statements ms1 

∈ MapE_F and ms2 ∈ MapE_F such that IDB(ms1) = IDB(ms2), r1 ∈ body(ms1), 

and r2 ∈ body(ms2). 

CMSC 5: Conjunctive minimality: G is a minimal schema that satisfies CMSCs 1-4. 

That is, there exists no G' satisfying CMSCs 1-4 such that 

1. G' << G or |G' | < G (i.e., G' contains fewer relations than G) 

2. ∀ relations g ∈ G ∃/  sets of attributes p1 ⊆ attributesg, p2 ⊆ 

attributesg s.t. p1 ∩ p2 = ∅ and ∀ σG ∈ I(G) πp1(πg(σG)) ⊆ 

πp2(πg(σG)). 
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4.3.3 Definitions of G, MapG_E, and MapG_F 
A solution to the mediated schema creation problem consists of a mediated schema G and 

mappings MapG_E, and MapG_F that together satisfy CMSC 1-5. In this section, we define such a 

G, MapG_E, and MapG_F. In Section 4.3.4 we prove that they do indeed satisfy CMSC 1-5. 

4.3.3.1 Definition of G 

The CMSCs essentially say that there are two sets of relations that must exist in G: (1) relations 

required to answer canonical queries (i.e., CMSCs 2 and 3) and (2) relations required to ensure 

completeness (i.e., CMSC 1). CMSC 5 requires that G contain the minimum number of 

relations. In essence, CMSC 5 works in opposition to the other CMSCs; it is trying to decrease 

the number of relations in G while the others are trying to add relations to G. We can determine 

the number of relations in G by analyzing which relations are required and how the number of 

relations can be minimized. Because some of the relations created by CMSCs 2 and 3 may be 

able to resolve some of CMSC 1’s completeness requirements, we begin by considering CMSCs 

2 and 3.  

Let GIDB ⊆ G be a set of relations needed to satisfy CMSCs 2 and 3. From the definition of 

canonical queries (Definition 4.6), we know CMSCs 2 and 3 can be satisfied by creating GIDB 

such that every mapping statement and every IDB has its own relation in GIDB. In order to satisfy 

CMSC 5, however, we must see if a smaller number of relations will suffice. The only way that 

we can combine two relations, g1 and g2, required by CMSC 2 or 3 is to satisfy CMSC 4; g1 and 

g2 must be used in mapping statements for the same IDB. Since the input restrictions allow each 

relation in EF to appear in only one mapping statement, each relation in EF may be used in the 

definition of only one IDB. Similarly, by definition each mapping statement is used in defining 

exactly one IDB. Hence to satisfy CMSC 2 GIDB must contain at least one relation per IDB in 

IDB(MapE_F).  

To minimize GIDB, if it is possible to answer the queries required by CMSC 3 using the 

relations required by CMSC 2 (which we show is possible in Section 4.3.3.2), then to satisfy 

CMSC 5 (conjunctive minimality) there must be no additional relations created to satisfy 

CMSC 3. Therefore GIDB must contain exactly one relation per IDB in IDB(MapE_F) and no other 

relations. In addition, to satisfy CMSC 3 (Conjunctive component accessibility) each relation 
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corresponding to an IDB idb in IDB(MapE_F) must also contain enough information to answer the 

canonical query on the projection-free component of the mapping statements defining idb.  

Now we turn to the attributes of the relations in GIDB. Let MSq = {msj ∈ MapE_F | IDB(msj) = 

q} and let Vars(MSq) = Vars(q) ∪ (
i
∪ existential(msi)) where msi ∈ MSq. In order to allow 

canonical queries over both the intersections and components, we require that a relation gidb ∈ 

GIDB retains an attribute for each variable used in the mapping statement used to create it. 

Formally, ∀ relations gIDB ∈ GIDB if n(gIDB) = q, where q ∈ IDB(MapE_F) we require that 

attributesgIDB = Vars(MSq).  

We are now ready to consider which relations in GIDB can also be used to ensure CMSC 1 

(Conjunctive completeness). The answer has to be considered for each relation g ∈ GIDB and 

hinges on the shape of the mapping statements used to create g. While this relies on MapEF_G as 

defined in Section 4.3.3.2, Example 4.12 gives an intuition for which relations in E and F the 

relations in GIDB can ensure completeness, and which relations in E and F must appear separately 

in G : 

Example 4.12: Consider the following mapping: 

q1(w) :- e1(w) 

q1(w) :- f1(w,u) 

q2(x) :- e2(x,y) 

q2(x) :- f2(x,z), f3(x,v) 

Assume that e1, e2, f1, f2 and f3 are the only relations in E and F. By the remarks 

above, GIDB contains q1(w,u) and q2(x,y,z,v). Can the relations q1 and q2 be used 

to ensure the completeness of e1, e2, f1, f2, and f3? Consider relation q1. It 

defines the intersection (q1(w) :- e1(w)) ∪ (q1(w) :- f1(w,u)). Since q1 retrieves 

values of w from both e1 and f1, it is impossible to retrieve only the w values of 

e1 from the relation in GIDB that corresponds to q1. Hence for completeness with 

respect to e1, e1 must be retained separately in G. f1 is a little different since u is 

existential. In Section 4.3.3.2 we show how to write a query over q1 to retrieve 
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exactly the values needed in f1; in essence the query requires a value for both w 

and u; so only values from f1 are retained. Hence a relation corresponding to f1 

does not have to appear separately in G to maintain CMSC 1 (Completeness) 

since f1 has an existential variable. 

Examining q2 we see by an argument similar to that for f1 above it may 

possible to ask a query that returns the value of all tuples in e2. However, 

relations corresponding to f2 and f3 must appear separately in G since the 

canonical query for the component defined by q2(x) :- f2(x,z), f3(x,v) only 

guarantees that tuples of f2 and f3 that have the same first value will be 

accessible. So these tuples cannot be retrieved separately from relation in GIDB 

that corresponds to q2. We formalize this notion of relations in EF whose 

completeness can be guaranteed through the relations in GIDB in Definition 4.14 

– mapping-included relations.  □ 

Definition 4.14: (mapping-included relations). For relation r ∈ EF, if there 

exists a mapping statement ms ∈ MapE_F s.t. ms contains an existential variable 

and body(ms) = r, then r is mapping-included in MapE_F. □ 

In the definitions below, which explain the output of CreateMediatedSchema, we are going 

to explicitly document the output. We define a correspondence relation between the inputs and 

outputs of CreateMediatedSchema as follows:  

Definition 4.15: (ξ). We define the correspondence relation ξ to ⊆ {EF ∪ 

IDB(MapE_F)} × G. That is, ξ(o,g) means that o is either a relation name in EF or 

an IDB name in MapE_F. The intuition is that g is produced as output partially 

from o as input. □ 

Putting it all together we arrive at the following definition of well-formed mediated schema, 

which, as we show in Section 4.3.4, satisfies the CMSCs. 
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Definition 4.16: (Well-formed Mediated Schema). Given relational schemas E 

and F and mapping MapE_F, a mediated schema G created by 

CreateMediatedSchema(E, F, MapE_F) is well-formed if:  

1. ∀ relations e ∈ E s.t. e is not mapping-included, ∃ g ∈ G s.t. ne = ng, 

attributese = attributesg, and ξ(e,g). Similarly for all f ∈ F.  

2. ∀ IDB names q ∈ IDB(MapE_F), ∃ g ∈ G s.t. q = ng, attributesg = Vars(MSq), 

and ξ(q,g). 

3. G contains no additional relations.  □ 

Example 4.13: 

E = {e1(a,b), e2(c,d)} 

F = {f1(e,f)} 

MapE_F = { 

q1(x) :- e1(x,y) 

q1(x) :- f1(x,z) 

} 

Vars(MSq1) = {x, y, z}. Since f1 is mapping-included (z is existential and f1 

appears alone in the body of its mapping statement) f1 is not included in G, and 

G = {e1(a,b), e2(c,d), q1(x,y,z)}  □ 

4.3.3.2 Properties and Definition of MapG_E and MapG_F 

We now must define MapG_E and MapG_F so that they retain enough information to create all 

of the canonical queries required in the CMSCs and satisfy the remaining CMSCs. We begin by 

considering CMSC1, the only CMSC that places a restriction on MapG_E and MapG_F other than 

the canonical queries. CMSC 1 requires a total, injective, functional mapping from E to G and F 

to G. Since E and F are disjoint schemas there is a total, injective function from E ∪ F into G if 

MapE_G and MapF_G are total, injective functions. None of the other CMSCs place any restrictions 

on MapE_G or MapF_G, so we turn to creating the canonical queries.  



82 

 

 

 

We express MapG_E and MapG_F as a subset of GLAV mappings (Friedman et al. 1999), as 

follows. We relate G and E through an intermediate schema, C, which represents the coverage of 

each mediated schema relation available from a particular source. Each mapping statement ms 

s.t. body(ms) is over EF creates two views in MapG_EF. The first view, lvms, is called a local view 

definition for ms. It is a conjunctive query from G to the intermediate schema C, and is included 

in the set of local view definitions for G, LVG. The second view, gvms, is called a global view 

definition for ms. gvms is a function from E to C, and is included in the global view definitions 

for G, GVG. Note that the views in MapG_EF are sound but not complete; we illustrate why in 

Example 4.15 after we formally define LVG and GVG.  

How can we translate queries using MapG_EF? We give the intuition here, and we show 

formally why this is so in Theorem 4.2 after formally defining LVG and GVG. Our primary goal 

in showing the query rewriting scheme is to ensure that G and MapG_EF satisfy the CMSCs. To 

show that, we must ensure that canonical queries for all intersections and projection-free 

components exist. As shown later by Lemma 4.5 and Lemma 4.6, the canonical queries required 

are conjunctive queries, so we consider only how to answer conjunctive queries. We answer a 

query Q over G by first using the local view definitions LVG and then using the global view 

definitions, GVG. Recall from Section 2.4 that a LAV view definition is a sound but incomplete 

view from the mediated schema to the source schemas, and answering queries using views can 

be used to rewrite a query from the mediated schema to source schemas in LAV. Hence we can 

use answering queries using views to rewrite a query Q over G into a query Q' over the 

intermediate schema C 5. 

The global view definitions in GVG are much like view definitions in GAV. Hence, query 

unfolding (Definition 2.5) can rewrite Q' over C into a query Q'' over EF. Putting this together 

with the rewriting step from the local view definitions, to rewrite queries over G into queries 
                                                      
5 Because the queries in LVG are significantly less expressive than conjunctive queries and 

the only queries that we are rewriting over are LVG conjunctive queries, a simpler specialized 

algorithm could be created. However answering queries using views is guaranteed to be sound 

and complete in finding certain answers (Definition 2.7) since MapG_EF is sound but not complete 

and LVG and the queries over it are only conjunctive queries. 



83 

 

 

 

 

over EF answering queries using views is first applied to the local views and then view 

unfolding is applied to the global views. Now that we have an intuition for MapG_EF, we are 

ready to define it formally. Recall that Definition 4.16 (well-formed mediated schema) 

guarantees that for each mapping statement ms with IDB name q, there exists some relation rq ∈ 

G with name q and attributes = Vars(MSq).  

Definition 4.17: (Well-formed Mediated Schema Mapping). Let MapG_EF be a 

mediated schema mapping created by CreateMediatedSchema(E, F, MapE_F), 

where E and F are relational schemas and MapE_F is a conjunctive mapping 

between E and F adhering to the requirements in Section 4.3.1.1. MapG_EF is said 

to be well-formed if it consists of two sets of view definitions, LVG and GVG 

where LVG provides a mapping from G to an intermediate schema C and GVG 

provides a mapping from EF to C, s.t.: 

1. ∀ relations g ∈ G s.t. ξ(e,g) for some e ∈ EF, let qj be a fresh IDB 

name. 

lvg = qj(attributesg) :- g(attributesg)  

gvg = qj(attributesg) :- e(attributese) 
6
 

lvg ∈LVG 

gvg ∈ GVG  

2. ∀ mapping statements ms ∈MapG_EF with IDB name q, let rq ∈ G be a 

relation with name q and ξ(q,rq). Let qj be a fresh IDB name (i.e., qj is 

an IDB name that appears in no other mapping statements in MapE_F or 

in any other local view definitions or global view definitions in 

MapG_EF). 

                                                      
6 The relations g and e in the definition of lvg and gvg respectively are the same, from the 

definition of a well-formed mediated schema Definition 4.16. Similarly, attributesg = attributese. 
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lvms = qj(Vars(ms)) :- rq  

gvms = qj(Vars(ms)) :- body(ms) 

lvms ∈LVG 

gvms ∈ GVG  

3. LVG and GVG contain no views other than those required above.   

Note that the cases here are the same cases as in the definition of the well-

formed mediated schema (Definition 4.16); i.e., the first bullet here creates the 

mapping statements for the relations created in the first bullet, etc. □ 

 

Definition 4.18: (ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF). 

The conjunctive mediated schema creation problem takes as input schemas E 

and F, and conjunctive mapping MapE_F, and produces a schema G and mapping 

MapG_EF that satisfy Definition 4.16 and Definition 4.17 respectively.  □ 

An example of how to create LVG and GVG and then rewrite a query is shown in Example 

4.14. 

Example 4.14: Recall that in both LVG and GVG the left hand sides of the 

mappings consist of fresh IDB names – the sole point of the names is to match 

the concepts in LVG and GVG. As well, in the right hand side of GVG the EDB 

names are the names of relations in the source schemas. In the right hand side 

of LVG the EDB names are the names of relations in the mediated schema, 

which by construction of G are either the same as the names of the relations in E 

and F or the IDBs in IDB(MapE_F). Assume the schemas and mappings from 

Example 4.13. By Definition 4.17 LVG and GVG are as follows. Note that 

because relation names in G also appear both as relation names in E and F and 

in IDB names in MapE_F, we prepend each relation name with the schema to 

which it belongs. 

LVG = { 

q2(x,y) :- G.q1(x,y,z) // step 1 of Definition 4.17 for first m.s. in MapE_F 
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q3(x,z) :- G.q1(x,y,z) // step 1 of Definition 4.17 for second m.s. in MapE_F 

q4(a,b) :- G.e1(a,b) // step 2 of Definition 4.17 for the first relation in E 

q5(c,d) :- G.e2(c,d) // step 2 of Definition 4.17 for the second relation in E 

q6(e,f) :- G.f1(e,f) // step 2 of Definition 4.17 for the sole relation in F 

} 

 

GVG = { 

q2(x,y) :- E.e1(x,y) // step 1 of Definition 4.17 for first m.s. in MapE_F 

q3(x,z) :- F.f1(x,z) // step 1 of Definition 4.17 for second m.s. in MapE_F 

q4(a,b) :- E.e1(a,b) // step 2 of Definition 4.17 for the first relation in E 

q5(c,d) :- E.e2(c,d) // step 2 of Definition 4.17 for the second relation in E 

q6(e,f) :- F.f1(e,f) // step 2 of Definition 4.17 for the sole relation in F 

} 

Suppose that given these mappings and relations the query Q = qnew(r) :- 

q1(r,s,t) was asked. The process to answer the query would be as follows:  

1. Answering queries using views would be used over the view definitions 

in LVG to find a maximally-contained rewriting for qnew expressed over 

the intermediate schema. In this case, Q' = qnew'(r) :- q2(r,u) ∪ 

qnew'(r) :- q3(r,v).  

2. The view definitions in GVG expanded (see Definition 2.5) to rewrite Q' 

into a query Q'' over EF. Q'' = qnew''(r) :- e1(r,u) ∪ qnew''(r) :- f1(r,v).□ 

 

Example 4.15: In point 1 of Definition 4.17 it only makes sense to search for a 

maximally-contained rewriting if MapG_EF is sound but not complete (e.g., the 

view definitions provide descriptions of what tuples they produce, but not every 

tuple that satisfies that description is produced by the view). In this example we 

show why MapG_EF is sound but not complete. Consider the following mapping:  
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q21(x,y) :- e1(x,y) 

q21(x,y) :- f1(x,y) 

and assume that e1(a,b) and f1(c,d) are the only relations in E and F. By 

Definition 4.16 G = {q21(x,y), e1(a,b), f1(c,d)}. By Definition 4.17 LVG and GVG 

are as follows. Note that because relation names in G also appear both as 

relation names in E and F and as IDB names in MapE_F, we prepend each 

relation name with the schema to which it belongs. 

LVG = { 

q22(x,y) :- G.q21(x,y) 

q23(x,y) :- G.q21(x,y) 

q24(a,b) :- G.e1(a,b) 

q25(c,d) :- G.f1(c,d) 

} 

GVG = { 

q22(x,y) :- E.e1(x,y) 

q23(x,y) :- F.f1(x,y) 

q24(a,b) :- E.e1(a,b) 

q25(c,d) :- F.f1(c,d) 

} 

q22 and q23 clearly illustrate why the views in MapG_EF are not complete. If E 

contains the tuple e1(<1,2>), then clearly the G should contain the tuple 

g21(<1,2>). However, rewriting q21 using only f1 should not yield f1(<1,2>). 

Therefore q25 – and the views in MapG_EF in general – cannot be complete.  □ 

We’re now ready to show that the rewriting procedure explained informally above correctly 

rewrites queries over G into queries over EF. To do so we rely on Theorem 4.2 from (Abiteboul 

et al. 1998) which we renumber here for simplicity: 
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Theorem 4.1: For view definition V ⊆ CQ (the set of conjunctive queries), Q ∈ 

Datalog (the set of all Datalog queries), and query plan P that is maximally-

contained in Q with respect to V, P computes exactly the certain answers of Q 

under the open world assumption for each view instance σV ∈ I(V) 

Proof: This is Theorem 4.2 of (Abiteboul et al. 1998); we refer you to their 

proof.  □ 

Theorem 4.2 provides a formal description of an algorithm for rewriting queries over G into 

queries over EF. 

Theorem 4.2: Given input schemas E, F, and mapping MapE_F between them, if 

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, let query Q'' over 

EF be created by (1) creating a maximally-contained rewriting Q' over the 

intermediate schema C using LVG and (2) expanding Q' using GVG to form query 

Q'' over EF. Then ∀ instances σE ∈ I(EF), and σG ∈ I(G) s.t. MapG_EF(σG,σEF), 

Q''(σEF) finds exactly the certain answers of Q(σG). 

Proof: As demonstrated in Example 4.15, LVG adheres to the open world 

assumption: it is sound but not complete, and LVG ⊆ CQ. Hence by Theorem 

4.1, Q' computes exactly the certain answers of Q in C. 

From the definition of a view, we know that rewriting Q' by unfolding the 

definitions in GVG will create a query over EF that will retrieve exactly all 

tuples that match that view definition. Therefore Q''(σEF) finds exactly the 

certain answers of Q(σG).  □ 

4.3.4 Proof that G and MapG_EF Satisfy the CMSCs 
Given that we have now defined a well-formed mediated schema (Definition 4.16) and well-

formed mediated schema mapping (Definition 4.17), we must show that if G and MapG_EF satisfy 

these definitions, they satisfy the CMSCs as stated in Theorem 4.3.  
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Theorem 4.3: Given input schemas E, F, and mapping MapE_F between them, if 

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and 

MapG_EF satisfy the CMSCs.  □ 

We prove Theorem 4.3 by proving that well-formed mediated schemas and mappings adhere 

to each of the CMSCs in Section 4.3.4.1 through Section 4.3.4.5 in Lemma 4.1 through Lemma 

4.8 respectively.  

4.3.4.1 CMSC 1: Conjunctive Completeness 
Recall that CMSC 1 is “G is complete. There are total, injective, functional mappings from E 

to G and from F to G.” In order to ensure this, we create CertainG, a subset of G which contains 

only those tuples that are mapped to G from EF:  

Definition 4.19: (CertainG, MapEF_CertainG). Given input schemas E, F, and 

mapping MapE_F between them, let ConjunctiveMediatedSchemaCreation(E, F, 

MapEF) G, MapG_EF.  

• Define CertainG = G.7  

• Define MapEF_CertainG as follows: ∀ σEF ∈ I(EF), ∀ σcertainG ∈ I(CertainG) 

MapEF_CertainG(σEF, σCertainG) if ∀ relations r ∈ CertainG, πr(σG) = Q''(σEF), 

where query Q'' is defined as follows: 

i.  Query Q = q(attributesr) :-r(attributesr) where q is some fresh 

IDB name.  

ii. Query Q' is a maximally-contained rewriting over the 

intermediate schema C using LVG. 

iii. Query Q'' is the result of expanding Q' using GVG to form a 

query over EF.  

• There are no other tuples in σCertainG. □ 

                                                      
7 Recall that this denotes that the schemas are equal, not the instances. 
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We are now ready to show that CMSC 1 holds if CreateMediatedSchema(E, F, MapE_F)  G, 

MapG_EF: 

Lemma 4.1: Given input schemas E, F, and mapping MapE_F between them, if 

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and 

MapG_EF satisfy CMSC 1. 

Proof Sketch: We show: (1) Lemma 4.3: MapEF_CertainG is functional and total 

and (2) Lemma 4.4: MapEF_CertainG is injective. Together these show that 

MapEF_CertainG is a total, injective, functional mapping from E to CertainG and 

from F to CertainG. Together Lemma 4.3 and Lemma 4.4 imply that G and 

MapG_EF satisfy CMSC 1. □ 

To prove Lemma 4.3, we require that the certain answers to a query are unique, which we 

prove in Lemma 4.2: 

Lemma 4.2: Let V be a view definition over a schema S, I be an instance of the 

view V and Q a query over S. The set of all certain answers to Q is unique. 

Proof: A tuple t is a certain answer to Q under the open world assumption if t is 

an element of Q(D) for each database D with I ⊆ V(D) (Definition 2.7). Since the 

set of all D with I ⊆ V(D) is uniquely defined and Q is a function, the result 

follows immediately. □ 

 

Lemma 4.3: Given input schemas E, F, and mapping MapE_F between them, 

suppose ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF. Let 

CertainG and MapEF_CertainG be as in Definition 4.19. Then ∀ σEF ∈ I(EF) ∃ ! state 

σCertainG ∈ I(CertainG) such that MapEF_CertainG(σEF, σCertainG). That is, MapEF_CertainG is 

a total function.  

Proof: For some relation r ∈ CertainG let Q be as in Definition 4.19(i). By 

Lemma 4.2, the set of certain answers for Q(σCetrainG) is unique. By Theorem 4.2, 
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Q''(σEF) computes the certain answers for Q(σCertainG). By Definition 4.19, for 

each relation r ∈ CertainG, πr(σCertainG) = Q''(σEF). Therefore σcertainG is unique. □ 

 

Lemma 4.4: Given input schemas E, F, and mapping MapE_F between them, 

suppose ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF. Let 

CertainG and MapEF_CertainG be as in Definition 4.19. Then MapEF_CertainG is 

injective. That is, ∀ σEF1, σEF2, ∃/  σCertainG s.t. MapEF_CertainG(σEF1, σCertainG) and 

MapEF_CertainG(σEF2, σCertainG). 

Proof: Since σEF1 ≠ σEF2, there must be some relation r ∈ EF s.t. πr(σEF1) ≠ 

πr(σEF2).  There are two cases: either (1) r is not mapping-included (Definition 

4.14) or (2) r is mapping-included. 

(1) Assume r is not mapping-included. Then since G is a well-formed 

mediated schema ∃ ! relation g ∈ G s.t. ξ(r,g) and nameg = namer and attributesg 

= attributesr (Definition 4.16 bullet 1). By definition of CertainG (Definition 

4.19), CertainG = G (i.e., the schemas are equal). Hence ∃ ! relation certaing ∈ 

CertainG s.t. certaing = g. Let qfresh be a fresh IDB name. Let Q = 

qfresh(attributescertaing) :- certaing.8  

Since MapG_EF is well-formed, LVG is a set of conjunctive queries adhering 

to the open world assumption (from the definition of GVG and LVG (Definition 

4.17)). By construction, Q is conjunctive query. Thus, from Theorem 4.1 there 

is a maximally-contained rewriting Q' over the intermediate schema C using 

LVG that finds all certain answers for Q. Let Q'' be the result of expanding Q' 

using GVG to form a query over EF. From the definition of a view and the 

definition of Q', Q''(σEF) contains all certain answers of Q(σCertainG).  

From the definition of GVG and LVG (Definition 4.17 bullet 1) there exists 

exactly one view Vg ∈ LVG that can be used to rewrite Q, and the rewriting is 

qfresh(attributescertaing) :- Vg. Since GVG is well-formed, there exists one view 

                                                      
8 For succinctness, in what follows we occasionally abbreviate r(attributesr) by r. 
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Vidb ∈ GVG s.t. IDB(Vidb) = IDB(Vg), and the body of Vidb contains exactly r. 

Hence Q'' = qfresh(attributescertaing) :- r. Therefore, if MapEF_CertainG(σEF1, 

σCertainG), then πr(σCertainG) = πr(σEF1), and if MapEF_CertainG(σEF2, σCertainG), then 

πr(σCertainG) = πr(σEF2). Since σEF1 ≠ σEF2, if r is not mapping-included, ∃/  σCertainG 

s.t. MapEF_CertainG(σEF1, σCertainG) and MapEF_CertainG(σEF2, σCertainG). 

(2) Now assume that r is mapping-included. Since G is a well-formed 

mediated schema ∃ ! relation g ∈ GIDB s.t. ξ(r,g), nameg = namer and attributesg 

⊇ attributesr (Definition 4.16 bullet 2). By definition of CertainG (Definition 

4.19), CertainG = G (i.e., the schemas are equal). Hence ∃ ! relation certaing ∈ 

CertainG s.t. certaing = g. Let qfresh be a fresh IDB name. Let Q = 

qfresh(attributescertaing) :- certaing. Let Q = qfresh(attributesr) :- certaing.  

Since MapG_EF is well-formed, LVG is a set of conjunctive queries adhering 

to the open world assumption (from the definition of GVG and LVG (Definition 

4.17)). By construction, Q is conjunctive query. Thus, from Theorem 4.1 there 

is a maximally-contained rewriting Q' over the intermediate schema C using 

LVG that finds all certain answers for Q. Let Q'' be the result of expanding Q' 

using GVG to form a query over EF. From the definition of a view and the 

definition of Q', Q''(σEF) contains all certain answers of Q(σCertainG).  

Since MapG_EF is well-formed, from the definition of GVG and LVG 

(Definition 4.17 bullet 2) there exists exactly one view, Vg ∈ LVG that can be 

used to rewrite Q, and the rewriting is qfresh(attributesr) :- Vg. Since GVG is 

well-formed, there exists one view Vidb ∈ GVG s.t. IDB(Vidb) = IDB(Vg), and the 

body of Vidb contains exactly r. Hence Q'' = qfresh(attributesr) :- r. Therefore, if 

MapEF_CertainG(σEF1, σCertainG), πr(σCertainG) = πr(σEF1), and if MapEF_CertainG(σEF2, 

σCertainG), then πr(σCertainG) = πr(σEF2). Since σEF1 ≠ σEF2, if r is mapping-included, ∃/  

σCertainG s.t. MapEF_CertainG(σEF1, σCertainG) and MapEF_CertainG(σEF2, σCertainG). 
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Since two states of EF map to different states of CertainG if r is or is not 

mapping-included, which are the only two cases, two states of EF always map 

to different states of CertainG, and MapEF_CertainG is injective. □ 

Lemma 4.3 and Lemma 4.4 prove Lemma 4.1, that MapEF_G is total, injective, and functional. 

4.3.4.2 CMSC 2: Conjunctive Intersection Accessibility 
Recall that CMSC 2 is “For each IDB idb in IDB(MapE_F), let MSidb = {msj ∈ MapE_F | 

IDB(msj) = idb}. Then there exists a query Q over G and MapG_EF such that Q is a canonical query 

for MSidb.” 

Lemma 4.5: Given input schemas E, F, and mapping MapE_F between them, if 

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and 

MapG_EF satisfy CMSC 2 where the required canonical query is a conjunctive 

query. 

Proof Sketch: We prove Lemma 4.5 by construction of the canonical queries 

required. For each IDB idb in IDB(MapE_F), let MSidb = {msj ∈ MapE_F | IDB(msj) 

= idb}. We construct a query QEF over EF s.t. QEF = MSidb. We need a canonical 

query for QEF. So we construct a conjunctive query QG over one relation in G 

and show that rewriting QG using MapG_EF produces a query QG′ over EF that 

returns the certain answers to QEF. Therefore QG is a canonical query for QEF. 

We show an example of creating QG, QG'', QEF, and QEF' in Example 4.16. 

Proof: By Definition 4.16 of G ∀ IDBs idb ∈ IDB(MapE_F), ∃ relation g ∈ G s.t. 

the name of idb is ng. 

Let q be a fresh IDB name 

Let QEF be the query q(Vars(idb)) :- idb 

Let QEF′ be the expansion of QEF using MapE_F. 
9
 

Let QG be the query q(Vars(idb)) :- g 

Let QG′′ be the rewriting of QG using MapG_EF.  
                                                      
9 See Definition 2.5 for the definition of expansion. 
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Let MSIDB = {msidb | IDB(msidb) = idb} 

We now show that QEF′  QG′′ and QG′′  QEF′. 

By Theorem 4.2, ∀ σEF ∈ I(EF), ∀ σG ∈ I(G), s.t. MapG_EF(σEF, σG), rewriting 

QG(σG) to be over EF yields QG′′, where QG''(σEF) finds exactly the certain answers 

of QG(σG). By Theorem 4.2 obtaining QG′′ requires first answering QG using the 

local views, LVG. QG only asks for elements in the head of idb. Since MapG_EF is a 

well-formed mediated schema mapping (Definition 4.17), ∀ ms ∈ MSIDB, LVG 

will contain one view Vms = qfresh(Vars(ms)) :- g where qfresh is an IDB name 

used nowhere else in LVG. Since each mapping statement must be safe, 

Distinguished(ms) ⊆ Vars(ms). LVG and QG are both conjunctive queries, LVG 

uses the open world assumption, and Map G_EF is a well-formed mediated 

schema mapping (Definition 4.17), therefore answering queries using views can 

be used to find a maximally-contained rewriting QG' = 
idb IDBms MS∈
∪  q(Vars(idb)) 

:- qfreshmsidb(Vars(msidb)). 

By Theorem 4.2, QG′ is then expanded into a query QG'' using GVG. From the 

definition of GVG, expanding each conjunctive query cqi ∈ QG' yields 

q(Vars(idb)) :- Body(msi), and QG'' = 
i
∪  cqi. 

By the definition of expansion of a view (Definition 2.5), QEF' = 
idb IDBms MS∈
∪  

q(Vars(idb)) :- Body(msidb). 

Hence, QG′′ and QEF′ are equivalent. Since QG is conjunctive and defined 

over a single relation of EF, QG is a conjunctive, canonical query for idb as 

defined in Definition 4.12.  □  

Example 4.16: The queries constructed in Lemma 4.5 for the schemas and 

mappings of Example 4.13 as follows: 
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QG = q(x) :- q1(x) 

QG′′ = q(x) :- e1(x,y) ∪ q(x) :- f1(x,z) 

QEF = q(x) :- q1(x,y,z) 

QEF′ = q(x) :- e1(x,y) ∪ q(x) :- f1(x,z)  □ 

4.3.4.3 CMSC 3: Conjunctive component accessibility  

Recall CMSC 3 is “For every mapping statement ms in MapE_F, let Q = q(Vars(ms)) :- body). 

If there are any existential variables in ms, then there exists a canonical query for Q over G and 

MapG_EF.” 

Lemma 4.6: Given input schemas E, F, and mapping MapE_F between them, if 

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and 

MapG_EF satisfy CMSC 3 using only conjunctive queries for canonical queries. 

Proof sketch: We prove Lemma 4.6 by construction of the canonical queries 

required. For each mapping statement ms we construct a query QEF s.t. QEF = ms. 

We need a canonical query for QEF. So we construct a conjunctive query QG 

which is over one relation in G and show that rewriting QG using MapG_EF 

produces a query QG′′ over EF that is equivalent to QEF. Therefore QG is a 

conjunctive, canonical query for QEF. We show an example of creating QG, QG′′, 

and QEF in Example 4.17. 

Proof: By definition of G and MapG_EF, ∀ mapping statements ms ∈ MapE_F s.t. 

there is no intersection that subsumes ms, ∃ relation g ∈ G s.t. IDB(ms) = ng. 

Let q be a fresh IDB name. 

Let QEF be the query q(Vars(ms)) :- body(ms)  

Let QG be the query q(Vars(ms)) :- g 

Let QG′′ be the rewriting of QG using MapG_EF 

We now show that QEF  QG′′ and QG′′  QEF. 

By Theorem 4.2, ∀ σEF ∈ I(EF), ∀ σG ∈ I(G), s.t. MapG_EF(σEF, σG), rewriting 

QG(σG) to be over EF yields QG′′, where QG''(σEF) finds exactly the certain answers 
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of QG(σG). By Theorem 4.2 obtaining QG′′ requires first answering QG using the 

local views, LVG. Since MapG_EF is a well-formed mediated schema mapping 

(Definition 4.17), LVG will contain exactly one local view Vms = 

qfresh(Vars(ms)) :- g where qfresh is an IDB name used nowhere else in LVG. 

Since MapG_EF is a well-formed mediated schema mapping (Definition 4.17),Vms 

is the only way of accessing the attributes corresponding to existential variables 

in ms required by QG. LVG and QG are both conjunctive queries, LVG uses the 

open world assumption, and Map G_EF is a well-formed mediated schema 

mapping (Definition 4.17). Therefore, answering queries using views can be 

used to find a maximally-contained rewriting QG' = q(Vars(ms)) :- 

qfresh(Vars(ms)).  

By Theorem 4.2, QG′ is then expanded into a query QG'' using GVG. From the 

definition of GVG, expanding QG' yields QG'' = q(Vars(ms)) :- Body(ms). This is 

exactly the definition of QEF. 

Hence, QG′′ and QEF are equivalent. Since QG is conjunctive and defined over 

a single relation of EF, QG is a conjunctive, canonical query for ms as defined in 

Definition 4.12.  □ 

 

Example 4.17: Assume the schemas and mappings from Example 4.13. 

QEF = q(x,y) :- e1(x,y) 

QG = q(x,y) :- q1(x,y,z) 

QG′′ = q(x,y) :- e1(x,y) □ 

4.3.4.4 CMSC 4: Conjunctive Connectivity Required  
Recall CMSC 4 is “For every query Q:I(ΣQ)  I(T) over ΣQ ⊆ EF where |ΣQ | > 1, if there is a 

canonical query Q′ for Q over ΣQ′ ⊆G and MapG_EF then for every pair of relations r1, r2 ∈ EF' 

there exists some mapping statements ms1 ∈ MapE_F and ms2 ∈ MapE_F such that IDB(ms1) = 

IDB(ms2), r1 ∈ body(ms1), and r2 ∈ body(ms2).” 
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Lemma 4.7: Given input schemas E, F, and mapping MapE_F between them, if 

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and 

MapG_EF satisfy CMSC 4. 

Proof: A query over G can only be rewritten into a query over EF as explained 

in Theorem 4.2. Hence, since a canonical query must be over only one relation 

in G, it is enough to show that any query over a single relation in G satisfies the 

conditions in CMSC 4. Consider query Qg over some relation g ∈ G. By 

Theorem 4.1 and the definition of rewriting queries using views, we know local 

view definition lvi ∈ LVG can only be used to rewrite Qg to produce query Qg' if 

the body of lvi contains g. By Definition 4.17 (well-formed mediated schema 

mapping) we know that given two local views lvi and lvj, the bodies of lvi and lvj 

will only contain the same relation name, g, if ξ(r, msi), ξ(r, msj) where msi and 

msj are the mapping statements used to create lvi and lvj. By the definition of 

well-formed mediated schema mappings (Definition 4.17) we know that this 

requires that msi and msj have the same IDB name. 

By Theorem 4.2 we know that to produce a query Qg'' over EF, query Qg' 

must be expanded using the global view definitions in GVG. By Definition 4.16 

(well-formed mediated schema) we know that the only global view definitions 

that can be used to expand lvi and lvj must have bodies equal to the bodies of 

msi and msj. Hence any query Q written over a single relation g ∈ G will satisfy 

the requirements in CMSC 4.  □ 

4.3.4.5 CMSC 5: Minimality 
Recall CMSC 5 is “G is a minimal schema that satisfies CMSCs 1-4. That is, there exists no 

G' satisfying CMSCs 1-4 such that (1) G' << G or |G' | < G (i.e., G' contains fewer relations than 

G). and (2) ∀ relations g ∈ G ∃/  sets of attributes p1 ⊆ attributesg, p2 ⊆ attributesg s.t. p1 ∩ p2 = ∅ 

and ∀ σG ∈ I(G) πp1(πg(σG)) ⊆ πp2(πg(σG)).”  
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Lemma 4.8: Given input schemas E, F, and mapping MapE_F between them, if 

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and 

MapG_EF satisfy CMSC 5. 

Proof: By definition of well-formed mediated schema (Definition 4.16), G = 

GIDB ∪ GEF where GIDB = {gIDB ∈ G | ∃ idb ∈ IDB(MapE_F) and ξ(idb,gIDB)} and GEF 

= {gef ∈ G | ∃ ! ef ∈ EF s.t. ξ(ef, gef) and ef is not mapping-included in MapE_F}. 

We show that GIDB and GEF are minimal, including why relations from the other 

set cannot be used to minimize them further. 

GIDB: In order to satisfy CMSC 2 we must have a relation g ∈ G for each idb ∈ 

IDB(MapE_F) s.t. ξ(idb, g). By CMSC 4 we cannot combine relations in GIDB 

because they are not connected (Definition 4.7). In order to allow canonical 

queries for idb and each projection-free mapping statement pfms where IDB(ms) 

= idb (CMSC 2 and CMSC 3), attributesg must equalVars(MSidb)10, which is 

exactly as defined in Definition 4.16. Hence GIDB is minimal given CMSC 1-4. 

GEF: ∀ relations gef ∈ GEF, by construction of GEF ∃ ! ef ∈ EF s.t. ξ(ef, gef). 

By the definition of MapE_F it is either the case that (1) ∃ mapping statement ms 

∈ MapE_F s.t. ef ∈ body(ms) or (2) ∃/  ms ∈ MapE_F s.t. ef ∈ body(ms). Since these 

two cases span the entire space of possibilities, considering them both proves 

that GEF is minimal. We consider these cases separately.  

Case (1), ∃ mapping statement ms ∈ MapE_F s.t. ef ∈ body(ms). From the 

definition of a well-formed mediated schema (Definition 4.16) and GIDB, ∃! 

relation gidb ∈ GIDB s.t. ∃ mapping statement ms where ef ∈ Body(ms). Let 

IDB(ms) = idb. In order to satisfy CMSCs 2 and 3, there needs to be a canonical 

query over gidb for idb. Hence any attribute a ∈ attributesg corresponding to a 

variable in the head of ms must be represented such that any query over G 

retrieves the values from all mapping statements msidb ∈ MSidb s.t. IDB(MSidb) = 

                                                      
10 Recall that MSidb = the union of all mapping statements ms such that IDB(ms) = idb. 
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idb. Hence those attributes cannot be used to satisfy CMSC 1: Completeness. In 

order to satisfy the second clause in CMSC 5, no attribute of a relation in EF 

can be represented in a relation in G in two different fashions. Therefore gidb 

cannot have extra attributes to satisfy CMSC 1, and there must exist some 

relation gef1 ∈ G s.t. gef1 ≠ gidb. The minimal relation that can ensure 

completeness for ef is if namegef1 = nameef and attributesgef1 = attributesef which 

is exactly what gef is from the definition of a well-formed mediated schema 

(Definition 4.16 bullet 2).  

Case (2): ∃/  ms ∈ MapE_F s.t. ef ∈ body(ms). In this case there are no 

relations ef1 ∈ EF s.t. ef is connected to ef1 (Definition 4.7). Thus by CMSC 4, 

∀ ef1 ∈ EF s.t. ef ≠ ef, there can be no relations g ∈ G s.t. ξ(ef,g) and ξ(ef1,g). 

Hence there must exist some separate relation gef1 ∈ G s.t. ξ(ef, gef1). The 

minimal relation that can ensure completeness for ef is if gef1 = ef, which is 

exactly what gef is from the definition of a well-formed mediated schema 

(Definition 4.16 bullet 2).  

Putting together the two cases for GEF, GEF is minimal given CMSC 1-4. 

Since GIDB is also minimal given CMSC 1-4, G is minimal given CMSC 1-4. □ 

4.4 Alternate Definitions of G 
While we have described in depth a well-formed mediated schema (Definition 4.16), there 

may be other possible criteria that users may desire to create a mediated schema. Our goal in 

creating the well-formed mediated schema was to make it as general as possible, so adapting to 

these alternate definitions is quite easy. In this section we discuss other desired criteria. 

4.4.1 Relaxing the Mediated Schema Criteria 
In this section we consider relaxing the generic Mediated Schema Criteria. Section 4.4.1.1 

considers relaxing MSC 1 (Completeness). We do not consider relaxing MSCs 2 or 3, because 

the intersections and components expressed in the generic case identify relations that are 

defined to be relevant to the person creating the mapping. Similarly, we do not consider 

relaxing MSC 4. Section 4.4.1.2 considers relaxing MSC 5 (Minimality). 
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4.4.1.1 Relaxing MSC 1: Completeness 
If MSC 1 is relaxed, then there is no need to include relations in G to satisfy completeness.  

Example 4.18: Assume E = {e1(a,b), e3(c,d)}, F = {f1(e,f)} and MapE_F is: 

q1(x) :- e1(x,y), e3(x,t) 

q1(x) :- f1(x,z)  □ 

Consider Example 4.18. If the well-formed mediated schema definition (Definition 4.16) is 

used, G contains relations q1(x,y,z,t), e1(a,b), e3(c,d). The semantics of the well-formed mediated 

schema is that MapE_F is being used to express how overlapping information is accessed in the 

mediated schema, but all tuples should be represented somehow in the mediated schema. 

Because only relations that are mapping-included are excluded, all instances from E and F are 

reachable from the mediated schema.  

However, the mediated schema creator may wish to use MapE_F to express exactly which 

tuples are accessible in the mediated schema. In Example 4.18 this implies that the mediated 

schema contains only the relation q1(x,y,z,t). Changing G is simple; bullet 1 of Definition 4.16 is 

ignored. Changing MapG_EF to satisfy this new definition is also simple; the mapping statements 

created in the second bullet of Definition 4.17 are simply excluded. 

4.4.1.2 Relaxing MSC 5: Minimality 
One could argue that rather than having just the relations needed for G to be complete, G 

should include all relations in E and F. In Example 4.18 this implies that the mediated schema 

has relations q1(x,y,z,t), e1(a,b), e3(c,d), and f1(e,f). This semantics is needed if each relation in E 

and F corresponds to a different potentially-interesting set of instances that is not recoverable 

without all relations. After modifying G to include all relations in EF, MapG_EF does not need to 

be changed at all. 

4.4.2 Modifying the Interpretation of Conjunctive Mappings 
One could make the case that a conjunctive mapping should not include all projection-free 

components (Definition 4.13). We consider here G', a mediated schema that does not contain all 



100 

 

 

 

projection-free components. Given a mapping statement ms ∈ MapE_F and a relation g ∈ G', s.t. 

ξ(ms,g), it would be unnecessary for g to contain the attributes corresponding to existential 

variables in MapE_F for non-mapping-included relations in ms. However, in this interpretation of 

conjunctive mappings, g would still be required to retain the attributes of mapping-included 

relations.  

Example 4.19. Assume the schemas and mappings in Example 4.13. Recall 

that f1 is not represented separately in G because f1 is mapping-included – it is 

already included in G due to the relations created as a result of MapE_F. Ignoring 

MSC 5 (Minimality), whereas G contains q1(x,y,z), our initial attempt at 

creating G' might be {e1(a,b), e2(c,d), q1(x), f1(e,f)}. Because all values of f1 are 

not represented in G' since q1(x,y,z), is not included in G', we cannot use q1 to 

provide completeness for f1, so we now must include f1 in G' as a separate 

relation. However, when we consider MSC 5, regardless of the fact that we no 

longer consider MapE_F to define projection-free components, q1 must be able to 

represent all values of f1, or G' is not a minimal schema. Hence G' = {e1(a,b), 

e2(c,d), q1(x,z)}. □ 

Hence, even though G' does not contain any relations for projection-free components, in the 

case of mapping-included relations G' is the same as G. Otherwise, the attributes for projection-

free components are not included and Definition 4.17 is changed so that the EDBs in LVG only 

include the attributes that actually occur in G'. 

It is worth noting that combining the change in G' with either of the two changes in Section 

4.4.1 can allow a significant simplification of MapG'_EF : if none of the relations in G that 

correspond to IDB names in MapG'_EF include attributes corresponding to existential variables in 

the mapping statements used to create them, MapG'_EF can be a simple GAV mapping. We 

expound further on the reasons for this in Section 4.6. 
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4.5 Extensions 

4.5.1 Merging More Than Two Local Sources 
In this chapter we have considered creating a mediated schema for two source schemas. 

However, most mediated schemas are created over more than two input schemas. There are two 

main choices for extending this work to merging more than two source schemas: (1) the source 

schemas can be merged all at once or (2) the schemas can be merged pair-wise. Some examples 

are shown in Batini, Lenzerini and Navathe (Batini et al. 1986). 

If the schemas are merged all at once, extending the definitions of a well-formed mediated 

schema (Definition 4.16) and mapping (Definition 4.17) is simple; replace every occurrence of 

EF in the definitions by all of the schemas over which the mediated schema is being created. 

Merging the schemas pair-wise allows for greater flexibility. However, it is more 

complicated as show in Example 4.20: 

Example 4.20. To pair-wise merge schemas E, F, and H, begin by merging E 

and F to form a new mediated schema M. M can now be merged with another 

schema H to form a new schema N. We begin by merging E and F using the 

following mappings 

m1(x,y) :- e1(x,y,z) 

m1(x,y) :- f1(w,x,y) 

This would result, as shown before, in the mediated schema relation m1(w, x, y, 

z) in schema M. IDB m1 could be used in the definition of a mapping statement, 

n1, that describes M’s intersection with H: 

n1(w,x,y) :- m1(w,x,y,z) 

n1(w,x,y) :- h1(v,w,x,y) 

to form the final mediated schema relation n1(v, w, x, y, z).  □ 

Rewriting queries in this situation becomes more difficult since the definition essentially 

requires composing GLAV mappings. For example, rewriting a query over N to a query over E 

in Example 4.20 would require first rewriting a query over the GLAV mapping MapN_MH and 
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then composing that result with a query rewritten over the GLAV mapping MapM_EF. Composing 

GLAV mappings in general is very complicated and beyond the scope of this thesis. Recent 

results on this topic can be found in (Madhavan et al. 2003) and (Fagin et al. 2004). 

Depending on the characteristics desired and the mappings provided, pair-wise merging of 

three or more schemas can be done either by providing a mapping between the intermediate 

schemas, such as MapM_G above, or by creating mappings to whichever source is logically 

closest and then composing the mappings. E.g., in Example 4.20 instead of having the input be 

a direct mapping MapM_H, relating M and H, the input could be a mapping MapE_H. Merging M and 

H requires a mapping MapM_H, which could be formed by taking the composition of MapE_H and 

MapE_M. This pair-wise method of mediated schema creation is likely to extend better to 

situations where the sources involved are more fluid, such as peer data management (Aberer et 

al. 2002; Arenas et al. 2003; Bernstein et al. 2002; Halevy et al. 2003; Ooi et al. 2003). 

4.5.2 Expanding Conjunctive Mappings to Consider More Complicated 
Queries 

4.5.2.1 Allowing Relations to be in Multiple Mapping Statements 
We now consider expanding our mappings to allow the same relations to be present in more 

than one mapping statement. Suppose, for example, we had a mapping: 

q1(x,y,z) :- e1(x,y), e2(y,z) 

q1(x,y,z) :- f1(x,y,z) 

q2(y,z,u) :- e2(y,z),e3(z,u) 

q2(y,z,u) :- f2(y,z,u) 

Note that e2 appears in the definition of both q1 and q2. What should the mediated schema be?  

One choice is that each IDB represents a separate relation of interest and that the correct 

semantics is to have both q1 and q2 as relations in the mediated schema. 

Another choice is to assume that equality in the mapping is transitive; e.g., the mapping 

specifies both that querying tuples of e2 should cause tuples of f1 to be queried and that querying 

tuples of e2 should cause tuples of f2 to be queried. However, since conjunctive queries do not 

disambiguate between the two choices, we do not consider them. 
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4.5.3 Limitations of Conjunctive Mappings 
Thus far we have been concentrating on the ambiguities of conjunctive mappings: that is, 

where the full extent of conjunctive mappings cannot be used because the semantics of the 

problem is not rich enough to know what the merged result should be. On the flip side, the use 

of conjunctive queries is overly restricts the relationships that can be expressed between 

elements in E and F. There are a large number of things that cannot be expressed, even when we 

restrict ourselves only to the domain of relational schemas: 

• Relationships that express anything other than equality between attributes. For example, 

SchemaSQL (Lakshmanan et al. 1996) allows attributes of one relation to be equated 

with data values in another. Conjunctive queries are not rich enough to handle this kind 

of a mapping. 

• Conjunctive mappings are incapable of expressing foreign keys or other such 

constraints. While it is true that we have artificially restricted our definition of relational 

schemas to exclude such constraints, this was partially done because the conjunctive 

mappings did not lead to considering them. 

• In addition, an orthogonal issue is whether or not to include a separate attribute 

expressing the lineage of the tuple. For example, using the inputs in Example 4.18, we 

could express the lineage of q1 by having the mediated schema contain q1(x,y,z,t,n) 

where n is the name of the relation that the tuple originates from. 

4.6 Global-As-View and Local-As-View 
We chose to use GLAV rather than either GAV or LAV mappings since neither is adequate 

to express the relationships required between the mediated schema and the source schemas. In 

this section we explore when the conjunctive mappings become complex enough that GAV and 

LAV are not rich enough in Sections 4.6.1and 4.6.2 respectively.  
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4.6.1 Global-As-View (GAV) 
In Global-As-View (GAV) each mediated relation is defined as a set of views over the 

database sources (for a recent survey of GAV approaches see (Lenzerini 2002)). So, for 

example, g1 might be defined as:  

g1(x, y) :- e1(x, y) 

g1(x, y) :- f2 (x, z), f3(z, y)  

To get all of the tuples for g1 it is necessary to take the join of f2 and f3 and union those 

results with the tuples in e1. GAV breaks down as a possible mapping language for our case 

when there are existential variables in any of the mapping statements.  

For example, take the mapping: 

q19(x) :- e1(x, z) 

q19(x) :- f1(x, y) 

The mapping states that the concept of x is common but e1 contains additional information 

about some attribute z and f1 contains additional information about some attribute y. 

According to the definition of G in Section 4.3.3.1 the corresponding mediated schema 

relation in G for q19 should be q19(x, y, z). A GAV definition must provide a value for each 

attribute in the mediated schema relation it is defining, such as one for q19. However, there is no 

conjunctive query that can define all of the attributes for q19 since the mapping indicates that the 

result should be the union of the tuples, not the intersection or join. Hence GAV cannot provide 

a valid view definition for this situation. While we could extend the language of GAV to be 

ILOG (Hull et al. 1990) instead of Datalog, GLAV mappings work as well. 

4.6.2 Local-As-View (LAV) 
In LAV each source relation is defined as a conjunctive view over the mediated schema. As 

an example, a source relation, e1, may be defined as a join over two mediated schema relations, 

g1 and g2, as follows: e1(x) :- g1(x, z), g2(z, y). A full algorithm for how to answer queries in 

LAV is given in Chapter 3. Here we provide a brief synopsis to understand what is relevant for 

the purposes of this section. 
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LAV may not contain enough sources to give an equivalent answer to the user’s query. For 

example, given only the mapping above (e1(x) :- g1(x, z), g2(z, y)) it is not possible to find a 

source to give all of these answers for the query q8(x, y) :- g1(x, y) ; the mapping gives us only 

g1 joined with g2, e.g., g1(x, z), g2(z, y). Hence in LAV queries are answered through a 

maximally-contained rewriting; that is, a rewriting that gives all possible sound answers for the 

query using the sources provided but the reformulated query is not guaranteed to be equivalent 

to the query over the mediated schema. 

As an additional consideration, data integration often operates with the open world 

assumption (Definition 2.6): That is, each data source is assumed to be sound but incomplete. In 

the example above, this means that e1 contains only valid tuples in g1 join g2, but it may not 

contain all such tuples. 

It can be shown that the maximally-contained rewriting of a conjunctive query, Q, over 

conjunctive views, V, using the open world assumption can be expressed as a set of conjunctive 

queries over the view. As an example, using e1 as defined above and the additional sources  

e2(x, y) :- g3(x, y)  

f3(x, y) :- g3(x, y)  

a query q9(a, b) :- g1(a, b), g3(a, c) can be rewritten: 

q9′(a, b) :- e1(a), e2(a, c) 

q9′(a, b) :- e1(a), f3(a, c) 

Note that (1) even though e2 and f3 have the same definition both must appear in the maximally-

contained rewriting since under the open world assumption they may contain different tuples 

and (2) the rewriting is not equivalent to q9. 

LAV breaks down in the context of conjunctive mappings between source schemas when the 

mapping statements consist of more than one subgoal. An example of this is: 

q13(x, y, z) :- e4(x, z), e5(z, y) 

q13(x, y, z) :- f4(x, y, z) 

The desired result again mimics the Datalog; answers to queries over q13 should consider 

tuples from the join of e4 and e5 with the union of tuples from f4. 
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Classic LAV cannot map this relationship completely. In LAV each source relation must be 

described as a query over the mediated schema. Hence some of the details of this relationship 

could be lost by declaring the mapping to be: 

e4(x, z) :- q13(x, y, z) 

e5(z, y) :- q13(x, y, z) 

f4(x, y, z) :- q13(x, y, z)  

However, while this would allow e4 and e5 to answer some queries, it would not allow 

combining them in order to answer queries about the entire mediated schema relationship. For 

example, they could not answer the query qm13(x, y, z) :- q13(x, y, z). 

While one can disagree over the meaning of having two mapping statements for the same 

IDB predicate (union vs. join) here the mapping clearly states that the result should be the join.  

4.7 Conclusions 
In this chapter we described a set of criteria for creating a relational mediated schema based 

on concepts from the literature and traditional metrics such as information capacity. We then 

showed how to translate these criteria to a conjunctive mapping and alternative semantics that 

may be desired.  

The problem of merging two schemas is not limited to the creation of a relational mediated 

schema. In Chapter 5 we describe how this problem can be treated more generically, both across 

data models and across applications. In Chapter 6 we revisit the solution presented here and 

show how to encode it in the generic solution presented in Chapter 5.  
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Chapter 5  

Generic Merge 

5.1 Introduction 
In Chapter 4 we discussed how to create a mediated schema based on a mapping comprised 

of queries. However, this is not the only situation in which two schemas must be combined in 

order to create a third schema. The problem of merging schemas lies at the core of many meta-

data applications, such as view integration, mediated schema creation for data integration, and 

ontology merging. In each case, two given schemas need to be combined into one. In this 

chapter, we consider this merging problem for more than just relational schemas; we consider 

the merging of models. A model is a formal description of a complex application artifact, such 

as a database schema, an application interface, a UML model, an ontology, or a message format. 

Because there are many different kinds of models and applications, this problem has been 

tackled independently in specific domains many times. This chapter provides a generic 

framework that can be used to merge models in all these contexts.  

Combining two models requires first determining how the two models are related and then 

merging the models based on those relationships. These relationships may take the form of the 

conjunctive mappings in Chapter 4, or they may be given in some other format. Finding 

relationships between schemas is called schema matching; it is a major topic of ongoing 

research and is not covered in this thesis; see (Rahm et al. 2001) for a recent survey and (He et 

al. 2003), (Kang et al. 2003) and (Dhamankar et al. 2004) for examples of work since then. 

Rather, this chapter focuses on combining the models after the relationships between schemas 

are established. We encapsulate the problem in an operator, Merge, which takes as input two 

models, A and B, and a mapping MapA_B between them that embodies the given inter-schema 

relationships. It returns a third model that is the “duplicate-free union” of A and B with respect 

to MapA_B – A and B have been unioned together, but duplicates have been removed. This is not 

as simple as set union because the models have structure, so the semantics of “duplicates” and 
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duplicate removal may be complex. In addition, the result of the union can manifest constraint 

violations, called conflicts, that Merge must repair. 

An example of the problems addressed by Merge can be seen in Figure 5.1. It shows two 

representations of Actor, each of which could be a class, concept, table, etc. Models A and B are 

to be merged. MapA_B is the mapping between the two; relationships relating the models are 

shown by dashed lines. In this case, it seems clear that Merge is meant to collapse A.Actor and 

B.Actor into a single element, and similarly for Bio. Clearly, A.ActID should be merged with 

B.ActorID, but what should the resulting element be called? What about the actor’s name? 

Should the merged model represent the actor’s name as one element (ActorName), two elements 

(FirstName and LastName), three elements (ActorName with FirstName and LastName as 

children), or some other way?  

These cases of differing representations between input models are called conflicts. For the 

most part, conflict resolution is independent of the representation of A and B. Yet most work on 

merging schemas is data-model-specific, revisiting the same problems for ER variations 

(Spaccapietra et al. 1994), XML (Beeri et al. 1999), data warehouses (Calvanese et al. 1998), 

semi-structured data (Bergamaschi et al. 1999), and relational and object-oriented databases 

(Buneman et al. 1992). These works, like ours, consider merging only the models, not the 

instances of the models. Some models, such as ontologies and ER diagrams, have no instance 

data, and merging the models is a necessary precursor to merging those models with instance 

data. 

Actor

First
Name

ActID Last
Name

Bio

Actor

Actor
ID

Actor
Name Bio

Model A Model BMapA_B

 

Figure 5.1: Examples of models to be merged 

The similarities among these solutions offer an opportunity for abstraction. One important 

step in this direction was an algorithm for schema merging and conflict resolution of models by 

Buneman, Davidson, and Kosky (hereafter BDK) (Buneman et al. 1992). Given a set of pair-



109 

 

 

 

 

wise correspondences between two models that have Is-a and Has-a relationships, BDK give a 

formal definition of merge and show how to resolve a certain kind of conflict to produce a 

unique result. We use their theoretical algorithm as a base, and expand the range of correspon-

dences, model representations, conflict categories, and applications, yielding a robust and 

practical solution. 

The main contribution of this chapter is the design of a practical generic merge operator. It 

includes the following specific contributions: 

• Generic requirements for merge that every design should satisfy. These requirements 

differ from the ones in Chapter 4 by (1) being for any application in which merge is 

used, not just creating a mediated schema for data integration (2) being for any data 

model, not just relational and (3) using a more general mapping language. 

• The use of an input mapping that is a first-class model, enabling us to express richer 

correspondences than previous approaches. 

• A characterization of when Merge can be automatic.  

• A taxonomy of the conflicts that can occur and a definition of conflict resolution 

strategies using the mapping’s richer correspondences. 

• Experimental evaluation showing that our approach scales to a large real world 

application.  

• An analysis that shows our approach subsumes previous merge work. 

Merge is one of the operators proposed in (Bernstein 2003) as part of Model Management, a 

framework that consists of operators for manipulating models and mappings. Other Model 

Management operators include: Match, which returns a mapping between two given models; 

Apply, which applies a given function to all the elements of a model; and Diff, which, given two 

models and a mapping, returns a model consisting of all items in the first model that are not in 

the second model (Bernstein 2003). In our analysis of previous work, we sometimes refer to 

other Model Management operators to show that our approach subsumes the previous work. 

The chapter is structured as follows: Section 5.2 gives a precise definition of Merge. Section 

5.3 describes our categorization of conflicts that arise from combining two models. Section 5.4 
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describes how to resolve conflicts in Merge, often automatically. Section 5.5 defines our merge 

algorithm. Section 5.6 discusses the associativity and commutativity of Merge. Section 5.7 

discusses alternate merge definitions and how to simulate one of them using Merge and other 

Model Management operators. Section 5.8 evaluates Merge experimentally by merging two 

large anatomy databases and conceptually by showing how our approach subsumes previous 

work. Section 5.9 is the conclusion. 

5.2 Problem Definition 

5.2.1 Representation of Models 
Defining a representation for models requires (at least) three meta-levels. Using 

conventional meta-data terminology, we can have: a model, such as the database schema for a 

billing application; a meta-model, which consists of the type definitions for the objects of 

models, such as a meta-model that says a relational database schema consists of table 

definitions, column definitions, etc.; and a meta-meta-model, which is the representation 

language in which models and meta-models are expressed, for example a generic meta-meta-

model may say that a schema could consist of objects, where an object could be a table, XML 

element, or a class definition.  

The goal of our merge operator, Merge, is to merge two models based on a mapping between 

them. For now, we discuss Merge using a small meta-meta-model (which we extend in Section 

5.4.1). It consists of the following: 

1. Elements with semi-structured properties (i.e., for an element X, there may exist 0, 1, or 

many p properties). Elements are the first class objects in a model. Three properties are 

required: Name, ID, and History. Name is self-explanatory. ID is the element’s unique 

identifier, used only by the Model Management system. History describes the last 

operator that acted on the element. 
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2. Binary, directed, kinded11 relationships with cardinality constraints. A relationship is a 

connection between two elements. We enumerate relationship kinds in Section 5.4.1. 

Relationships can be either explicitly present in the model or implied according to the 

meta-meta-model’s rules. Such a rule might say that “a is a b” and “b is a c” implies 

that “a is a c.” Relationship cardinalities are omitted from the figures for ease of 

exposition. 

These models are much more general than the relational models we have been using before 

now. In Chapter 6 we show how to encode relational schemas in this representation. Figure 5.1 

shows an example model in this small meta-meta-model; elements are shown as nodes, the 

value of the Name property is the node’s label, mapping relationships are edges with 

arrowheads, and sub-element relationships are diamond-headed edges.  

5.2.2 Merge Inputs 
The inputs to Merge are the following: 

1. Two models: A and B. 

2. A mapping, MapA_B, which is a model that defines how A and B are related. 

3. An optional designation that one of A or B is the preferred model. When Merge faces a 

choice that is not specified in the mapping, it chooses the option from the preferred 

model, if there is one. 

4. Optional overrides for default Merge behavior (explained further below). 

The input mapping is more expressive than just simple equalities; it is a first-class model 

consisting of elements and relationships. Some of its elements are mapping elements. A 

mapping element is like any other element except it also is the origin of a mapping relationship, 

M(x, y), which specifies that the origin element, x, represents the destination element, y. So a 

                                                      
11 We use the word “kinded” to denote that the relationships are of different named kinds.  

We use “kinded” rather than “typed” to avoid confusion with the fact that there is a kind of 

relationship called “Type-of”. 
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given mapping element, x, represents all elements y such that M(x, y). All elements of MapA_B in 

Figure 5.1 are mapping elements. In MapA_B in Figure 5.3 AllBios is not a mapping element. 

There are two kinds of mapping relationships: equality and similarity. An equality mapping 

relationship Me asserts that for all y1, y2 ∈ Y such that Me(x, y1) and Me(x, y2), y1=y2. All 

elements represented by the same equality mapping relationship are said to correspond to one 

another. A similarity mapping relationship Ms asserts that the set of all y ∈ Y such that Ms(x, y) 

are related through a complex expression that is not interpreted by Merge. This expression is the 

value of x’s Expression property, which is a property of all mapping elements that are the origin 

of mapping similarity relationships. Equality mapping relationships are represented by double-

dashed-lines (=); similarity mapping relationships are represented by double-wavy-lines (≈). 

Figure 5.2 shows a mapping that mostly consists of mapping equality relationships but also has 

mapping similarity relationships originating from element m2. 

Whereas the conjunctive mappings we used in Chapter 4 have instance-level semantics, 

these mappings are meant to be more generic, and thus they are uninterpreted. In Chapter 6 we 

show how to encode conjunctive mappings in this representation. 

Note that in (Pottinger et al. 2003) instead of having mapping equality relationships and 

mapping similarity relationships, we distinguished between equality vs. similarity of elements x 

∈ MapE_F and y ∈ E or F by (1) a relationship M(x, y) indicating that there was a mapping 

relationship that originated at x and ended at y and (2) the “how related” property of x denoting 

whether the elements are related by equality or similarity. 

Actor

First
NameActID Last

NameBio

Actor

Actor
ID

Actor
Name Bio

Model A Model BMapA_B'

m1

m2 m3 m4

m5 m6

 

Figure 5.2: A mapping using both equality mapping relationships (the double-dashed-
lines) and similarity mapping relationships (the double-wavy lines) 
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Given this rich mapping structure, complex relationships can be defined between elements in 

A and B, not just simple correspondences. For example, the mapping in Figure 5.3 (which is 

between the same models in Figure 5.1) shows that the FirstName and LastName of model B 

should be sub-elements of the ActorName element of model A; this is expressed by element m4, 

which represents ActorName in A and contains elements m5 and m6 which represent FirstName 

and LastName respectively in B.  

 

Actor

First
NameActID Last

NameBio

Actor

Actor
ID

Actor
Name Bio

Model A Model BMapA_B

m1

m3 m4

m5 m6

All
Bios

m7
Name=
“Official”

m8
Name=

“Unofficial”  

Figure 5.3: A more complicated mapping between the models in Figure 5.1 

A mapping can also contain non-mapping elements that do not represent elements in either A 

or B but help describe how elements in A and B are related, such as AllBios in Figure 5.3. The 

mapping MapA_B in Figure 5.3 indicates that A.Bio should be renamed “Official,” B.Bio should be 

renamed “Unofficial,” and both are contained in a new element, AllBios, that appears only in 

MapA_B.  

A mapping can express similarity between elements in A and B. For example, if A.Bio is a 

French translation of B.Bio and this needs to be reflected explicitly in the merged model, they 

could be connected by similarity mapping relationship to a mapping element with an 

Expression property “A.Bio = English2French(B.Bio)” not shown in Figure 5.3. 

Prior algorithms, whose mappings are not first-class models, cannot express these relation-

ships. Often, they require user intervention during Merge to incorporate relationships that are 

more complicated than simply equating two elements. Merge can encode simple 

correspondences in a mapping, so it can function even if a first-class mapping is unavailable. 
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5.2.3 Merge Semantics 
The output of Merge is a model that retains all non-duplicated information in A, B, and 

MapA_B; it collapses information that MapA_B declares redundant. If we consider the mapping to 

be a third model, this definition corresponds to the least-upper-bound defined in BDK 

(Buneman et al. 1992), “a schema that presents all the information of the schemas being 

merged, but no additional information.” We require Merge to be generic in the sense that it does 

not require its inputs or outputs to satisfy any given meta-model. We consider another merge 

definition in Section 5.7. In Chapter 6, we show how Merge compares with the conjunctive 

mediated schema creation in Chapter 4. 

We now define the semantics of Merge more precisely. The function “Merge(A, MapA_B, B) 

 G” merges two models A and B based on a mapping MapA_B, which describes how A and B 

are related, producing a new model G that satisfies the following Generic Merge Requirements 

(GMRs). 12 

1. Element preservation: Each element in the input has a corresponding element in G. 

Formally: each element e ∈ A ∪ B ∪ MapA_B corresponds to exactly one element e′ ∈ 

G. We define this correspondence as χ(e, e′); informally χ(e, e′) represents that e′, is 

derived in part from e. 

2. Equality preservation: Input elements are mapped to the same element in G if and 

only if they are equal in the mapping, where equality in the mapping is transitive. 

Formally: two elements s, t ∈ A ∪ B are said to be equal in MapA_B if there is an 

element v ∈ A ∪ B and an equality mapping element x such that Me(x, s) and Me(x, v), 

where either v = t or v is equal to t in MapA_B. If two elements s, t ∈ A ∪ B are equal in 

MapA_B, then there exists a unique element e ∈ G such that χ(s, e) and χ(t, e). If s and t 

are not equal in MapA_B, then there is no such e, so s and t correspond to different 

elements in G. 

                                                      
12 Whereas the Mediated Schema Criteria in Chapter 4 were interpreted with respect to the 

semantics that they are used in, the GMRs are left uninterpreted so that they are more generic. 
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3. Relationship preservation: Each input relationship is explicitly in or implied by G. 

Formally: for each relationship R(s, t) ∈ A ∪ B ∪ MapA_B where s, t ∈ A ∪ B ∪ MapA_B 

and R is not a mapping relationship Me(s, t) or Ms(s, t) with s ∈ MapA_B, if χ(s, s′) and 

χ(t, t′), then either s′ = t′, R(s′, t′) ∈ G, or R(s′, t′) is implied in G.  

4. Similarity preservation: Elements that are declared to be similar (but not equal) to one 

another in MapA_B retain their separate identity in G and are related to each other by 

some relationship. More formally, for each pair of elements s, t ∈ A ∪ B, where s and t 

are the destination of similarity mapping relationships originating at a mapping element, 

x, in MapA_B and s and t are not equal, there exist elements e, s′, t′ ∈ G and a meta-

model specific non-mapping relationship R such that χ(s, s′), χ(t, t′), R(e, s′), R(e, t′), 

χ(x, e), and e includes an expression relating s and t. 

5. Meta-meta-model constraint satisfaction: G satisfies all constraints of the meta-meta-

model. G may include elements and relationships in addition to those specified above 

that help it satisfy these constraints. Note that we do not require G to conform to any 

meta-model. 

6. Extraneous item prohibition: Other than the elements and relationships specified 

above, no additional elements or relationships exist in G. 

7. Property preservation: For each element e ∈ G, e has property p if and only if ∃ t ∈ A 

∪ B ∪ MapA_B s.t. χ(t, e) and t has property p. 

8. Value preference: The value, v, of a property p, for an element e is denoted p(e) = v. 

For each e ∈ G, p(e) is chosen from mapping elements corresponding to e if possible, 

else from the preferred model if possible, else from any element that corresponds to e. 

More formally: 

• T = {t | χ(t, e)} 

• J ={j ∈ (T ∩ MapA_B) | p(j) is defined} 

• K ={k ∈ (T ∩ the preferred model) | p(k) is defined} 

• N ={n ∈ T | p(n) is defined} 

o If J ≠ ∅ then p(e) = p(j) for some j ∈ J 
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o Else if K ≠ ∅, then p(e) = p(k) for some k ∈ K 

o Else p(e) = p(n) for some n ∈ N 

 

GMR 8 illustrates our overall conflict resolution strategy: give preference first to the option 

specified in the mapping (i.e., the explicit user input), then to the preferred model, else choose a 

value from one of the input elements. The ID and History properties are determined differently 

as discussed in Section 5.5. 

For example, the result of merging the models in Figure 5.3 is shown in Figure 5.4. Note that 

the relationships Actor-FirstName and Actor-LastName in model B and the Actor-Bio 

relationships in both models are implied by transitivity in Figure 5.4, so GMR 3 is satisfied. 

 

ActorID AllBios ActorName

LastNameFirstName

Actor

UnofficialOfficial  

Figure 5.4: The result of performing the merge in Figure 5.3 

The GMRs are not always satisfiable. For example, if there are constraints on the cardinality 

of relationships that are incident to an element, then there may be no way to preserve all 

relationships. Depending on the relationships and meta-meta-model constraints, there may be an 

automatic resolution, manual resolution or no possible resolution that satisfies the GMRs. In 

Section 5.4 we present conflict resolutions for a set of common constraints and discuss when 

such resolution can be automatic. We also specify default resolution strategies for each category 

of constraint and note when resolution can be made to satisfy the GMRs outlined above. 

5.3 Conflict Resolution 
Determining the merged model requires resolving conflicts in the input. We categorize 

conflicts based on the meta-level at which they occur: 

• Representation conflicts (Section 5.3.1) are caused by conflicting representations of 

the same real world concept – a conflict at the model level. For example, one 

representation conflict is that in Figure 5.1 model A represents Name by one element, 
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ActorName, while model B represents it by two elements, FirstName and LastName. 

Resolving these conflicts requires manual user intervention. Such conflict resolution is 

necessary for many uses of mappings – not just Merge. Hence we isolate it from Merge 

by requiring it to be captured in the input mapping. 

• Meta-model conflicts (Section 5.3.2) are caused by the constraints in the meta-model 

(e.g., SQL DDL). For example, suppose that in Figure 5.3 Actor is a SQL table in model 

A, an XML database in model B, and a SQL table in the merged model. If the mapping 

in Figure 5.3 is used, there will be a meta-model conflict in the merge result because 

SQL DDL has no concept of sub-column. This does not violate any principle about the 

generic merged outcome. Rather, it is meta-model-specific. Enforcing such constraints 

is inherently non-generic, so we resolve them using a separate operator after Merge. 

• Fundamental conflicts (Section 5.3.3) are caused by constraints in the meta-meta-

model. These conflicts must be resolved to ensure that the merge result conforms to the 

meta-meta-model. For example, if a model had an element with two types, this would 

be a conflict in many meta-models, not just in one. Unlike representation conflicts, 

fundamental conflicts must be resolved by Merge since subsequent operators count on 

the fact that the Merge result is a well-formed model. 

5.3.1 Representation Conflicts 
A representation conflict arises when two models describe the same concept in different 

ways. For example, in Figure 5.1 model A represents Name by one element, ActorName, while 

model B represents it by two elements, FirstName and LastName. After merging the two 

models, should Name be represented by one, two or three elements? The decision is application 

dependent. 

Merge resolves representation conflicts using the input mapping. Having a mapping that is a 

model allows us to specify that elements in models A and B are either: 

• The same, by being the destination of equality mapping relationships that originate at 

the same mapping element. Merge can collapse these elements into one element that 

includes all relationships incident to the elements in the conflicting representations. 
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• Related by relationships and elements in our meta-meta-model. E.g., we can model 

FirstName and LastName in A as sub-elements of ActorName in B by the mapping 

shown in Figure 5.3. 

• Related in some more complex fashion that we cannot represent using our meta-meta-

model’s relationship kinds. E.g., we can represent that ActorName equals the 

concatenation of FirstName and LastName by a mapping element that has similarity 

mapping relationships incident to all three and an Expression property describing the 

concatenation. Resolution can be done by a later operator that understands the 

semantics of Expression. 

The mapping can also specify property values. For example, in Figure 5.3 MapA_B specifies 

that the elements contained by AllBios should be named Official and Unofficial. 

Solving representation conflicts has been a focus of the ontology merging literature (Noy et 

al. 1999; Noy et al. 2000) and of database schema merging (Batini et al. 1986; Spaccapietra et 

al. 1994). 

5.3.2 Meta-model Conflicts 
A meta-model conflict occurs when the merge result violates a meta-model-specific (e.g., 

SQL DDL) constraint. For example, suppose that in Figure 5.3 Actor is a SQL table in model A, 

an XML database in model B, and a SQL table in the merged model. If the mapping in Figure 

5.3 is used, there will be a meta-model conflict in the merge result because SQL DDL has no 

concept of sub-column. This does not violate any principle about the generic merged outcome. 

Rather, it is meta-model-specific. Traditionally, merge results are required to conform to a given 

meta-model during the merge. However, since Merge is meta-model independent, we do not 

resolve this category of conflict in Merge. Instead, we break out coercion as a separate step, so 

that Merge remains generic and the coercion step can be used independently of Merge. We 

therefore introduce an operator, EnforceContraints, that coerces a model to obey a set of 

constraints. This operator is necessarily meta-model specific. However, it may be possible to 

implement it in a generic way, driven by a declarative specification of each meta-model’s 

constraints. EnforceContraints would enforce other constraints, such as integrity constraints, as 

well. Preliminary work suggests that some of the work created for the purpose of translating 
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between data models can be leveraged in order to create this operator. In particular some of the 

work by Atzeni and Torlone in viewing meta-models as consisting of different patterns and 

changing a schema from one meta-model to another (Atzeni et al. 1996) seems promising, as 

does some of the similar work in M(DM) (Barsalou et al. 1992). 

5.3.3 Fundamental Conflicts 
The third and final category of conflict is called a fundamental conflict. It occurs above the 

meta-model level at the meta-meta-model level, the representation to which all models must 

adhere. A fundamental conflict occurs when the result of Merge would not be a model due to 

violations of the meta-meta-model. This is unacceptable because later operators would be 

unable to manipulate it. 

One possible meta-meta-model constraint is that an element has at most one type. We call 

this the one-type restriction. Given this constraint, an element with two types manifests a 

fundamental conflict. For example in the model fragments in Figure 5.5(a) ZipCode has two 

types: Integer and String. In the merge result in Figure 5.5(b), the two ZipCode elements are col-

lapsed into one element. But the type elements remain separate, so ZipCode is the origin of two 

type relationships. 

ZipCode ZipCode

Integer String

m1 ZipCode

Integer String

(a) (b) 

Figure 5.5: A merge that violates the one-type restriction 

Since Merge must return a well-formed instance of the meta-meta-model, it must resolve 

fundamental conflicts. Resolution rules for some fundamental conflicts have been proposed, 

such as (Buneman et al. 1992) for the one-type restriction. We have identified other kinds of 

fundamental conflicts and resolution rules for them which we describe in Section 5.4 and 

incorporate into our generic Merge. 
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Alternate merge semantics might ignore GMR 1 (Element preservation) and resolve 

fundamental conflicts by requiring the mapping to include preferences to resolve the conflict. 

For example, the mapping in Figure 5.5 could specify that the type of ZipCode is String, and 

Merge should ignore the conflicting information that ZipCode is of type Integer. In general we 

do not recommend this strategy because it loses information (e.g., that ZipCode is of type 

Integer). However, since Merge allows users to specify alternate resolutions, as discussed in 

Section 5.4, this strategy can be easily incorporated by specifying it as the resolution strategy 

for one-type conflicts.  

The choice of meta-meta-model, particularly the constraints on the relationships, is therefore 

integrally related to Merge. However, since we are skeptical that there is a meta-meta-model 

capable of solving all meta-data management problems, we chose the following approach: We 

define the properties of Merge using very few assumptions about the meta-meta-model  only 

that it consists of elements and relationships. We then define fundamental conflict resolution for 

a meta-meta-model that includes many of the popular semantic modeling constructs. Finally we 

describe other typical meta-meta-model conflicts and provide conflict resolution strategies for 

them. 

5.4 Resolving Fundamental Conflicts 
The meta-meta-models we consider are refinements of the one described in Section 5.2.1. 

Section 5.4.1 describes Vanilla, an extended entity-relationship-style meta-meta-model that 

includes many popular semantic modeling constructs. Section 5.4.2 describes our merging 

strategy, both for Vanilla and for relationship constraints that may be used in other meta-meta-

models. 

5.4.1 The Vanilla Meta-Meta-Model 
Elements are first class objects with semi-structured properties (i.e., for an element X, there 

may exist 0, 1, or many p properties). Name, ID, and History are the only required properties. 

These are properties of the element viewed as an instance, not as a template for instances. For 

example, suppose an element e represents a class definition, such as Person. Viewing e as an 

instance, it has a Name property whose value is “Person,” and might have properties 
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CreatedBy, LastModifiedBy, Comments, and IsInstantiable. To enable instances of Person to 

have a property called Name (thereby viewing e as a template for an instance), we create a 

relationship from e to another element, a, where Name(a) = “Name.”  

Relationships are binary, directed, kinded, and have an optional cardinality constraint. They 

are also ordered, as in XML, but the order can be ignored in meta-models that do not use it. A 

relationship kind is one of "Associates", "Contains", "Has-a", "Is-a", and "Type-of" (described 

below). Reflexive relationships are disallowed. We assume that between any two elements there 

is at most one relationship of a given kind and cardinality pairing. 

Bob

Alice

 Column

Table

 Column

Key

 Student

Person

 Column

Street

 

(a) 

Associates 

(b) 

Contains 

(c) 

Has-a 

(d) 

Is-a 

(e) 

Type-of 

Figure 5.6: Different relationship kinds in Vanilla 

There are cases where the previous restriction is inconvenient. For example, one might want 

two kinds of Has-a relationships between "Movie" and "Person", namely "director" and "actor". 

This can be handled either by specializing Person into two sub-elements, or by reifying the 

director and actor Has-a relationships (i.e., turn the relationships into objects), which is the 

choice used in Vanilla. We disallow multiple named relationships of the same cardinality and 

kind between two elements because it leads to a need for correspondences between named 

relationships of different models. E.g., if the director and actor relationships are called 

"réalisatuer" and "acteur" in another model, we need a relationship between director and 

réalisatuer and between actor and acteur. These correspondences would complicate the meta-

meta-model. The same expressiveness is gained by reifying relationships, thereby avoiding this 

complexity. Merge does not treat these reified relationships specially; since the GMRs require 

all elements and relationships to appear in the merged model, they will appear in the merged 

model as well. 
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A relationship R(x, y) between elements x and y may be a mapping similarity or equality 

relationship, Me(x, y) or Ms(x, y), described earlier, or one of the following: 

• Associates - A(x, y) means x is associated with y. This is the weakest relationship that 

can be expressed. It has no constraints or special semantics. Figure 5(a) says that Alice 

is Associated with Bob. 

• Contains - C(x, y) means container x contains containee y. Intuitively, a containee 

cannot exist on its own; it is a part of its container element. Operationally, this means 

that if all of the containers of an element, y, are deleted, then y must be deleted. 

Contains is a transitive relationship and must be acyclic. If C(x, y) and x is in a model 

M, then y is in M as well. Figure 5.6(b) says that Table Contains Column. 

• Has-a - H(x, y) means x has a sub-component y (sometimes called “weak aggregation”). 

Has-a is weaker than Contains in that it does not propagate delete and can be cyclic. 

Figure 5.6(c) says that Key Has-a Column. 

• Is-a - I(x, y) means x is a specialization of y. Like Contains, Is-a is transitive, acyclic, 

and implies model membership. Figure 5.6(d) says that Student Is-a Person. 

• Type-of - T(x, y) means x is of type y. Each element can be the origin of at most one 

Type-of relationship (the one-type restriction described in Section 5.3.3). Figure 5.6(e) 

says that the Type-of Street is Column. 

Vanilla has the following cross-kind-relationship implications that imply relationships based 

on explicit ones: 

• If T(q, r) and I(r, s) then T(q, s) 

• If I(p, q) and H(q, r) then H(p, r) 

• If I(p, q) and C(q, r) then C(p, r) 

• If C(p, q) and I(q, r) then C(p, r) 

• If H(p, q) and I(q, r) then H(p, r) 

A model L is a triple (EL, Root(L), ReL) where EL is the set of elements in L, Root(L) ∈ EL is 

the root of L, and ReL is the set of relationships in L. Given a set of elements E and relationships 

Re (which may include mapping relationships), membership in L is determined by applying the 
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following rules to Root(L) ∈ E, adding existing model elements and relationships until a fix 

point is reached (i.e., until applying each rule results in no new relationships):  

• I(x, y), x ∈ EL  y ∈ EL; if an element x is in the model, then its generalization y is in 

the model 

• C(x, y), x ∈ EL  y ∈ EL; if a container x is in the model, then its containee y is in the 

model 

• T(x, y), x ∈ EL y ∈ EL; if an element x is in the model, then its type y is in the model 

• R(x, y), x ∈ EL, y ∈ EL  R(x, y) ∈ ReL 

• Me(x, y), x ∈ EL  Me(x, y) ∈ ReL 

• Ms(x, y), x ∈ EL  Ms(x, y) ∈ ReL 

Since a mapping is a model its elements must be connected by relationships indicating 

model containment (Contains, Is-a, or Type-of). However, since these relationships obfuscate 

the mapping, we often omit them from figures when they do not affect Merge’s behavior. 

In what follows, when we say relationships are “implied”, we mean “implied by transitivity 

and cross-kind-relationship implication.” 

We define two models to be equivalent if they are identical after all implied relationships are 

added to each of them until fixpoint is reached (i.e., applying each rule results in no new 

relationships).  

A minimal covering of a model is an equivalent model that has no edge that is implied by the 

union of the others. A model can have more than one minimal covering. For example, the model 

in Figure 5.7(a) is a minimal covering of the model in Figure 5.7(b). 

To ensure that the merge result G is a model, we require that Root(MapA_B) is a mapping 

element with Me(Root(MapA_B), Root(A)) and Me(Root(MapA_B), Root(B)), and that Root(MapA_B) 

is the origin of no other mapping relationships. 
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Movie

Comedy

Slapstick  

Movie

Comedy

Slapstick  

(a) Model M (b) Model N 

Figure 5.7: Model M is a minimal covering of model N 

5.4.2 Meta-Meta-Model Relationship Characteristics and Conflict 
Resolution 

This section explores resolution of fundamental conflicts in Merge with respect to both 

Vanilla and other meta-meta-models: what features lead to an automatic Merge, when manual 

intervention is required, and default resolutions. The resolution strategies proposed here are 

incorporated in the Merge algorithm in Section 5.5. Since the default resolution may be 

inadequate due to application specific requirements, Merge allows the user to either (1) specify 

an alternative function to apply for each conflict resolution category or (2) resolve the conflict 

manually. 

Vanilla has only two fundamental constraints (i.e., that can lead to fundamental conflicts): 

(1), the Is-a and Contains relationships must be acyclic and (2) the one-type restriction. These 

fundamental conflicts can be resolved fully automatically in Vanilla.  

5.4.2.1 Relationship-Element Cardinality Constraints 
Many meta-meta-models restrict some kinds of relationships to a maximum or minimum 

number of occurrences incident to a given element. For example, the one-type restriction says 

that no element can be the origin of more than one Type-of relationship. Such restrictions can 

specify minima and/or maxima on origins or destinations of a relationship of a given kind. 

Cardinality Constraints in Vanilla - Merge resolves one-type conflicts using a customization of 

the BDK algorithm (Buneman et al. 1992) for Vanilla; a discussion of the change can be found 

in Appendix C. Recall Figure 5.5 where the merged ZipCode element has both Integer and 
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String types. The BDK resolution creates a new type that inherits from both Integer and String 

and replaces the two Type-of relationships from ZipCode by one Type-of relationship to the 

new type, as shown in Figure 5.8. Note that both of the original relationships (ZipCode is of 

type Integer and String) are implied. 

ZipCode
Integer String

NewType  

Figure 5.8: Resolving the one-type conflict of Figure 5.5 

This creates a new element, NewType in Figure 5.8, whose Name, ID, and History properties 

must be determined. The ID property is assigned an unused ID value, and Name is set to be the 

names of the elements it inherits from, delineated by a slash; e.g., NewType in Figure 5.8 is 

named “Integer/String.” The History property records why the element came into existence, in 

this case, that Merge created it from the elements Integer and String. As with any other conflict 

resolution, this behavior can be overridden. 

This approach to resolving one-type conflicts is an example of a more general approach, 

which is the one we use as a default: to resolve a conflict, alter explicit relationships so that they 

are still implied and the GMRs are still satisfied. Thus, the more implication rules in the meta-

meta-model, the easier conflict resolution is. 

Requiring that G, the output of Merge, is a model is a form of a minimum element-

relationship cardinality; by Vanilla’s definition, a model G satisfies model membership if all 

elements of G are reachable from G’s root by following containment relationships: Is-a, 

Contains, and Type-of. Hence, each element must be the origin or destination of at least one 

such relationship (depending on the relationship containment semantics). Ignoring conflict reso-

lution, we know that G satisfies this constraint: 

• χ(Root(A), Root(G)), χ(Root(B), Root(G)), χ(Root(MapA_B), Root(G)) from the input and 

GMR 2 (Equality preservation). 
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• Root(G) is not the destination of any relationships (and hence is a candidate to be root) 

because of GMR 6 (Extraneous item prohibition) and because it only corresponds to 

Root(A), Root(B), and Root(MapA_B) which likewise are roots. 

• Each element g ∈ G can be determined to be a member of the model with root Root(G): 

Each element e such that χ(e, g) must be a member of A, B, or MapA_B. Assume without 

loss of generality that e ∈ A. Then there must be a path P of elements and relationships 

from Root(A) to e that determines that e is in A. By GMR 1 (Element preservation) and 

GMR 3 (Relationship preservation), a corresponding path P′ must exist in G, and hence 

g is a member of the model with root Root(G). 

Hence, conflict resolution notwithstanding, G is guaranteed to satisfy model membership. 

After conflict resolution for Vanilla, G still satisfies model membership; the BDK solution to 

the one-type restriction only adds relationships and elements that satisfy model containment. As 

shown in Section 5.4.2.2, the acyclic resolution only collapses a cycle, which cannot disturb the 

model membership of the remaining element. 

Cardinality Constraints in General - There are two kinds of relationship-element cardinality 

constraints: for some n: (1) at least n relationships of a given kind must exist (minimality 

constraints) and (2) at most n relationships of a given kind may exist (maximality constraints).  

Since Merge (excluding conflict resolution) preserves all relationships specified in the input, 

the merged model is guaranteed to preserve minimality constraints. For example, one potential 

minimality constraint is that each element must be the origin of one Type-of relationship. If this 

were the case, then each of the input models, A, B, and MapA_B would have to obey the 

constraint. Hence each element in A, B, and MapA_B would be the origin of at least one Type-of 

relationship. Since Merge preserves the relationships incident to each element, each element in 

G is also the origin of at least one Type-of relationship. Conflict resolution may break this 

property, so conflict resolution strategies must consider these kinds of constraints.  

More care is required for a maximality constraint, such as the one-type restriction. If it 

occurs in a meta-meta-model, the generic merge attempts resolution by removing redundant 

relationships. Next, the default Merge resolution will look for a cross-kind implication rule that 

can resolve the conflict (i.e., apply the default resolution strategy). If no such rule exists, then 

we know of no way to resolve the conflict while still adhering to the GMRs. To continue using 
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the one-type restriction as an example, first we calculate a minimal covering of the merged 

model and see if it still has a one-type restriction conflict. If so, then we apply a cross-kind 

implication rule (if T(q, r) and I(r, s) then T(q, s)) which allows us to resolve the conflict and still 

satisfy the GMRs.  

5.4.2.2 Acyclicity 
Many meta-meta-models require some relationship kinds to be acyclic. In Vanilla, Is-a and 

Contains must be acyclic. In this section, we first consider acyclic constraints in Vanilla and 

then acyclicity constraints in general.  

Acyclicity in Vanilla - Merging the example in Figure 5.9 (a) would result in Figure 5.9 (b) 

which has a cycle between elements a and b. Since Is-a is transitive, a cycle of Is-a relationships 

implies equality of all of the elements in the cycle. Thus Merge’s default solution is to collapse 

the cycle into a single element. As with all conflicts, users can override with a function or 

manual resolution. To satisfy GMR 7 (Property preservation), the resulting merged element 

contains the union of all properties from the combined elements. GMR 8 (Value preference) 

dictates the value of the merged element’s properties. 

a

b

b

a  

a

b  

(a) (b) 

Figure 5.9: Merging the models in (a) causes the cycle in (b) 

Acyclicity Constraints in General - If the constrained relationship kind is not transitive, 

collapsing the cycle would not retain the desired semantics in general (although it does work for 

cycles of length two). The default resolution is to see if any cross-kind-relationship implications 

allow all relationships to exist implicitly without violating the acyclicity constraint. If so, the 

conflict can be resolved automatically. Without such a relationship implication it is impossible 

to merge the two models while retaining all of the relationships; either some default resolution 

strategy must be applied that does not retain all relationships, or human intervention is required.  
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5.4.2.3 Other Relationship Conflicts 
The following are conflicts that may occur in meta-meta-models other than Vanilla: 

• Certain relationship kinds many not be allowed to span meta-levels or Is-a-levels. For 

example, an Is-a hierarchy may not cross meta-levels, or a Type-of relationship may not 

cross Is-a levels. 

• If a meta-meta-model allows only one relationship of a given kind between a pair of 

elements, the cardinality of the relationship must be resolved if there is a conflict. For 

example, in Figure 5.10 what should be the cardinality of the Contains relationship 

between Actor and ActID? 1:n? m:1? m:n? One could argue that it should be m:n 

because this is the most general, however this may not be the desired semantics. Any 

resolution of this conflict is going to lose information and therefore will not satisfy 

GMR 3 (Relationship preservation), so no generic resolution can satisfy the GMRs. 

Actor

ActID

Actor

ActID =

=

1:n m:1

 

Figure 5.10: Merging multiple cardinalities 

• If only one set of specializations of an element may be declared disjoint, merging two 

orthogonal such sets requires conflict resolution, e.g., if actors are specialized as 

living/dead in one model and male/female in another. 

5.5 The Merge Algorithm 
This section describes an algorithm for Merge that satisfies the GMRs; an implementation of 

this algorithm is discussed in Section 5.8.1.  

Definition 5.1: (Merge). 

1. Initialize the merge result G to ∅. 

2. Elements: Induce an equivalence relation by grouping the elements of A, 

B, and MapA_B. Initially each element is in its own group. Then: 
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a. If a relationship Me(d, e) exists between an element e ∈ (A ∪ B) 

and a mapping element d ∈ MapA_B, then combine the groups 

containing d and e. 

b. After iterating (a) to a fix point, create a new element in G for each 

group. 

3. Element Properties: Let e be a merged element in G corresponding to a 

group I. The value v of property p of e, p(e) = v, is defined as follows: 

a. The properties of e are the union of the properties of the elements 

of I. Merge determines the values of properties of e other than 

History and ID as follows: 

J = {j ∈ (I ∩ MapA_B) | p(j) is defined} 

K = {k ∈ (I ∩ the preferred model) | p(k) is defined} 

N = {n ∈ I | p(n) is defined} 

i. If J ≠ ∅, then p(e) = p(j) for some j ∈ J 

ii. Else if K ≠ ∅, then p(e) = p(k) for some k ∈ K 

iii. Else p(e) = p(n) for some n ∈ N 

By definition of N, some value for each property of e must exist. In 

(i) – (iii) if more than one value is possible, then one is chosen 

arbitrarily. 

b. Property ID(e) is set to an unused ID value. Property History(e) 

describes the last action on e. It contains the operator used (in this 

case, Merge) and the ID of each element in I. This implicitly 

connects the Merge result to the input models and mapping without 

the existence of an explicit mapping between them. 
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4. Relationships: For every two elements e′ and f′ in G that correspond to 

distinct groups E and F, where E and F do not contain elements that are the 

origin of similarity mapping relationships, if there exists e ∈ E and f ∈ f 

such that R(e, f) is of kind t and has cardinality c, then create a (single) 

relationship R(e′, f′) of kind t and cardinality c. Reflexive mapping 

relationships (i.e., mapping relationships between elements that have been 

collapsed) are excluded since they no longer serve a purpose. For example, 

without this exception, after the Merge in Figure 5.3 is performed, the 

mapping relationship between elements ActorName and m4 would be 

represented by a reflexive mapping relationship with both relationship ends 

on ActorName. However, this relationship is redundant, so we eliminate it 

from G. 

a. Replace each similarity mapping relationship, Ms, whose origin is 

m by a Has-a relationship whose origin is e and whose destination 

is the element of G that corresponds to Ms’s destination’s group. 

For example, if the two Bio elements in Figure 5.1 were connected 

by similarity mapping relationships instead of equality mapping 

relationships, the result would be as in Figure 5.11. 

b. Relationships originating from an element are ordered as follows: 

i. First those corresponding to relationships in MapA_B, 

ii. Then those corresponding to relationships in the preferred 

model but not in MapA_B, 

iii. Then all other relationships. Within each of the above 

categories, relationships appear in the order they appear in 

the input. Finally, Merge removes implied relationships 

from G until a minimal covering remains.  

5. Fundamental conflict resolution: After steps (1) – (4) above, G is a 

duplicate-free union of A, B, and MapA_B, but it may have fundamental 
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conflicts (i.e., it may not satisfy meta-meta-model constraints). For each 

fundamental conflict, if a special resolution strategy has been defined, then 

apply it. If not, apply the default resolution strategy described in Section 

5.4.2 □ 

 

Actor

Actor
ID Name

Sim

Bio Bio

Actor

 

Figure 5.11: Results of Merge on Figure 5.1 if the Bio elements were connected by 
similarity mapping relationships 

Resolving one conflict may interfere with another, or even create another. This does not 

occur in Vanilla; resolving a one-type conflict does create two Is-a relationships, but they 

cannot be cyclic since their origin is new and thus cannot be the destination of another Is-a rela-

tionship. However, if interference between conflict resolution steps is a concern in another 

meta-meta-model, then Merge can apply a priority scheme based on an ordered list of conflict 

resolutions. The conflict resolutions are then applied until reaching fixpoint. Since resolving 

one-type conflicts cannot create cycles in Vanilla, conflict resolution in Vanilla is guaranteed to 

terminate. However, conflict resolution rules in other meta-meta-models must be examined to 

avoid infinite loops. 

The algorithm described above satisfies the GMRs in Section 5.2.3. We can see this as 

follows: 

• Step 1 (Initialization) initializes G to the empty set. 

• Step 2 (Elements) enforces GMR 1 (Element preservation). It also enforces the first 

direction of GMR 2 (Equality preservation); elements equated by MapA_B are equated in 

G. No other work is performed in step 2. 
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• Step 3 (Element properties) performs exactly the work in GMR 7 (Property 

preservation) and GMR 8 (Value preference) with the exceptions of the refinements in 

steps 3b and 3c for the ID and History properties. No other work is performed in step 3. 

• In step 4 (Relationships), step 4a enforces GMR 3 (Relationship preservation) and step 

4b enforces that a relationship exists between elements mapped as similar, as required 

in GMR 4 (Similarity preservation). Step 4d removes only relationships that are 

considered redundant by the meta-meta-model. Step 4c (relationship ordering) is the 

only step not explicitly covered by a GMR, and it does not interfere with any other 

GMRs.  

• Step 5 (Fundamental conflict resolution) enforces GMR 5 (Meta-meta-model constraint 

satisfaction) and performs no other work. 

If special resolution strategies in step 5 do nothing to violate any GMR or equate any 

elements not already equated, GMRs 2 (Equality preservation), 4 (Similarity preservation) and 6 

(Extraneous item prohibition) are satisfied, and all GMRs are satisfied. Other than special 

properties (ID and History) and the ordering of relationships, no additional work is performed 

beyond what is needed to satisfy the GMRs. 

5.6 Algebraic Properties of Merge 
Since meta-data operations seldom occur in isolation, the properties of sequences of merges 

must be examined, namely associativity and commutativity. Section 5.6.1 examines the 

commutativity of Merge. Section 5.6.2 examines the associativity of Merge. Section 5.6.3 

discusses commutativity and associativity when the order of merges affects the choice of 

mappings that are used to drive each merge. For ease of exposition we only consider cases 

where the outcome is uniquely specified by the inputs (e.g., exactly one correct choice of value 

exists for each property). To fully explore these properties we rely on the definition of two other 

Model Management operators: Match and Compose. Describing them in detail is beyond the 

scope of this thesis. The Match used here is simple since it is based on only the ID and History 

properties of elements; any Match algorithm (e.g., (Madhavan et al. 2001)) should be able to 

create the required mappings. We describe a basic Compose operator in Appendix D.  
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5.6.1 Commutativity 
We say that Merge is commutative if, for any pair of models M and N and any mapping 

MapM_N between them, Merge(M, MapM_N, N) = Merge(N, MapM_N, M) = G. We assume that (1) 

the same model is the preferred model in each Merge and (2) if there are unspecified choices to 

be made (e.g., choosing a property value from among several possibilities, each of which is 

allowed by Merge) the same choice is made in both Merges. We begin by showing that 

commutativity holds for Merge as specified by the GMRs and then show that it holds for the 

Merge algorithm specified in Section 5.5.  

The commutativity of Merge as specified by the GMRs in Section 5.2.3 follows directly 

from their definition, since they are symmetric: Rules 1-4 and 6-7 are inherently symmetric. 

Rule 8 (Value preference) is symmetric as long as the preferred model is the same in both 

Merges and unspecified choices are the same in both Merges, as stipulated in (2) above. Rule 5 

is the resolution of fundamental conflicts. In Vanilla this is symmetric since collapsing all 

cycles and resolving one type violations using the BDK algorithm are both symmetric13. Hence 

in Vanilla the GMRs are symmetric and thus commutative. However, Merge in other meta-

meta-models may not be commutative, depending on their conflicts resolution rules. 

The algorithm specification in Section 5.5 is commutative as well; again we show this from 

the algorithm’s symmetry. Steps 1 (Initialize) and 2 (Elements) are symmetric. Steps 3 (Element 

properties) and 4 (Relationships) are symmetric as long as the preferred model is the same in 

both merges and arbitrary choices are the same, as stipulated in (2) above. Step 5 (Fundamental 

conflict resolution) is symmetric if the conflict resolutions are symmetric. As argued above, this 

holds for conflict resolution in Vanilla, and hence the Merge algorithm is symmetric and thus 

commutative in Vanilla. 

5.6.2 Associativity 
We say that two models are isomorphic if there is a 1:1 onto correspondence between their 

elements, and they have the same relationships and properties (but the values of their properties 

                                                      
13 Appendix C gives the details of our modifications to the BDK algorithm. 
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and the ordering of their relationships may differ). Merge is associative if, for any three models 

M, N, and O, and any two mappings MapM_N (between M and N) and MapN_O (between N and O), 

R is isomorphic to S where: 
P = Merge(M, MapM_N, N)  

Q = Merge(N, MapN_O, O) 

MapP_N = Match(P, N) 

MapN_Q = Match(N, Q) 

R = Merge(P, Compose(MapP_N, MapN_O), O)  

S = Merge(M, Compose(MapM_N, MapN_Q), Q) 

Match(P, N) and Match(N, Q) are meant to compute χ as defined in the GMRs by matching 

the IDs of N with the IDs in the History property of P and Q respectively. N, P, Q, Match(P, N), 

and Match(N, Q) are shown in Figure 5.12. 

MapM_N MapN_OM

QP

N O

MapP_N MapN_Q

 

Figure 5.12: Showing associativity requires intermediate mappings  

The Compose operator takes a mapping between models A and B and a mapping between 

models B and C and returns the composed mapping between A and C. Consider 

Compose(MapP_N, MapN_O). Intuitively it must transfer each mapping relationship of MapN_O 

having a destination in N to a relationship having a destination in P. Since MapP_N maps each 

element in N to exactly one element in P, any Compose operator will provide this functionality 

(such as the one described in Appendix D). Compose(MapM_N, MapN_Q) operates similarly. 

A morphism is a set of directed morphism relationships from elements of one model to 

elements of another. To show that the two final merged models R and S are isomorphic, we 

define a morphism φ(R S) and show that (i) φ is 1:1 and onto, (ii) R(x, y) ∈ RR if and only if 

R(φ(x), φ(y)) ∈ RS, and (iii) x has property p if and only if φ(x) has property p. We initially 

consider the result of Merge ignoring the fundamental conflict resolution. We phrase the 

argument in terms of the GMRs. We do not repeat the argument for the algorithm, for the 

following reason: The end of Section 5.5 shows that the algorithm maintains all of the GMRs 
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and that the only additional work done by the merge algorithm beyond the GMRs is (1) to order 

the relationships and (2) set the value of the ID property. The latter two additions do not affect 

the isomorphism, so we do not repeat the associativity argument for the algorithm. 

We create φ as follows. First we create the morphisms shown as arrows in Figure 5.13 by 

using Match and Compose the same way they were used to create R and S. We refer to the 

morphisms in Figure 5.13 that start at R as MorphR and the morphisms that end at S as MorphS. 

Next we create five morphisms from R to S by composing MorphR with MorphS. φ is the 

duplicate-free union of the five morphisms from the previous step. 

MapM_N MapN_OM

SR

N O

 

Figure 5.13: Initial morphisms created to show associativity 

We want to show that φ is an isomorphism from R to S; this will show that R and S are 

isomorphic to one another and hence that Merge is associative. We first show that φ is onto (i.e., 

for all y ∈ S, there exists x ∈ R such that φ(x) = y): 

 

1. Let T be the set of elements in M, MapM_N, N, MapN_O, and O.  

2. From GMRs 1 (Element preservation) and 2 (Equality preservation) and the definitions of 

Match and Compose, we know that each element in T is the destination of exactly one 

morphism relationship in MorphR. I.e., each element in M, MapM_N, N, MapN_O, and O 

corresponds to exactly one element in the merged model. From GMR 6 (Extraneous item 

prohibition) and the definitions of Match and Compose we know that each element in R is 

the origin of at least one morphism relationship to T. I.e., each element in R must 

correspond to some element in M, MapM_N, N, MapN_O, or O. Recall that we are not 

considering conflict resolution, so there will be no elements introduced due to GMR 5 

(Meta-meta-model constraint satisfaction). 
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3. Similarly each element of T is the origin of exactly one morphism relationship in MorphS 

and each element in S is the destination of at least one MorphS morphism relationship from 

T. 

4. Hence from steps 2 and 3 and the definitions of Match and Compose, φ is onto. 

Next we show that φ is 1:1(i.e., for all x1, x2 ∈ R, φ(x1) = φ(x2)  x1 = x2). 

5. From the definition of φ, the only way for φ to not be 1:1 is if: 

a. Some element r ∈ R is the origin of more than one morphism relationship in MorphR or 

b. Some element s ∈ S is the destination of more than one morphism relationship in 

MorphS. 

6. If statement 5a is true, then from GMR 2 (Equality preservation) and the definitions of 

Match and Compose, r must be the result of merging some elements from T that were equal 

in some mapping. Similarly, if statement 5b is true, then from GMR 2 (Equality 

preservation) and the definitions of Match and Compose, s must be the result of merging 

some elements from T that were equal in some mapping. We now must show that the 

equating of the elements is associative and hence for element r in step 5a, each morphism 

relationship in φ that begins with r will end at the same element in S, thus providing a 

duplicate morphism relationship and not one that contradicts that φ is 1:1. 

7. The equating of elements is associative; this follows directly from the grouping strategy in 

Merge step 2 (Element properties). 

a. If elements are not equated by a mapping, then they will not be merged into the same 

object. 

b. Hence the only interesting case is when elements from three different models are 

mapped to one another; take the example of elements r ∈ M, t ∈ N, v ∈ O as shown in 

Figure 5.14. Given the mapping elements m1 and m3, r, t, and v are merged into one 

element, regardless of which order the models are combined. If, however, both 

relationships implied similarity, then all three elements will exist. If one relationship 

implied similarity (say r similar to t) and the other equality (say t equals v), then the 
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resulting elements are the same regardless of order; elements representing r and t are 

combined, and two elements representing t and v still exist separately. 

8. Hence the equating of the elements is associative and φ is 1:1. 

Now that we have shown that φ is 1:1, we have one step in showing φ is an isomorphism 

from R to S. Next we must show that R(x, y) ∈ RR if and only if R(φ(x), φ(y)) ∈RS. That is, a 

relationship exists in R if and only if a corresponding relationship exists in S. GMR 3 

(Relationship preservation) guarantees that each relationship R input to Merge has a 

corresponding relationship R′ in the merged model unless R’s origin and destinations have been 

collapsed into a single element. Similarly the Match and Compose definitions preserve the 

elements, and a relationship R(x, y) ∈ RR if and only if R(φ(x), φ(y)) ∈ RS 

The last step to show that φ is an isomorphism is to show that each element r ∈ R has 

property p if and only if φ(r) has property p. GMR 7 (Property preservation) implies that each 

element in the merged model has a property p if and only if some input element that it 

corresponds to has property p. From the argument showing that φ is 1:1, we know that the 

equating of elements is associative, and hence r ∈ R has property p if and only if φ(r) has 

property p. Hence φ is an isomorphism from R to S and Merge is associative. 

Merge is not associative with respect to the values of properties. Their value is determined as 

explained in GMR 8 (Value preference). After a sequence of Merges, the final value of a 

property may depend on the order in which the Merges are executed. This occurs because the 

value assigned by the last Merge in the sequence can overwrite the values of any Merges that 

preceded it. For example, in Figure 5.14 the mapping element m1 in MapM_N specifies the value 

a for property Bio. In addition, the Merge definition specifies that O is the preferred model for 

the merge of N and O. If the sequence of operators is: 
Merge(M, MapM_N, N)  P 

Merge(P, Compose(Match(P, N), MapN_O), O)  R 

Then in model P the Bio property as a result of merging r and t will have the Bio value a 

since it is specified in m1. In the second Merge, model O will be the preferred model, and the 

value of the Bio property of the resulting element will be c. 
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r
Bio = a

v
Bio = c

t
Bio = b

Model M MapM_N Model OModel N MapN_O

m1
Bio = a m3

Preferred Model = Model O

 

Figure 5.14: A series of mappings and models 

However, if the sequence of operators is: 
Merge(N, MapN_O, O)  Q 

Merge(M, Compose(MapM_N, Match(N, Q)), Q)  S 

Then the Bio property of the element that corresponds to t and v will have the value c since 

model O is the preferred model. Since the value of Bio in mapping element m1 is a, the final 

result will have a as the value of Bio instead of c as in the first example. 

Unless Merge can express a total preference between models – which is impractical – it will 

not be associative with respect to the final values of properties. 

Hence, ignoring conflict resolution, Merge is associative. Since all of the fundamental 

conflict resolution in Vanilla is associative, Merge is associative for Vanilla as well (see 

(Buneman et al. 1992) for references on the associativity of the BDK). 

5.6.3 Mapping-independent Commutativity and Associativity 
We say that Merge is mapping-independent commutative (respectively associative) if it is 

commutative (respectively associative) even when the order of Merge operations affects the 

choice of mapping that is used in each Merge. For example, consider the models and mappings 

in Figure 5.15. In (a), MapM_N is the only mapping that equates elements s and u. When MapM_N 

is used, as in (b), elements s and u are combined. However, when MapM_N is not used, as in (c), 

s and u remain as separate elements. 
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r

w

v

u

t

s

Model M MapM_N Model OModel N MapN_O

MapMO

m1

m2

m3

m4  
(a) 

r/t/v

ws/u

Model P

 

r/t/v

ws

Model Q

u  
(b) (c) 

Figure 5.15: A series of merges (a) A set of models and mappings. (b) the result of merging 
the models using MapM_N and MapN_O. (c) the results of merging the models using MapN_O 
and MapM_O. 

When is Merge guaranteed to be mapping-independent associative and commutative? 

Ignoring meta-meta-model constraint satisfaction, given a set of models, S (e.g., {M, N, O} in 

Figure 5.15), and two sets of mappings MappingsA (e.g., {MapM_N, MapN_O}) and MappingsB 

(e.g., {MapN_O, MapM_O}) over S, in order for Merge to produce isomorphic results it must be 

the case that: 

• Elements r and v are equated to one another either directly or transitively in MappingsA 

if and only if they are equated to one another directly or transitively in MappingsB; r can 

be declared equal to t and t equal to v in one set of mappings and in another set of 

mappings r can be declared equal to v and v equal to t. 

• Elements r and v are declared to be “similar to” another element in MappingsA if and 

only if they are declared to be “similar to” the same element in MappingsB. 

• Additional elements and relationships are introduced in MappingsA if and only if 

corresponding elements and relationships are introduced in MappingsB. 
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Informally, we know that these are the only requirements because: 

• Merge is associative and commutative if the mappings are the same, as shown above. 

• Mappings have three roles with respect to Merge; they can (1) declare elements to be 

equal (2) declare elements to be similar or (3) add in additional elements and 

relationships. We address each of these three roles below: 

 Equality: Because equality is transitive, we only need to enforce that elements 

that are equated in one set of mappings are also equated in the other. 

 Similarity: MappingsA and MappingsB must both declare that the same 

elements are similar if they are to be isomorphic to each other. However, since 

similarity is not transitive, if similarity is used then there is an implicit 

restriction on the sets of mappings; if MappingsA declares an element in model 

S1 to be similar to an element in model S2, then MappingsB must contain a 

mapping between S1 and S2 in order for the similarity relationship to be 

expressed. We do not need to consider the more complicated case when one 

mapping declares two elements to be similar through a mapping element, s, and 

then another mapping element, t, declares s to be similar to some other element 

because by our problem definition the set of mappings cannot map results of 

previous Merges. 

 Additional elements and relationships: Finally, because mappings can also 

add elements and relationships, if MappingsA adds an element or a relationship, 

then MappingsB must add a corresponding element or relationship as well. 

However, as with similarity, there may be an implicit restriction on the set of 

mappings; if MappingsA declares an element in model S1 to contain an element 

in model S2, then MappingsB must contain a mapping between S1 and S2 in 

order for the Contains relationship to be expressed. Again, because the set of 

mappings cannot map results of previous merges, we need not consider more 

complicated cases. 
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5.7 Alternate Merge Definitions  
Many alternate merge definitions can be implemented using our Merge operator in 

combination with other Model Management operators. In this section we consider three-way 

merge, a common merging problem that occurs in file versioning and computer supported 

collaborative work (Balasubramaniam et al. 1998). Given a model and two different modified 

versions of it, the goal is to merge the modified versions into one model.  

5.7.1 Merge Only Elements Specifically Mentioned in the Mapping 
Some applications want to merge only elements specifically mentioned in the mapping. One 

such example is Subject Oriented Programming (Ossher et al. 1996), which uses Merge to 

combine classes. After classes are combined, some variables should not be merged because they 

are private. This formulation of Merge can be implemented by: 

DeepCopy(MapA_B)  MapA_B′, A′, B′ 

Apply(A′, a function to delete elements not mapped by MapA_B′) 

Apply(B′, a function to delete elements not mapped by MapA_B′) 

Merge(A′, MapA_B′, B′)  G 

where DeepCopy is a variant of the Copy operator that copies the mapping as well as the 

models that it connects (Bernstein et al. 2000). 

5.7.2 Three-Way Merge  
Three-way merge is a common merging problem that occurs in file versioning and computer 

supported collaborative work (Balasubramaniam et al. 1998). Given a model and two different 

modified versions of it, the goal is to merge the modified versions into one model. 

Model OModel A
a

db

Model B
a

cb

d

a

cb d

 

Figure 5.16: A three-way merge assuming name equality. Model O is the common 
ancestor of models A and B. 
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For example, consider Figure 5.16 where model O has been modified in two different ways 

to create both models A and B. Suppose there are mappings between O and A and between O 

and B based on element name equivalence. Notice that in A, element d has been moved to be a 

child of element b, and in B the element c has been deleted. 

There are several variations of three-way merge which arise due to different treatments of an 

element that was modified in one model and deleted or modified in the other. One variation 

assumes that elements deleted in one model but modified in the other should be included in the 

merged model. More precisely it assumes that the merged model L should have the following 

properties: 

• If an element e was added in A or B, then e is in L. 

• If an element e is present and unmodified in A, B, and O, then e is in L. 

• If an element e was deleted in A or B and unmodified or deleted in the other, then e is 

not in L. 

• If an element e was deleted in A or B and modified in the other, then e is in L (because 

by modifying e the model designer has shown that e is still of interest). 

• If an element e was modified in A or B and unmodified in the other, then the modified 

version of e is in L. 

• If an element e was modified in both A and B, then conflict resolution is needed to 

determine what is in L. 

This 3-way merge can be implemented as follows. We determine equality for elements in A 

and B based on the History property. 

1. Create a mapping MapA_B between A and B such that: 

a. If a ∈ A and b ∈ B are equal, a mapping element expressing equality between a 

and b is added to MapA_B. 

b. If an element e exists in each of O, A, and B, and a property of e has been 

changed in exactly one of A or B, then MapA_B has the changed property value 

in the mapping element corresponding to e. 
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2. Create model D such that if an element or relationship has been deleted in one of A or B 

and is unmodified in the other, it is included in D. 

3. G = Merge(A, MapA_B, B). 

4. MapG_D = Match(G, D) – based on the History property 

5. Return Diff(G, D, MapG_D). 

This three-way merge definition does not handle a new element x created independently in 

both A and B. To allow this, a new mapping could be created to relate A.x and B.x. 

Creating the information contained in MapA_B and D can be done using a sequence of Model 

Management operators. Appendix E shows this in detail. 

Most algorithms for three-way merge have (1) a “preferred” model that breaks ties and (2) a 

method for resolving conflicts such as when an element is deleted in one descendent model and 

modified in the other. We support the former with Merge’s preferred model the latter by 

applying the Model Management Apply operator. 

5.8 Evaluation 
Our evaluation has two main goals: Section 5.8.1 shows that Merge can be applied to a real 

world application where it scales to large models and discovers relevant conflicts and Section 

5.8.2 shows that our Merge definition subsumes previous work. 

5.8.1 Applying Merge to Large Ontologies 
We tested Merge on a large bioinformatics application to show that Merge scales to large 

models and uncovers real conflicts caused by merging such large models. The problem is to 

merge two models of human anatomy: the Foundational Model of Anatomy (FMA) (Rosse et al. 

1998), which is designed to model anatomy in great detail, and the GALEN Common Reference 

Model (Rector et al. 1994), which is designed to aid clinical applications. These are very large 

models. As expressed in a variant of Vanilla, FMA contains 895,307 elements and 2,032,020 

relationships, and GALEN contains 155,307 elements and 569,384 relationships; both of the 

models were larger in the Vanilla variant than in their “native” format since many of their 
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relationships required reification. The two models have significant structural differences (e.g., 

some concepts expressed in FMA by three elements are expressed in GALEN by four 

elements), so merging the two is challenging. Note that there is no additional instance 

information for either model. Merge was implemented generically in approximately 7,500 lines 

of C# with SQL Server as a permanent store. 

A database researcher familiar with FMA, GALEN, and Model Management took 13 weeks 

to import the models into a variant of Vanilla and create a mapping consisting of 6265 

correspondences. The mapping is small relative to the model sizes since the models have 

different goals and thus different contents. It contains only 1-to-1 correspondences, so we were 

unable to test our hypothesis that having the mapping as a first class model enables more 

accurate merging. Hence we concentrated on three other issues: (1) few changes to Vanilla and 

Merge would be needed to merge the models, even though Merge was not tailored for this 

domain, (2) Merge would function on models this large, and (3) the merged result would not be 

simply read from the mapping (i.e., the conflicts that we anticipated would occur). 

For the first issue, the researcher needed to add to Vanilla two relationship kinds: Contains-

t(x, y), which says that x can contain instances of y, and Has-t(x, y), which says that x can have 

instances of y. Neither relationship kind led to new fundamental conflicts Also, the one-type 

restriction was not relevant to the anatomists. The only change to Merge’s default behavior was 

to list the two new relationship kinds and ignore the one-type restriction. 

Merging these models took approximately 20 hours on a Pentium III 866 with 1 GB of 

RAM. This is an acceptable amount of time since Merge would only be run occasionally in a 

relatively long project (13 weeks in our case). The merge result before fundamental conflict 

resolution had 1,045,411 elements and 2,590,969 relationships. 9,096 relationships were 

duplicates, and 1,339 had origins and destinations that had been equated. 

Since the input mapping only uses 1-to-1 correspondences, we would expect most elements 

in the merged model to correspond to exactly two elements: one in FMA and one in GALEN. 

However, 2344 merged elements correspond to exactly three elements in FMA and GALEN, 

and 623 correspond to more than 3 elements. One merged element corresponds to 1215 

elements of GALEN and FMA. 
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The anatomists verified that the specialization hierarchy should be acyclic, as it was in both 

inputs. However, before conflict resolution the merge result contained 338 cycles in the 

specialization hierarchy, most of length 2. One was of length 18. 

The anatomists agreed that the result of the merge was useful both as a final result, assuming 

that the input mapping was perfect, and as a tool for determining possible flaws in the input 

mapping. Exploring the former is a largely manual process and is the subject of ongoing 

medical informatics research (Mork et al. 2004). 

5.8.2 Comparison to Previous Approaches 
There has been considerable work on merge in other contexts and applications. An important 

result of our work is that it subsumes previous literature on merge. In this section we show how 

Merge, assisted by other Model Management operators, can implement previous approaches to 

generic merging (Section 5.8.2.1), view integration (Section 5.8.2.2), and ontology merging 

(Section 5.8.2.3) even though it is not tailored to their meta-models. 

5.8.2.1 Generic Merging Algorithms 
BDK provides the basis for our work: their algorithm creates the duplicate free union of two 

models based on name equality of the models’ elements. Their meta-meta-model contains 

elements with a name property and two relationship kinds, Is-A and Has-a, where Has-a must 

obey the one-type restriction. 

Essentially Merge encompasses all of the BDK work by taking the duplicate free union of 

two models and then applying the one-type conflict resolution. Their work considers no other 

meta-meta-model conflicts, and no other resolutions when their solution to the one-type conflict 

is inappropriate. In addition, BDK cannot resolve representation conflicts because it lacks the 

explicit mapping that allows it to do so. Further details of how Merge corresponds to the BDK 

algorithm can be found in Appendix C. 

Rondo (Melnik et al. 2003) is a Model Management system prototype that includes an 

alternate Merge definition based entirely on equality mappings. Two elements can be declared 

to be equal, and each 1-1 mapping relationship can specify a preference for one element over 

another. Like our Merge and BDK’s, Rondo essentially creates the duplicate-free union of the 
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elements and relationships involved. Some conflicts require removing elements or relationships 

from the merged model (e.g., if a SQL column is in two tables in a merge result, it must be 

deleted from one of them). Just as our Merge resolves such meta-model conflicts later, Rondo 

does such resolutions in a separate operator. 

Our Merge is richer than Rondo’s in several respects: 

1. It can resolve representation conflicts more precisely, since the input mapping structure 

can relate elements in some fashion other than equivalence. 

2. It can resolve conflicts that require the creation of additional elements and relationships 

rather than pushing the work to a subsequent manual step. 

3. By specifying that a choice is first taken from the mapping, then the preferred model, 

and then any model, it allows for some preferences to be made once per Merge in 

addition to those made at each mapping element 

5.8.2.2 View Integration 
View integration is the problem of combining multiple user views into a unified schema 

(Batini et al. 1986). This problem has been studied in many contexts (Beeri et al. 1999; 

Bergamaschi et al. 1999; Biskup et al. 1986; Calvanese et al. 1998; Larson et al. 1989; Shu et al. 

1975; Song et al. 1996). View integration algorithms (1) ensure the merged model contains all 

of the objects in the two original models, (2) reconcile representation conflicts in the views 

(e.g., if a table in one view is matched with a column in another), and (3) require user input to 

guide the merge. Batini, Lenzerini, and Navathe (Batini et al. 1986) also survey algorithms for 

creating mediated schemas for data integration, which require the same processes as those for 

view integration. 

Spaccapietra and Parent have a well known algorithm (Spaccapietra et al. 1994) that consists 

of a set of rules and a prescribed order in which to apply them. Their meta-meta-model, ERC+, 

has three different object types: attributes, entities, and relations. An entity is an object that is of 

interest on its own. An attribute describes data that is only of interest while the object it 

characterizes exists. A relation describes how objects in the model interact. ERC+ has three 

kinds of relationships: Is-a, Has-a, and May-be-a, which means that an object may be of that 

type. 
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Vanilla can encode ERC+ by representing attributes, entities and relations as elements. 

ERC+ Is-a relationships are encoded as Vanilla Is-a relationships. ERC+ Has-a relationships are 

encoded as Vanilla Contains relationships (the semantics are the same). To encode in Vanilla 

the May-be-a relationships originating at an element e, we create a new type t such that Type-

of(e, t) and for all f such that e May-be-a f, Is-a(f, t). 

The Spaccapietra and Parent algorithm for merging models can be implemented using Model 

Management by encoding their conflict resolution rules either directly into Merge or in 

mappings. 

Below, we summarize each of their rules and how it is covered by GMRs to merge two 

ERC+ diagrams A and B to create a new diagram, G. Again we use χ(e, e′) to say that e ∈ A ∪ 

B corresponds to an element e′ ∈ G. 

1. Objects integration – If a ∈ A, b ∈ B, a = b, and both a and b are not attributes, then add 

one object g to G such that χ(a, g) and χ(b, g). Also, if a and b are of differing types, 

then g should be an entity. This corresponds to GMR 1 (Element preservation) plus an 

application of the EnforceConstraints operator to coerce the type of objects of uncertain 

type into entities. 

2. Links integration – If there exist relationships R(p, c) and R(p′, c′), where p, c ∈ A, p′, 

c′ ∈ B, p = p′, c = c′, χ(p, g), χ(p′, g), χ(c, t), and χ(c′, t) (i.e., two parent-child pairs are 

mapped to one another), where neither g nor t are attributes, then R(g, t) is added to G. 

This is covered by GMR 3 (Relationship preservation). 

3. Paths integration rule - Exclude implied relationships from the merged model. This is 

covered by GMR 3 (Relationship preservation) and Merge algorithm step 4d 

(Relationships: removing implied relationships). If the user indicates other (non-

implied) redundant relationships, they must be either removed outside Merge to avoid 

violating GMR 3 (Relationship preservation) or expressed by an element representing 

an integrity constraint in the mapping and hence in the merge result.  

4. Integration of attributes of corresponding objects – If there exist relationships R(p, c) 

and R(p′, c′) where p, c ∈ A, p′, c′ ∈ B, p = p′, c = c′, χ(p, g), χ(p′, g) (i.e., two parent-
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child pairs are mapped to one another), and c and c′ are attributes, then add an attribute t 

to G such that χ(c, t), χ(c′, t) and R(g, t). This is covered by GMRs 2 and 3 (Equality and 

Relationship preservation). 

5. Attributes with path integration – if for some attributes c ∈ A and c′ ∈ B, c = c′, there is 

no relationship R such that R(p, c) and R(p′, c′) where p = p′ (i.e., c and c′ have 

different parents), add an element g to G such that χ(c, g), χ(c′, g), and add all 

relationships necessary to attach g to the merged model. If one of the relationship paths 

is implied and the other is not, add only the non-implied path. This is covered by GMRs 

1 and 3 (Element and Relationship preservation). 

6. Add objects and links without correspondent – All objects and relationships that do not 

correspond to anything else are added without a correspondent. This is covered by 

GMR 1 (Element preservation) and 3 (Relationship preservation). 

5.8.2.3 Ontology Merging 
The merging of ontologies is another model merging scenario. An ontology is a domain 

theory that specifies a domain-specific vocabulary of objects and a set of relationships that hold 

among the items in the vocabulary (Fikes 1996). In general, an ontology can be viewed as a 

graph of hierarchical objects that have specific attributes and constraints on those attributes and 

objects. A frame-based ontology specifies a domain-specific vocabulary of objects and a set of 

relationships among them; the objects may have properties and relationships with other objects. 

The two relationships are Has-a and Is-a. Ontologies include constraints (called facets), but they 

were ignored by all algorithms that we studied. We describe here PROMPT (Noy et al. 2000), 

a.k.a. SMART (Noy et al. 1999), which combines ontology matching and merging. 

PROMPT focuses on driving the match, since once the match has been found, their merge is 

straightforward. As in Merge, their merging and matching begin by including all objects and 

relationships from both models. As the match proceeds, objects that are matched to one another 

are collapsed into a single object. Then PROMPT suggests that objects, properties, and relation-

ships that are related to the merged objects may match (e.g., if two objects each with a “color” 

property have been merged, it suggests matching those “color” properties).  
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Like many merge algorithms, PROMPT includes the notion of a preferred model. It also has 

two modes, override and merge. In override mode PROMPT chooses the option from the 

preferred model, while in merge mode the user is prompted for input. 

PROMPT tracks its state with two lists: Conflicts and ToDo. Conflicts lists the current 

model’s conflicts with the meta-model. ToDo keeps track of suggested matches. A more 

complete description of the PROMPT algorithm is shown in Appendix F. 

Our algorithm allows us to provide as much merging support as PROMPT. In the merge of 

two models, A and B, to create a new model G, PROMPT has the following merge functionality, 

which we relate to our GMRs. We consider PROMPT’s match functionality to be outside 

Merge’s scope. 

1. Each set of objects O ∈ A ∪ B whose objects have been matched to each other 

correspond to one object in G. This is covered by GMR 2 (Equality preservation). 

2. Each object o ∈ A ∪ B that has not been matched to some other object corresponds to 

its own object in G. This is covered by GMR 2 (Equality preservation). 

3. An object g ∈ G consists of all of the properties of the objects in A or B that correspond 

to it. This is covered by GMR 7 (Property preservation). 

4. If a conflict exists on some property’s name or value, it is resolved either (1) by the 

user, corresponding to the user input in Merge’s mapping or (2) by choosing from the 

“preferred” model. This is covered by GMR 8 (Value preference).  

Hence, given the input mapping, our algorithm provides a superset of PROMPT’s merge 

functionality.  

A similar tool is provided by the Chimæra system (McGuinness et al. 2000), part the 

Ontolingua Server (Farquhar et al. 1996) from Stanford’s Knowledge Systems Laboratory. 

However, their tool concentrates almost entirely on Match rather than the problem of Merge. 

Specifically, their goal was to build a tool that “focuses the attention of the editor on particular 

portions of the ontology that are semantically interconnected and in need of repair or further 

merging.” After discovering parts of an ontology (model) that need further merging, their 

algorithm operates much like the first step of ours; the two objects that have been equated are 
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now combined into one object and their properties and relationships with other objects must be 

combined. 

FCA (Stumme et al. 2001) from Stumme and Maedche at the Institute AIFB University of 

Karlsruhe merges ontologies based on a lattice approach; they perform a match (in the terms of 

Model Management) or an alignment (in the terms of Noy and Musen’s description of ontology 

operations) automatically. They examine a slightly easier problem because in addition to not 

considering facets (as is the case with SMART and Chimæra), they also do not consider slots. 

The lattice describes both the structure of the merged document and which elements in the 

ontology match according to the classes’ semantic content. The created lattice may contain both 

nodes that are labeled with more than one class (indicating that merging may be required) and 

nodes with no corresponding class in the original ontology (suggesting that the user may want 

to insert a new class). The lattices are found automatically (Stumme et al. 2000), but the 

merging is largely manual. A similar lattice approach is taken in comparing user viewpoints in 

building a system in (Sabetzadeh et al. 2003). 

5.8.2.4 Object-Oriented Programming Languages 
There are two aspects of programming languages that can benefit from a merge operator: 

multiple inheritance and paradigms where classes are combined to provide more information 

about a topic, such as subject-oriented programming. In multiple inheritance, when a class C 

inherits from more than one class, the resulting members of C are essentially the union of the 

members of its parents. A conflict occurs if C inherits from classes A and B and both A and B 

have a member x with different definitions. In this case, the classes are said to be incompatible 

and an error is returned (Bracha et al. 1992). This corresponds in Model Management to the 

user being unable to find an acceptable mapping. 

Subject-oriented programming (Harrison et al. 1993; Ossher et al. 1992; Ossher et al. 1996) 

is a programming paradigm that focuses on subjects rather than objects. A subject is a 

description of a number of objects and operations from one point of view. To determine how the 

subjects interact, their components are merged. A similar notion is aspect-oriented 

programming (Kiczales et al. 1997). 
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The key to subject-oriented programming is that different users need different information 

and functionality for the same subject. For example, a car rental agency requires very different 

information than a department of motor vehicles; a car rental agency needs to know when the 

car is rented, and a department of motor vehicles needs to know who licenses the car. Neither of 

these is inherent in the notion of a car. Thus Ossher and Harrison introduce the notion of 

subjects. A subject is “a collection of state and behavior specifications reflecting a particular 

gestalt, a perception of the world at large, such as is seen by a particular application or tool” 

(Harrison et al. 1993). 

Each subject is composed of a number of the following types of objects: 

• Classes: The classes that are defined or used by the subject. Classes contain both 

member variables and member functions. Some member variables may be private to a 

subject, that is they should not be merged if the subject is merged. 

• Operations: The signatures (i.e., function name, parameters, and return type) of the 

functions used by the subject. 

• Mapping: A list of how to map the (operation, class) pairs to the functions that need to 

be executed when a subject’s operations are called; more than one function may need to 

be computed in order to provide one operation for a subject. 

Figure 5.17 presents a series of subjects modeling cars and drivers and the composition of 

those subjects from (Ossher et al. 1996). In the combined subject, CarRenting, the class of 

Renter has been augmented by the variable “license” since Renter in the subject Renting 

matched the class Driver in the subject DMV. Also, the mapping for the operation (Check, 

Renter), which initially only called Renter.Check() now calls both Renter.Check() and 

Driver.GoodDriver(); information on whether a renter is a good prospect can be gained from 

both the information stored by the rental agency and in the information stored by the department 

of motor vehicles. 
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Operation ReturnItem()
Operation Check()

(ReturnItem, Rental)     Rental.ReturnItem()
(Check, Renter)    Renter.Check()

Rental

Car

Renter

Driver

Car

period item renter

tagNumber model damage

creditCard

Operations

Mapping

Classes
Subject Renting

license

licensePlate model

Subject DMV
Operations

Mapping

Operation  GoodDriver()

(GoodDriver, Driver)    Driver.GoodDriver()

Rental

Car

Renter

period item renter

tagNumber model damage

creditCard

Classes

license

(ReturnItem, Rental)     Rental.ReturnItem()
(Check, Renter)      Renter.Check() AND
                                   Driver.GoodDriver()
(GoodDriver, Renter)     Driver.GoodDriver()

Mapping

Operation ReturnItem()
Operation Check()
Operation GoodDriver()

Operations
Composed Subject CarRenting

Classes

 

Figure 5.17: Subjects being composed (Ossher et al. 1996). Only member variables are 
shown in the class diagrams. The Renter class in the Renting subject is merged with the 
Driver class in the DMV subject to form the Renter class in the composed subject 
CarRenting. The return type of the operations is not shown. 

Subjects are specified in a normal object-oriented programming language, such as C++, and 

compiled to binaries. A compositor composes the subjects into the executables; thus the 

compositor is most similar to merging in Model Management. Like all other forms of Merge 

that we have explored, the compositor requires input to tell whether the objects are related to 

one another. 

Merging subjects requires merging classes, operations and mappings. We show below how 

each can be encoded in Vanilla and how Model Management operators can provide the same 

functionality as the compositor. 

Classes, their member variables and member functions can all be encoded in Vanilla as 

elements. Vanilla encodes that a class has certain member variables or functions by saying that 

a Contains relationship exists from the class element to the member variable/function. For 

example, we would model the Rental class from the Renting subject shown in Figure 5.17 in 
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Vanilla as shown in Figure 5.18. Since some variables are private to a subject (i.e., they should 

not be merged if the subject is merged), we use the Merge variant in Section 5.7.1 (merge only 

elements specifically mentioned in the mapping) to perform the merge. 

Rental

renteritemperiod  

Figure 5.18: Modeling in Vanilla the Rental class from the Renter subject in Figure 5.17 

Merging operations and mappings is very similar to merging classes, but resolving conflicts 

is different. Each operation is encoded in Vanilla as an element that has sub-elements that 

specify (1) the parameters, and (2) the return type. Each mapping is encoded as an element that 

has a sub-element for (1) the subject – class pairs to be executed when an operation is called, 

and (2) the class and operation to which it belongs. Each of these sub-elements may be broken 

into other sub-elements if necessary. In most merge algorithms, the conflicting information 

results in taking the values of one of the elements and ignoring the other. Merging the mappings 

and operations in subject-oriented programming requires the user to specify the appropriate 

value, but it is quite often the combination of some, if not all, of the values of the properties. 

Ossher and Harrison provide a number of different resolutions for this. This decision must be 

specified by the match (since it requires user intervention to discover the appropriate resolution) 

and hence would be encoded in the input mapping to Merge. 

5.8.2.5 Computer Supported Collaborative Work 
Both computer supported collaborative work (CSCW) (Berger et al. 1998; Berlage et al. 

1993; Munson et al. 1994) and file merging (Balasubramaniam et al. 1998) generally involve 

three-way merge as described in Section 5.7.2. In these contexts there is a common ancestor and 

the two later models must be merged together based on the relationship between them and their 

common ancestor. With the added information from the common ancestor, the initial matching 

is much simpler, but the merging can be much more difficult. 
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The work in this area that is the most flexible and automatic is that by Munson and Dewan 

(Munson et al. 1994). They propose a system that, depending on the parameters that are 

specified, can be either manual, semi-automatic, or fully automatic. Users who choose a more 

automatic system are likely to receive a merged result that does not correspond to exactly what 

they want, but they will not have to manually guide the system. The model that they look at, 

while applicable to files, considers the general case of objects by encapsulating the differences 

in the object types. It is their automatic algorithm from which we take the correctness criteria 

for three-way merge in Section 5.7.2. 

5.9 Conclusions  
In this chapter we defined the Merge operator for model merging, both generically and for a 

specific meta-meta-model, Vanilla. We defined and classified the conflicts that arise in 

combining two models and described when conflicts from different classes must be resolved. 

For conflicts that must be resolved in Merge, we gave resolution strategies, both for Vanilla and 

in general. We evaluated Merge by showing how Merge in Vanilla can be used to subsume 

some previous merging algorithms and by testing Merge on two large real-world ontologies. 

In the next chapter, Chapter 6, we show how the Merge result, when applied to models and 

mappings that are templates for instances, has an appropriate interpretation on instances by 

using Merge and other Model Management operators to implement the mediated schema 

creation for conjunctive mappings as defined in Chapter 4. This will demonstrate the usefulness 

of Merge in specific applications such as data integration. 
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Chapter 6  

Using Merge to Create a Mediated Schema 

6.1 Using Merge with Conjunctive Mappings 
In Chapter 5 we described a generic merge algorithm, Merge (Definition 5.1), that could be 

used to merge schemas in a number of different circumstances, such as data integration, data 

warehousing, ontology merging, view integration, and so on. We showed that Merge could be 

used with other Model Management operators to subsume other algorithms made specifically 

for those domains. We now investigate how to encode conjunctive mediated schema creation 

(Definition 4.18) with the generic Merge and other Model Management operators described in 

Chapter 5. Showing how Merge can be used with such semantically rich mappings demonstrates 

how Model Management can help build the entire application, rather than just the schema.  

In order to use Merge (Definition 5.1) to perform conjunctive mediated schema creation 

(Definition 4.18) the inputs to the conjunctive mediated schema creation, E, F, and MapE_F, must 

be encoded into Vanilla (the representation that Merge uses), and then the results must be 

exported back into the relational model. In this chapter we discuss the algorithms necessary to 

complete that procedure. The remainder of this section shows how to encode relational schemas 

and conjunctive mappings in the Vanilla meta-meta-model described in Section 5.4.1.  

Section 6.2 describes the algorithms MergeConjunctiveMediatedSchemaCreation (Definition 

6.10) and CreateMapG_EF (Definition 6.12) which produce a well-formed mediated schema 

(Definition 4.16) and well-formed mediated schema mapping (Definition 4.17) respectively 

using the Merge described in Definition 5.1. Section 6.3 proves that 

MergeConjunctiveMediatedSchemaCreation (Definition 6.10) and CreateMapG_EF (Definition 

6.12) create the output required in conjunctive mediated schema creation (Definition 4.18). In 

Section 6.4 we discuss using richer mappings than conjunctive mappings. Section 6.5 considers 

how to use Merge to perform some of the alternatives mentioned in both Section 4.4 and in 

Section 6.1.2. Section 6.6 concludes. To make the difference between relational and Vanilla 

objects immediately obvious, in the remainder of this thesis, we continue the usage in other 
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chapters and use Arial font to denote objects in Vanilla and Batang font to represent relational 

objects.  

6.1.1 Encoding Relational Schemas 
The definition of the Vanilla meta-meta-model in Section 5.4.1 is by intent very general. In 

order to encode the conjunctive mediated schema creation (Definition 4.18), we provide a 

representation for relational models encoded in Vanilla.  

A relational model encoded in Vanilla consists of a single root element which contains an 

element for each relation. Each relation contains an element representing each of its attributes. 

We encode a relational schema in Vanilla as shown in Figure 6.1. 

Relation1

Attribute1 AttributeM

Schema
Name

...
RelationK

Attribute1 AttributeN...  

Figure 6.1: How to encode relevant relational schema information in Vanilla 

We define a function µ: R  M to describe the correspondence between a relational schema R 

and a Vanilla model M. In the Vanilla notation described in Section 5.4.1, a model M is a set of 

elements and relationships between elements, and the root of M is denoted Root(M). Vanilla 

consists of five different kinds of relationships in addition to the two kinds of mapping 

relationships. Encoding a relational schema uses only one kind of relationship: Contains. 

Contains is denoted by C(x, y), which means container x Contains containee y. Figure 5.6(b) 

says that Table Contains Column. Each element in Vanilla consists of semi-structured 

properties. In encoding a relational schema we only use the Name property where the name of 

an element e is denoted by Name(e).We define how to encode a relational schema in Vanilla in 

Definition 6.1. 

Definition 6.1: (Vanilla encoding of a Relational Schema). 

Relational schema R is encoded in a Vanilla model M as follows:  
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1. µ(R) = Root(M)  

2. ∀ relations r ∈ R, ∃ ! element e ∈ M s. t. µ(r)= e and C(M, e) ∈ M14  

3. ∀ attributes a ∈ r, ∃ ! element a ∈ M s.t.  

a. µ(a) = a 

b. C(r, a) ∈ M where µ(r)= r 

4. Order(a) = Order(a) 

5. If µ(x) = y, then name(y) = nR(x)  

6. No other elements or relationships exist in M □ 

µ is one-to-one and total with respect to relational definitions. That is, for each relation or 

attribute ar ∈ R there exists exactly one element e∈ M such that µ(ar) = e. 

Definition 6.2: (Relational encoded Vanilla model). There are two restrictions 

that a Vanilla model must obey to satisfy the relational meta-model (i.e., to be a 

representation of a relational schema): (1) the model must have three layers of 

elements: the schema name is the root, which Contains elements corresponding 

to relations, and each element corresponding to an attribute is contained by 

exactly one element corresponding to a relation and (2) the model must have no 

other elements or relationships other than Has-a relationships.  □ 

The Has-a relationships in Definition 6.2 correspond to constraints (e.g., foreign key 

constraints); we do not explore these more fully in this chapter. We use an additional construct 

not found in the description of Vanilla in Section 5.4.1: if C(x, y), then Order(y) = i defines that 

y is the i’th child of x. In the relational meta-model representation in Vanilla, each element is 

contained by at most one other element (e.g., each attribute is contained by a relation, and each 

                                                      
14 “∃ ! e” means “there exists a unique e.” 
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relation is contained by a database schema). Thus, in this case, since each element y is 

guaranteed to be contained by at most one x, we do not need to represent x in the Order 

notation. While database relations are considered to be unordered, we define an order on the 

relations to ensure that the ordering of variables in MapG_EF is consistent. 

Definition 6.3: (ImportRelationalSchema). ImportRelationalSchema(R, M) is a 

Model Management operator that takes a relational schema R and creates a 

Vanilla model M and function µ that satisfy Definition 6.1.  □ 

6.1.2 Encoding Conjunctive Mappings 
A conjunctive mapping is a set of Datalog formulas, as explained in Section 4.3.1. We do, 

however, place an additional restriction on the input mapping:  

Remark 6.1: Rather than being a full conjunctive mapping we only consider 

those mappings where an IDB name appears in a mapping statement at most 

twice in MapE_F, once in a mapping statement over E and once in a mapping 

statement over F. Although this is more restrictive than a full conjunctive 

mapping, it is as expressive a mapping as we can simulate using Merge and still 

easily create the view definitions needed to translate queries over the mediated 

schema into queries over the source schemas. In Section 6.4 we show why we 

require this restriction.  □ 

e3

b ca x y

q7 f1

g hd

f2

i

E FMapE_F

j

 

Figure 6.2: A Vanilla representation of a conjunctive mapping; all mapping relationships 
shown are mapping equality relationships 
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q7

c iyx

G

 

Figure 6.3: Result of Merge of Figure 6.2 

A Vanilla mapping is as explained in Chapter 5. The goal of this chapter is to encode a 

conjunctive mapping in a Vanilla mapping. In Section 6.1.2.1 we discuss how to encode MapE_F 

if the definition of G, MapG_E, and MapG_F are as in Section 4.3.3. To make this encoding easier to 

follow, Definition 6.4 provides notation to describe a variable being mapped to an attribute: 

Definition 6.4: (VM – Variable Mapping). For a given schema relation ri(ai,1, 

…, ai,n), a variable xi,k maps attribute ai,k, denoted VM(xi,k, ai,k), if xi,k appears in 

the kth position of ri. □ 

For example, if there exists a relation r1(a,b,c) and query q(x) :- r1(x,y,z), then VM(x,a), 

VM(b,y), and VM(z,c). 

6.1.2.1 Encoding Conjunctive Mappings in Generic Merge 
To prepare for both the definition of well-formed relational mediated schemas and mediated 

schema mappings in Section 4.3.3 and the alternatives in Section 4.4 we assume that retention 

of an attribute or relation has been ascertained by some function Keep:  

Definition 6.5: (Keep). For all x ∈ E ∪ F, Keep(x) = true if the concept x is 

retained separately in G, otherwise Keep(x) = false. For the base case described 

in Section 4.3.3, Keep(r) = false only for any relation r that is mapping-included 

(Definition 4.14) and its attributes, attributesr. □ 

Other cases of Keep are in Definition 6.6 which defines how to encode a conjunctive 

mapping in Vanilla. 
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While we define the encoding of conjunctive mappings such that most of the alternatives in 

Section 4.4 can be encoded, we only consider the case of conjunctive mappings where each IDB 

name is defined at most once over E and once over F. While we define this more formally in 

Definition 6.6, we describe here a brief intuition of our encoding: we encode each IDB name idb 

as an element s in MapE_F. Because each IDB can be defined only once over E and once over F, 

given an IDB name and schema it is over (E or F), we can tell to which mapping statement a 

mapping relationship corresponds. We create similarity mapping relationships from s to 

elements representing relations in E and F that we wish to include separately in G. We create 

mapping equality relationships from s to elements representing relations in E and F that we do 

not want to include separately in G. Each of the variables that are either joined-on or 

distinguished in defining idb are represented by elements d that are contained in s. We must 

represent the joined-on variables in MapE_F to ensure that they are represented by the same 

attribute in G and similarly we represent the distinguished variables in MapE_F to ensure that 

attributes that are represented by the same position in an IDB are represented by the same 

attribute in G. Again if we want to keep the relation separately in G, d is the origin of a mapping 

similarity relationship and if we do not, d is the origin of a mapping equality relationship. 

Because mapping equality relationships that are incident to relations will pull in the attributes of 

relations that are not mapped, in order to show that the mediated schema is isomorphic to a 

well-formed mediated schema, we do not have to include attributes that are not joined-on. 

Because relations created by mapping similarity relationships will not pull in attributes of the 

relations in E and F to which they correspond, we create a sub-element for all variables in a 

mapping statement. We now formally describe this process by extending µ so that it also 

encodes a mapping of the formulas of the semantic mapping into a Vanilla mapping. 

 

Definition 6.6: (Vanilla Encoding of a Conjunctive Mapping). In Definition 6.1 

µ is defined over E and F: (µ: E ∪ F  E ∪ F). We extend µ s.t. µ: (E ∪ F ∪ 

MapE_F)  (E ∪ F ∪ MapE_F), as follows: 
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1. MapE_F corresponds to the root of MapE_F. Formally: µ(MapE_F) = 

Root(MapE_F) 

2. The root of MapE_F is connected to the roots of E and F via equality 

mapping relationships. Formally: Me(Root(MapE_F), Root(E)) ∈ MapE_F 

and Me(Root(MapE_F), Root(F)) ∈ MapE_F where µ(E) = Root(E) and µ(F) = 

Root(F). 

3. Each IDB and its mapping statements correspond to exactly one 

element in MapE_F. Formally: ∀ IDB names idb ∈ IDB(MapE_F), ∃ m ∈ 

MapE_F s.t. 

a. ∀ s ∈ MapE_F, µ(s) = m iff IDB(s) = idb 
15  

b. name(m) = idb 

4. Each mapping statement has its structure represented in MapE_F. 

Formally: ∀ pairs <s, m>, s ∈ MapE_F, m ∈ MapE_F s.t. µ(s) = m 

a. C(Root(MapE_F), m) ∈ MapE_F 

b. For each relation r in body(s), where µ(r) = r, 

if Keep(r) = true, then Me(m, r) else Ms(m, r)  

c. ∀ variables v in s s.t. v ∈distinguished(s) or v ∈ Joined(s) 

i. ∃ an element v ∈ MapE_F s.t. µ(v)= v and C(µ(s), v) ∈ MapE_F 

ii. ∀ attributes a ∈ E ∪ F s.t. VM(v, a), ∃ an element a ∈ MapE_F 

s.t.  

1. µ(a) = a 

                                                      
15 Recall that by Remark 6.1 we restricted MapE_F so that there are at most two mapping 

statements such that this is true, and at most one can be over E or over F. 
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2. If Keep(v) = true, then Me(v, a) else Ms(v, a) 

3. Order(v) = Order(v) 

d. ∀ variables v in s s.t. not [v ∈distinguished(s) or v ∈ Joined(s)] and 

Keep(v) 

i. ∃ an element v ∈ MapE_F s.t. µ(v)= v and C(µ(s), v) ∈ MapE_F 

ii. For each attribute a ∈ E ∪ F s.t. VM(v, a), ∃ an element a ∈ 

MapE_F s.t.  

4. µ(a)= a 

5. Ms(v, a) 

6. Order(v) = Order(v) 

5. No other elements or relationships exist in MapE_F □ 

Example 6.1: If the schema E is: 
e3(a,b,c) 

and F is: 
f1(d,g) 

f2(h,i,j) 

And MapE_F consists of the mapping statements:  

q7(x,y) :- e3(x,y,w)  

q7(x,y) :- f1(x,y), f2(y,z,x) 

Then MapE_F is the mapping in Figure 6.2; the result of Merge is shown in 

Figure 6.3. Recall that each IDB name can only be defined at most twice, once 

over E and once over F, so there can be no additional mapping statements 

defining q7. □ 

Note that the names of the existential variables that are not joined-on are not retained. This 

could be easily expanded to adhere precisely to the requirement that a well-formed mediated 
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schema (Definition 4.16) retain the names of all variables used in the mapping, but for the sake 

of brevity and a cleaner mapping, we leave it out.  

Definition 6.7: (ImportConjunctiveMapping). ImportConjunctiveMapping 

(MapE_F, MapE_F) is a Model Management operator that takes a conjunctive 

mapping MapE_F and a function µ: E ∪ F  E ∪ F and creates a Vanilla 

mapping MapE_F and a function µ: R ∪ MapE_F  M ∪ MapE_F that satisfy 

Definition 6.6.  □ 

Remark 6.2: The Vanilla encoding of a conjunctive mapping (Definition 6.6) 

only creates MapE_F; it does not change E or F. This can be seen by inspection 

of each bullet in Definition 6.6. □ 

6.1.3 Exporting to the Relational Model 
To translate from the generic Model Management representation back to the relational 

model, we essentially reverse the process in Definition 6.1. We define here a function γ: M  R 

which describes the correspondence between a Vanilla model M and a relational schema R. If 

γ(x) = y, then name(x) = nR(y).We define the correct encoding in Definition 6.8. 

Definition 6.8: (Decoding a Vanilla Model into a Relational Schema). 

Let M be a Vanilla model that corresponds to a relational schema R as defined 

in Definition 6.2. 

1. γ(nR(R)) = Root(M)  

2. ∀ non-leaf non-root elements e ∈ M, ∃ ! relation r ∈ R s.t. γ(e) = r. 

3. ∀ leaf elements e ∈ M, ∀ p ∈ M where C(p, e) and γ(p) = r, ∃! attribute a ∈ 

Ar,R s.t. 

a.  γ(e) = a, 

b. Order(e) = Order(a)  



164 

 

 

 

4. There are no other objects in G.  □ 

Definition 6.9: (ExportRelationalSchema) ExportRelationalSchema(M, R) is a 

Model Management operator that creates a Vanilla model M and a function. γ: 

M  R that satisfy Definition 6.8. Has-a relationships are ignored since they 

correspond to constraints that we do not represent in the relational model.  □ 

6.2 Using Syntactic Merge with Conjunctive Mappings 
Conjunctive mediated schema creation (Definition 4.18) can be encoded in syntactic Merge 

as described Definition 5.1. To do this the input mappings are transformed into Vanilla 

mappings, Merge is performed, and the result is exported back to the relational model. 

Formally: 

Definition 6.10: (MergeConjunctiveMediatedSchemaCreation). Given two 

relational schemas E and F and a conjunctive mapping MapE_F between them, 

the algorithm MergeConjunctiveMediatedSchemaCreation operates as follows:  

1. ImportRelationalSchema(E, E) (Definition 6.3) 

2. ImportRelationalSchema(F, F) (Definition 6.3) 

3. ImportConjunctiveMapping(MapE_F, MapE_F) (Definition 6.7) 

4. Vanilla Merge(E, F, MapE_F)  G (Definition 5.1) 

5. ExportRelationalSchema(G, G) (Definition 6.9)  □ 
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E FMapE_F
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Figure 6.4: Relationships between the various schemas and models in 
MergeConjunctiveMediatedSchemaCreation. Everything inside the box is a Vanilla model. 
Everything outside the box is a relational schema or conjunctive mapping. The edges are 
labeled by the correspondence relations. 

The relationships between these models can be seen in Figure 6.4. Step 5 requires that G 

satisfies the relational meta-model. The merged model will obey the restrictions for a relational 

encoded Vanilla model (Definition 6.1) because the mappings are conjunctive queries, because 

of the way we have translated the queries into syntactic mappings, and because of the semantics 

of Merge. The details are shown in Theorem 6.1:  

Theorem 6.1: For G created by MergeConjunctiveMediatedSchemaCreation 

(Definition 6.10), G obey the restrictions for a relational encoded Vanilla model 

(Definition 6.1).  

Proof: We break the proof down into three pieces as follows, one for each 

bullet in Definition 6.1:  

1. The model must have three layers of elements: the schema name is 

the root, which Contains elements corresponding to relations, and 

each element corresponding to an attribute is contained by exactly 
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one element corresponding to a relation. Due to the syntax of 

conjunctive queries, MapE_F only maps relations to relations and only 

maps attributes to attributes. Hence MapE_F only maps second-level 

elements to second-level elements and third-level elements to third-

level elements. In addition the roots of the schemas map to one another. 

Thus, the merged model will have three levels.  

In a conjunctive mapping, relations are mapped along with their 

attributes. From the definition of intersections (Definition 4.2) and 

projection-free components (Definition 4.13) as used in the definition 

of conjunctive mediated schema creation (Definition 4.18), attributes 

will be mapped to one another only if their parent relations are also 

mapped to one another. Hence from the definition of µ we know that 

two elements corresponding to attributes will only be mapped to each 

other if their parents (i.e., elements corresponding to relations) are 

mapped to each other. Therefore each syntactic element in the merged 

model that corresponds to a relational attribute will have only one 

parent relation. In addition since the Merge definition requires that the 

roots of the models map to one another, each relation will have only 

one root which is the only parent of all second-level elements. 

2. The model must have no other elements or relationships other than 

Has-a relationships: E and F will have only contains relationships 

because they are Vanilla encodings of relational schemas (Definition 

6.1) – this can also be seen from the definition of 

ImportRelationalSchema (Definition 6.3). By the definition of µ, 

MapE_F will only have Contains relationships and mapping 

relationships to elements in E and F. Merge produces a model that has 

only the relationships in the input mapping, plus Has-a relationships 

(used to record relationships denoted by Mapping Similarity 

Relationships), minus mapping relationships from MapE_F to E and F 

(Definition 5.1). Hence, the only relationships in G will be Contains 
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relationships or Has-a relationships. As described above, the Contains 

relationships satisfy Definition 6.1, so the only remaining relationships 

are Has-a relationships. 

Hence G satisfies the relational data model.  □ 

MergeConjunctiveMediatedSchemaCreation creates the mediated schema G, but we still lack 

the GLAV mappings MapG_E and MapG_F. We now describe how to create MapG_E and MapG_F. 

6.2.1 Creating MapG_E 
Merge(E, F, MapE_F)  G creates an implicit morphism from G to E in the History property. 

For this rest of this section we concentrate on expanding this morphism into MapG_E; MapG_F can 

be created mutatis mutandis16. We begin with some notation: 

The relation χ: (E ∪ F ∪ MapE_F)  G describes the relationship provided by the History 

property: χ(x) = y IFF History(y) includes x; this is the same χ function defined in the GMRs as 

in Section 5.2.3. 

Definition 6.11: (Mappede). We define the ordered list Mappede to be the 

elements in G corresponding to sub-elements of a given second-level element 

(i.e., a relation) e in E or F. Formally, for each e ∈ X, X ∈ {E, F} s.t. 

C(Root(X),e), let ordered list Mappede = {,<vi, aj> | ∃ aj ∈ X s.t. C(e, aj) and 

χ(aj) = vj ∈ G, and Order(vj) = j 17}. □ 

Figure 6.5 is a pictorial representation of the elements and relationships used in this 

definition. 

                                                      
16 “Mutatis mutandis” means repeating the same argument only the necessary changes have 

been made by substituting in new terms. 
17 The GMRs for Merge imply that every input element corresponds to exactly one output 

element, so this is well defined. 
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Figure 6.5: Pictorial representation of relationships used in creating Mappede 

In Definition 6.12, we show how to create MapE_F given MapE_F. For the algorithm below, 

Figure 6.6 and Figure 6.7 show the variables used in Definition 6.12 in steps (2) and (3) 

respectively. Steps (1) – (3) are illustrated in Example 6.2 - Example 6.4. 

Root(E)

repre1 ...

Root(MapE_F)

d

g G

Gg(AG)
 

Figure 6.6: Variables used in creating mapping views for relations created as a result of 
mapping equality relationships in Step (2) of Definition 6.12. 
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Figure 6.7: Variables used in creating mapping views for relations created as a result of 
mapping similarity relationships in Step (3) of Definition 6.12. 

Definition 6.12: (CreateMapG_EF). We show how to create MapG_E in the steps 

below. MapG_F can be created by replacing each occurrence of the model E with 

the model F and each occurrence of MapG_E with MapG_F. MapG_EF is the union of 

MapG_E with MapG_F. Throughout this definition we will scope variables at each 

step. However, to make following the definitions easier we provide here a list 

of the commonly used variables and the reasoning for their names: 

• g = the relation being created 

• d = elements corresponding to relations created by MapE_F, named for 

the helper schema in Definition 4.10. 

• re = relations in E 

• hg = elements corresponding to relations in G that are the destination of 

Has-a relations 

• ae = elements corresponding to attributes in E 

• ag = elements corresponding to attributes in G 
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• ahg = elements corresponding to attributes in G that are the destination 

of Has-a relationships in G. 

Step (1) Create the views in MapG_E for relations in G not represented in 

MapE_F: For each relation g ∈ G with attributes AG where γ(g)= g18 

if ∃ no d ∈ MapE_F s.t. χ(d) = g where g ∈ G and ∃ re ∈ E s.t. χ(er) 

= g then do the following: 

Let q be a fresh IDB name  

Add to GVG: q(AG) :- g(AG) 

Add to LVG: q(AG) :- g(AG) 

Step (2) Create the mapping views for relations in G created as a result 

of mapping equality relationships in MapE_F. Formally: ∀ 

relations g ∈ G with attributes AG where γ(g) = g if ∃ d ∈ MapE_F 

s.t. χ(d) = g where g ∈ G, then do the following.  

Let RE be the ordered list of elements 

[re1, …, rep | rej∈E, Me(d, rej), χ(rej)= g and ∀i (1 ≤ i < j) 

Order(rei) < Order(rej)] 

Let MappedRE = the concatenation of Mappedre1 through 

Mappedrep, where only the first occurrence of each element is 

included if there are duplicates. 

Let q be a fresh IDB name 

Add to LVG: q(MappedRE) :- g(AG)  

Add to GVG:q(MappedRE):-re1(Mappedre1),…,rep(Mappedrep) 

Step (3) Create the mapping views for relations in G created as a result 

of mapping similarity relationships in MapE_F. Formally: ∀ 

relations g ∈ G with attributes AG where γ(g) = g, H(g, eg), χ(re) = 

                                                      
18 The definition of ExportRelationalSchema implies there must exist such a g. 
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eg, re ∈ E (i.e., re is the destination of a similarity mapping 

relationship), and χ(d) = g where g ∈ G and d ∈ MapE_F. 

Let RE be the ordered list of elements in E s.t. the corresponding 

element in G is the destination of a Has-a relationship from g. 

Formally: let RE be the ordered list of elements  

[re1, …, rep | rej ∈ E, Ms(d,rei), and χ(d) = g ∀ i, 1≤ i< j  

Order(rei) < Order(rej)]  

Let ψg describe the mapping of the attributes. Formally: Let ψg = 

{<ag, ae> | ag ∈ G, C(g, ag), H(ag, ahg), re ∈ E, C(re, ae), 

χ(ae, ahg)}. 

Let AMg(ae)19 = { ae | re ∈RE, C(re, ae), and if ψg (ag, ae) then 

AMg(ae) = name(ag), else AMg(ae) = name(ae)} 

Let ordered list VarsMapped = [agi | ψg(agi, aei) and ∀ j, 1 ≤ j < i   

Order(aej) < Order(aei)]. 

∀ re ∈ RE 

Let ordered list AEre = [aei | C(re, aei) and ∀ j, 1 ≤ j < i  

Order(aej) < Order(aei)].  

Let m = |AEre|  

Let namere = name(re)  

Let AMrelg(re) = namere(AMg(ae1), …, AMg(aem)).  

Let q be a fresh IDB name 

Add to LVG = q(VarsMapped) :- g(AG) 

Add to GVG=q(VarsMapped):-AMrelg(re1),…,AMrelg(rep) 

Similarly for MapG_F.  □ 

We now provide an example of each step in Definition 6.12.  
                                                      
19 AM is short for attribute mapping 
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Figure 6.8: A mapping that allows the attributes not to be kept 

Example 6.2: For step (1) in Definition 6.12, suppose we are merging the 

schemas in Figure 6.8 and creating MapG_E: 

g = e1 

AG = [a,y] 

Add to GVG: qfresh1(a,y) :- e1(a,y) 

Add to LVG: qfresh1(a,y) :- e1(a,y).  □ 

 

Example 6.3: For step 2 in Definition 6.12, assume Figure 6.2 and Figure 6.3 

as input, and that we are creating MapG_F
20

 

g = q7 (from Figure 6.3) 

AG = [x,y,c,i] 

d = q7 (q7 in Figure 6.2) 

RE = [f1, f2] 

MappedRE = [x,y,i] 

Mappedre1= [x,y] 

Mappedre2 = [x,y,i] 

we add to LVG:  

qfresh2 (x,y,i) :- q7(x,y,c,i) 

We add to GVG: 

qfresh2(x,y,i) :- f1(x,y), f2(x,y,i).  □ 

                                                      
20 Because we have defined the variable names to be simple to understand w.r.t. defining 

MapG_E, we use RE to refer to elements corresponding to relations in F. 
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Example 6.4: For step 3 in Definition 6.12, suppose that we are merging the 

schemas in Figure 6.8 and creating MapG_E. 

g = q2 

AG = [x] 

d = q2 (in MapE_F) 

RE = [e1] 

AEre1 = [a,y] 

ψg(x, a) 

VarsMapped = [x] 

AMrelq(re1) =e1(x,y)  

Add to LVG: qfresh4(x) :- q2(x) 

Add to GVG: qfresh4(x) :- e1(x,y)  □ 

Not all alternate semantics, such as those defined in Section 4.4 or alternate CMSCs, can be 

described using only Import, Merge, and Export; we describe in Section 6.5 when difficulties are 

encountered. 

6.3 Correctness of MergeConjunctiveMediatedSchemaCreation 
We now must prove that MergeConjunctiveMediatedSchemaCreation (Definition 6.10) and 

CreateMapG_EF (Definition 6.12) correctly create G and MapG_EF, as specified in the correctness 

criteria for a well-formed mediated schema (Definition 4.16) and well-formed mediated schema 

mappings (Definition 4.17) in Section 4.3.3.2. 

Theorem 6.2: Given relational schemas E and F and a conjunctive mapping 

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) and 

CreateMapG_EF (Definition 6.12) generate mediated schema G, and mapping 

MapG_EF s.t. G and MapG_EF are well-formed.  □ 
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To prove Theorem 6.2 we break it into two lemmas, Lemma 6.1 which shows that G is well-

formed and Lemma 6.2 which shows that MapG_EF is well-formed: 

Lemma 6.1: Given relational schemas E and F and a conjunctive mapping 

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates 

mediated schema G s.t. G is well-formed.  □ 

 

Lemma 6.2: Given relational schemas E and F and a conjunctive mapping 

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) and 

CreateMapG_EF (Definition 6.12) generate mediated schema G, and mapping 

MapG_EF s.t. MapG_EF is well-formed.  □ 

We prove Lemma 6.1 in Section 6.3.1and Lemma 6.2 in Section 6.3.2. Together, Lemma 6.1 

and Lemma 6.2 prove Theorem 6.2. 

6.3.1 Proof Correctness of G 
In this section we prove Lemma 6.1: G created by MergeConjunctiveMediated-

SchemaCreation (Definition 6.10) is a well-formed schema as required by Definition 4.16. 

Recall that Definition 4.16 defines a mediated schema G to be well-formed if: 

1. ∀ relations e ∈ E s.t. e is not mapping-included, ∃ g ∈ G s.t. ne = ng and attributese = 

attributesg. Similarly for all f ∈ F.  

2. ∀ IDB names q ∈ IDB(MapE_F), ∃ g ∈ G s.t. q = ng and attributesg = Vars(MSq) 

3. G contains no additional relations. 

We prove Lemma 6.1 by proving Lemma 6.3, Lemma 6.4, and Lemma 6.5, each of which 

proves one of the bullets in Definition 4.16: 

Lemma 6.3: Given relational schemas E and F and a conjunctive mapping 

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates 

mediated schema G, s.t. ∀ relations e ∈ E where e is not mapping-included, ∃ g 

∈ G s.t. ne = ng and attributese = attributesg. Similarly for all relations f ∈ F.  □ 
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Lemma 6.4: Given relational schemas E and F and a conjunctive mapping 

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates 

mediated schema G, s.t. ∀ IDB names q ∈ IDB(MapE_F), ∃ g ∈ G s.t. q = ng and 

attributesg = Vars(MSq).  □ 

 

Lemma 6.5: Given relational schemas E and F and a conjunctive mapping 

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates 

mediated schema G, s.t. G contains only those relations needed to satisfy 

Lemma 6.3 and Lemma 6.4.  □ 

We prove Lemma 6.3 in 6.3.1.1, Lemma 6.4 in Section 6.3.1.2, and Lemma 6.5 in Section 

6.3.1.3. To prove the above lemmas, we require Lemma 6.6, Lemma 6.7, Lemma 6.8, Lemma 

6.9, Lemma 6.10, and Lemma 6.11: 

Lemma 6.6: ∀ relations r ∈ EF, ∃! e ∈ EF s.t. µ(r,e). ∀ attributes a ∈ 

attributesr ∃! a1 ∈ EF s.t. µ(a,a1) and C(e,a1).  

Proof: This follows directly from the definition of µ.  □ 

 

Lemma 6.7: ∀ g ∈ G s.t. C(Root(G), g), ∃! relation r ∈ G s.t. γ(g, r). ∀ 

elements g1 s.t. C(g,g1), ∃! a ∈ attributesr s.t. γ(g1,a).  

Proof: This follows directly from the definition of γ.  □ 

 

Lemma 6.8: Each element ef ∈ EF is the destination of at most one mapping 

relation in MapE_F. Therefore ∀ elements ef1, ef2 ∈ EF, χ(ef1,g) and χ(ef2,g) iff 

∃ some d ∈ MapE_F s.t. Me(d,ef1), Me(d,ef2); by definition of Merge (Definition 

5.1 bullet 2) i.e., there is no transitivity of equality in MapE_F. 
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Proof sketch: We have constrained conjunctive mappings to disallow 

mappings that would contain transitivity of equality in MapE_F by disallowing 

relations to appear in more than one mapping statement (Section 4.3.1.1)  

Proof: From the definition of Merge (Definition 5.1) elements d1, d2 ∈ MapE_F, 

d1 ≠ d2, will only correspond to the same element g ∈ G (i.e., χ(d1,g), χ(d2,g)) if 

∃ e ∈ E or F s.t. Me(e, d3), Me(e,d4), and d3 ≠ d4.  

By the definition of Vanilla encoding of a conjunctive mapping (Definition 

6.6 bullet 2), the roots of E and F are only the destination of a mapping equality 

relationship from the root of MapE_F. 

Since a relation may appear in at most one mapping statement (Section 

4.3.1.1), from the definition of Vanilla encoding of a conjunctive mapping 

(Definition 6.6 bullet 4b), ∀ elements e1 s.t. µ(r,e1) where relation r ∈ EF, e1 is 

the destination of at most one mapping relationship. 

The argument for attributes is similar: A relation may appear in at most one 

mapping statement (Section 4.3.1.1). From the definition of conjunctive queries 

an attribute is only mapped if its relation is mapped. From the definition of 

attributes of relations, each attribute only appears once in a relation. Therefore, 

from the definition of Vanilla encoding of a conjunctive mapping (Definition 

6.6 bullet 4.c and 4.d), ∀ elements e2 s.t. µ(a, e2) where attribute a ∈ attributesr2 

for some relation r2 ∈ EF, e2 is the destination of at most one mapping 

relationship. Therefore ∀ elements ef1, ef2 ∈ EF χ(ef1,g) and χ(ef2,g) iff ∃ some 

d ∈ MapE_F s.t. Me(d,ef1), Me(d,ef2); i.e., there is no transitivity of equality in 

MapE_F □ 

 

Lemma 6.9: In Merge(E, F, MapE_F)  G (Definition 5.1) in 

MergeConjunctiveMediatedSchemaCreation (Definition 6.10), no fundamental 
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conflict resolution is required, nor are there any implied relationships 

removed.21  

Proof: By ImportRelationalSchema (Definition 6.3), E and F will both have 

three levels and obey the restrictions for a relational encoded Vanilla model 

(Definition 6.1). By Definition 6.3 E and F will only have Contains 

relationships. Due to the syntax of conjunctive queries, MapE_F only maps 

relations to relations and attributes to attributes. Hence MapE_F only maps 

second-level elements to second-level element and third-level elements to third-

level elements. More formally: by ImportConjunctiveMapping (Definition 6.7) 

we know that MapE_F consists of three levels, and if C(Root(E), e), M(s,e)22 

where ∃ relation r ∈ EF s.t. µ(r,e), then C(Root(MapE_F),s). Similarly, if 

C(Root(E), e), C(e,e1), and M(d1,e1) where ∃ attribute a and relation r s.t. a ∈ 

attributesr and µ(a,e1) then ∃ s ∈ MapE_F s.t. C(Root(MapE_F),s), and C(s,d1). 

The only fundamental conflict in Vanilla that uses Contains or Has-a 

relationships is that the containment hierarchy must be acyclic (5.4.2.2). 

Because the roots of E, F, and MapE_F are only mapped to each other, the 

second-level elements are mapped only to second-level elements, and the third-

level elements are mapped only to third-level elements, there are no cycles in 

the containment hierarchy. So no fundamental conflict resolution is required.  

Since G can only consist of Has-a or Contains relationships, the only 

relevant relationship implication rule (Section 5.4.1) is that containment is 

transitive. However, because the roots of E, F, and MapE_F are only mapped to 

each other, the second-level elements are mapped only to second-level 

elements, and the third-level elements are mapped only to third-level elements, 
                                                      
21 Note that this proof and the beginning of the proof of Theorem 6.1 share many of the same 

constructs. 
22 Recall that M denotes either a Mapping Similarity Relationship or a Mapping Equality 

Relationship. 
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there is no transitive containment in G. So no relationship implication rules are 

used. Thus Lemma 6.9 holds. □ 

 

Lemma 6.10: ∀ relations g ∈ G s.t. G was created by an IDB idb, ng = idb. 

Proof: From the definition of Vanilla encoding of a conjunctive mapping 

(Definition 6.6) bullet 3, ∃! element e ∈ MapE_F s.t. µ(idb,e) and name(e) = idb. 

Since e ∈ MapE_F and thus for χ(e,g) the value of the Name property of g is 

taken from e, (Definition 5.1 bullet 3.a.i) there are no other elements in MapE_F 

that will be equated with e (Lemma 6.8) that could override e’s values, and 

there are no fundamental conflicts or implied constraints in the creation of G to 

override e’s values (Lemma 6.9), from Merge (Definition 5.1) ∃! element g ∈ 

G s.t. name(g) = name(e). From the definition of ExportRelationalSchema 

(Definition 6.9) ∃! relation g1 ∈ G s.t. ng1 = name(g). Hence Lemma 6.10 holds.□ 

 

Lemma 6.11: ∀ attributes ag ∈ G s.t. G was created by a variable v in IDB idb, 

nag = name of v. 

Proof: From the definition of Vanilla encoding of a conjunctive mapping 

(Definition 6.6) bullet 4, ∃ ! element e ∈ MapE_F s.t. µ(v,e) and name(e) = v. 

Since e ∈ MapE_F, and thus for χ(e,g) the value of the Name property of g is 

taken from e, (Definition 5.1 bullet 3.a.i) there are no other elements in MapE_F 

that will be equated with e (Lemma 6.8) that could override e’s values, and 

there are no fundamental conflicts or implied constraints in the creation of G to 

override e’s values (Lemma 6.9), from Merge (Definition 5.1) ∃! element g ∈ 

G s.t. name(g) = name(e). From the definition of ExportRelationalSchema 

(Definition 6.9) ∃! attribute g1 ∈ G s.t. ng1 = name(g). Hence Lemma 6.10 

holds. □ 

6.3.1.1 Proof that Non-Mapping-Included Relations are in G 
We are now ready to prove Lemma 6.3: non-mapping-included relations are represented in G. 

There are two different cases to consider (1) non-mapping-included relations that do not appear 
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in MapE_F (Lemma 6.12) and (2) non-mapping-included relations that appear in MapE_F (Lemma 

6.13). 

Lemma 6.12: ∀ relations e ∈ EF where e is not mapping-included and ∃/  ms ∈ 

MapE_F s.t. e ∈ body(ms), ∃ g ∈ G s.t. ne = ng and attributese = attributesg. 

Proof sketch: Since e and its attributes are not mentioned in MapE_F, no 

elements corresponding to them will be mapped in MapE_F. Since Merge 

preserves all elements that are not mapped, and ExportRelationalSchema will 

correctly create a relation for all elements corresponding to relations in G, e 

will appear in G. In a bit more depth: the elements corresponding to neither e 

nor any of e’s attributes appear as the destination of any mapping relationship 

in MapE_F. From the definition of Merge, we know that if an element e1 appears 

in E or F but not in MapE_F, an element identical to e1 appears in G, and if e1 

and e2 appear in E or F and there exists a relationship C(e1,e2), if there are 

separate elements e3 and e4 corresponding to e1 and e2 respectively, then C(e3, 

e4) unless fundamental conflict resolution has occurred or C(e3, e4) is implied 

by other relationships. Since there is no need for fundamental conflict 

resolution in G and the relationship between e and its children is not implied by 

any other relationship (Lemma 6.9), and there is no transitivity of equality in 

MapE_F (Lemma 6.8), e and e’s attributes appear in G as children of G’s root. 

By the definition of ExportRelationalSchema, a relation identical to e, 

including all of e’s attributes appears in G.  

Proof: Let r ∈ EF be a relation that is not mapping-included in MapE_F. By 

ImportRelationalSchema (Definition 6.3), ∃! e ∈ EF s.t. µ(r,e). 

ImportConjunctiveMapping (Definition 6.7) requires that µ satisfies the Vanilla 

Encoding of a Conjunctive mapping (Definition 6.6). And by Remark 6.2, 

Definition 6.6 does not change E or F. By bullet 5 of Definition 6.6, there are 

no relationships in MapE_F other than the relationships required in bullets 1-4. 

Mapping relationships are only created in bullets 2 and 4. Bullet 2 only creates 
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mapping relationships with destination on the schema names. Bullet 4 only 

creates mapping relationships with destination elements e5 s.t. µ(r5,e5), and r5 ∈ 

body(ms) for some ms ∈ MapE_F or µ(a5,e5) and VM(v5,a5) for some variable v5 ∈ 

MapE_F. Hence, since r does not appear in the body of any mapping statement, e 

does not appear as the destination of any mapping relationships.  

From the definition of µ, ∀ attributes a ∈ attributese, ∃! a1 s.t µ(a, a1) and 

C(e,a1). As in the previous paragraph, by definition of µ (Definition 6.6), the 

only relevant creation of mapping relationships occurs in Bullet 4. Bullet 4 of 

Definition 6.6 only creates mapping relationships with destination elements e5 

s.t. µ(r5,e5), and r5 ∈ body(ms) for some ms ∈ MapE_F or µ(a5,e5) and VM(v5,a5) 

for some variable v5 ∈ MapE_F.  So ∀ a1 s.t. µ(a, a1) and C(e,a1) if e does not 

appear as the destination of any mapping relationship, a1 does not appear as the 

destination of any mapping relationships. 

From the definition of Merge (Definition 5.1) and given that Lemma 6.9 

tells us that there are no implied relationships or fundamental conflicts in 

creating G, and that Lemma 6.8 tells us there is no transitivity of equality in 

MapE_F, we know that if an element e1 appears in E or F and ∃/  element e6 ∈ 

MapE_F s.t. Ms(e6,e1) or Me(e6,e1), then ∃! element e3 ∈ G s.t. χ(e1) = e3. 

Similarly if an element e2 ∈ E or F and ∃/  element e7 ∈ MapE_F s.t. Ms(e7,e2) or 

Me(e7,e2), then ∃! element e4 ∈ G s.t. χ(e2) = e4. As well, since Lemma 6.9 tells 

us that there are no implied relationships or fundamental conflicts in creating G, 

if ∃ a relationship C(e1,e2) ∈ E or F and χ(e1) = e3 and χ(e2) = e4, then ∃ a 

relationship C(e3,e4) ∈ G.  

By Theorem 6.1, G satisfies the relational meta-model (Definition 6.2). 

Since ExportRelationalSchema (Definition 6.9) requires that ∀ elements e8, e9 

s.t. C(Root(G),e8) and C(e8,e9), then ∃ a relation g s.t. γ(e8,g) and ga ∈ 

attributesg where γ(e9,ga). Hence it follows that each relation in EF that does not 

appear in MapE_F appears in G.  □ 
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Lemma 6.13: ∀ relations r ∈ E where r is not mapping-included and ∃ ms ∈ 

MapE_F s.t. r ∈ body(ms), ∃ g ∈ G s.t. ne = ng and attributese = attributesg. 

Similarly for all relations f ∈ F. 

Proof sketch: From Lemma 6.6, it follows that each relation r ∈ EF 

corresponds to a unique element e ∈ EF s.t. ∀ attributes of r, e contains 

elements corresponding to those attributes. It follows from 

ImportConjunctiveMapping that each element corresponding to a non-mapping 

included relation that is represented in MapE_F and its attributes is only the 

destination of mapping similarity relationships. From the definition of Vanilla 

Merge, and the fact that no fundamental conflict resolution occurs and that no 

relationship implication rules are applied (Lemma 6.9), and that there is no 

equality of transitivity in MapE_F (Lemma 6.8), it follows that there exists a 

unique element g s.t. e corresponds to g, and g contains elements corresponding 

to all of the elements contained by e. By Lemma 6.7, it follows there exists a 

relation g1 ∈ G s.t. g1 corresponds to g and g1 contains attributes for each 

element contained by g. Hence each non-mapping included relation appearing 

in MapE_F appears in G.  

Proof: From Lemma 6.6 it follows that for all relations r ∈ EF, ∃! e ∈ EF s.t. 

µ(r,e). ∀ attributes a ∈ attributesr ∃! a1 ∈ EF s.t. µ(a,a1) and C(e,a1).  

From the definition of Keep (Definition 6.5), it follows that if a relation r is 

non-mapping-included, Keep(r) = true, and ∀ attributes a ∈ attributesr, Keep(a) 

= true. 

From ImportConjunctiveMapping (Definition 6.7) it follows that ∀ elements 

e s.t. µ(ms,e) where ms ∈ MapE_F, since Keep(r) = true, ∃! d ∈ MapE_F s.t. 

Ms(d,e) where µ(r,e). Similarly ∀ e3 s.t. C(e, e3), ∃! d2 ∈ MapE_F s.t. Ms(d2,e3). 

From the definition of Merge, and the fact that no fundamental conflict 

resolution occurs and that no relationship implication rules are applied (Lemma 

6.9) and that there is no transitivity of equality in MapE_F (Lemma 6.8), it 
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follows that there exists a unique element g s.t. χ(e, g), and ∀ e3 s.t. C(e,e3), ∃ 

element g1 ∈ G s.t. χ(e3,g1) and C(g,g1). 

By Lemma 6.7, it follows ∀ g ∈ G s.t. C(Root(G), g), ∃! relation r ∈ G s.t. γ(g, 

r). ∀ elements g1 s.t. C(g,g1), ∃! a ∈ attributesr s.t. γ(g1,a). Hence Lemma 6.13 

holds. □ 

Hence Lemma 6.3 holds. 

6.3.1.2 Proof that Relations Generated from MapE_F are in G 
To prove Lemma 6.4 (relations generated from MapE_F are in G) we split it up into two 

lemmas: one for relations created by mapping similarity relationships (Lemma 6.14) and one for 

relations created by mapping equality relationships (Lemma 6.15). These are the only two cases 

because of the following: ∀ IDBs idb ∈ IDB(MapE_F), by ImportConjunctiveMapping,(Definition 

6.7), there exists a µ that satisfies Definition 6.6. By the third bullet of Definition 6.6 ∃! element 

s ∈ MapE_F s.t. µ(idb,s). Bullet 4b of Definition 6.6 implies that s is the origin of exactly two 

mapping relationships, mr1 and mr2. mr1 and mr2 may be either similarity or equality mapping 

relationships. Hence these are the only two cases. 

Lemma 6.14: Given relational schemas E and F and a conjunctive mapping 

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates 

a mediated schema G, s.t. ∀ IDB names idb ∈ IDB(MapE_F), ∀ MSq s.t. IDB(MSq) 

= idb, ∃ s ∈ MapE_F s.t. µ(idb,s) and s is the origin of a mapping similarity 

relationship, ∃ g ∈ G s.t. idb = ng and attributesg = Vars(MSq). 

Proof sketch: Assuming that we are considering only IDB names that are 

represented using mapping similarity relationships, from the definition of µ we 

know that ∀ IDBs idb, idb will be represented by one element d ∈ MapE_F. 

From µ we also know that ∀ mapping statements ms s.t. IDB(ms) = idb, ∀ 

relations r ∈ body(ms), ∃ a mapping similarity relationship from s, the element 

representing idb, to e, the element representing r. From the definition of µ we 

know that there exists no other mapping relationship with destination at e. 
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Similarly for all variables v ∈ ms there exists a unique element d1 in MapE_F s.t. 

d1 corresponds to v and d1 is contained by d, and v is the destination of no 

mapping equality relationships. Hence by the definition of Merge and the fact 

that there is no fundamental conflict resolution or relationship implication in 

the creation of G (Lemma 6.9) and there is no transitivity of equality in MapE_F 

(Lemma 6.8), there exists exactly one element g in G s.t. g corresponds to d and 

g contains one element for each element corresponding to a variable in idb. 

Hence by the definition of γ, there exists one relation g in G s.t. g has as 

attributes the variables of all mapping statements ms s.t. IDB(ms) = idb; Lemma 

6.11 ensures that the names of the attributes of g are correct, and Lemma 6.10 

ensures that idb = ng. 

Proof: Assuming that we are considering only IDB names that are represented 

using mapping similarity relationships, from the definition of the Vanilla 

encoding of a conjunctive mapping (Definition 6.6) we know that ∀ IDBs idb, 

∃ ! element s ∈ MapE_F.s.t. µ(idb,s) (bullet 3) and C(Root(MapE_F),s) (bullet 4a). 

From bullet 4 of Definition 6.6 we also know that ∀ mapping statements ms s.t. 

IDB(ms) = idb, ∀ relations r ∈ body(ms), ∃ ! e ∈ E and d ∈ MapE_F s.t. Ms(d,e). 

From the definition of µ we know that there exists no other mapping 

relationship with destination at e. Similarly for all variables v ∈ ms ∃! element 

d1 ∈ MapE_F s.t. µ(v,d1), and C(d,d1), and ∃/  d2 ∈ MapE_F s.t. Me(d2, d1). Hence 

by the definition of Merge (Definition 5.1) and that there is no fundamental 

conflict resolution or relationship implication in the creation of G (Lemma 6.9) 

and there is no transitivity of equality in MapE_F (Lemma 6.8), ∃! element g ∈ G 

s.t. χ(d,g) and ∀ d1 s.t. v ∈ Vars(ms) where IDB(ms) = idb and µ(v,d1), C(g,g1). 

Hence by the definition of γ, there exists one relation g ∈ G s.t. g has as 

attributes the variables of all mapping statements ms s.t. IDB(ms) = idb. Finally, 

Lemma 6.11 ensures that the names of the attributes of g are correct, and 

Lemma 6.10 ensures that idb = ng, so Lemma 6.14 holds. □ 
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Lemma 6.15: Given relational schemas E and F and a conjunctive mapping 

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates 

mediated schema G, s.t. ∀ IDB names idb ∈ IDB(MapE_F), ∀ MSq s.t. IDB(MSq) = 

idb, ∃ s ∈ MapE_F s.t. µ(idb,s) and s is the origin of a mapping equality 

relationship, ∃ g ∈ G s.t. q = ng and attributesg = Vars(MSq). 

Proof sketch: Assuming that we are considering only IDBs that are represented 

using mapping equality relationships, all relations r that appear in a mapping 

statement for an IDB idb ∈ IDB(MapE_F) will be equated to the same element in 

MapE_F by the definition of ImportConjunctiveMapping, and similarly for the 

variables in idb’s definition. Similarly, each attribute a ∈ attributesr will be 

mapped iff a is joined-on in a mapping statement or a is mapped to a 

distinguished variable. The only time that attributes will be mapped by the 

same element in MapE_F is if they are mapped by the same variable. From 

Merge and the fact that there is no fundamental conflict resolution or 

relationship implication in the creation of G (Lemma 6.9) and there is no 

transitivity of equality in MapE_F (Lemma 6.8), we know that this will result in 

an element g ∈ G that contains one element for each attribute not joined-on, 

and one element for each joined-on variable. From ExportRelationalSchema we 

know that there exists a relation g1 ∈ G that contains one attribute for each 

element contained in g. Finally, Lemma 6.11 ensures that the names of the 

attributes of g are correct, and Lemma 6.10 that idb = ng. 

Proof: ∀ IDBs idb ∈ IDB(MapE_F), ∀ ms s.t. IDB(ms) = idb, ∃ ! s ∈ MapE_F s.t. 

µ(ms, s) iff IDB(ms) = idb by µ (Definition 6.6) bullet 3. We know from 

Definition 6.6 bullet 4b that ∀ relations r ∈ body(ms), ∃! e ∈ E s.t. µ(r,e) and 

Me(s,e). From Definition 6.6 bullets 4.c.ii.2, ∀ attributes a ∈ attributesr s.t. 

VM(v,a) and v ∈ distinguished(ms) or v ∈ join(ms), ∃ unique elements e1and s2 

in MapE_F s.t. µ(a,e1), µ(v,s2), and C(e,e1), C(s, s2), Me(s2, e1).  
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From the definition of conjunctive queries (Definition 2.2), an attribute is 

only mapped if its relation is mapped. From the definition of conjunctive 

mappings (Section 4.3.1.1), a relation is only mapped once. From Lemma 6.8 

there is no transitivity of equality in MapE_F. By the definition of Merge 

(Definition 5.1) and the fact that there are no fundamental conflicts or implied 

relationships in creating G (Lemma 6.9), ∃ ! g ∈ G s.t. χ(s, g). In addition g 

contains exactly one element g1 per element d1 s.t. C(s,d1), and one element per 

element e1 ∈ E s.t. Me(e,e2), C(e2,e1). By Lemma 6.7, there will be exactly 

relation rg ∈ G s.t. γ(g,rg), and if C(g,g1) then ∃! ag s.t. γ(g1,ag) and ag ∈ 

attributesrg. Finally, Lemma 6.11 ensures that the names of the attributes of g 

are correct, and Lemma 6.10 that idb = ng. Hence Lemma 6.15 holds. □ 

Since Lemma 6.14 and Lemma 6.15 hold, Lemma 6.4 holds. 

6.3.1.3 Proof that No Additional Relations Exist in G 

From the definitions of ImportRelationalSchema and ImportConjunctiveMapping, it follows 

that no other elements exist in MapE_F besides those elements required above. Hence, from the 

definition of Merge, no other relations exist in G and Lemma 6.5 holds.  

Hence with the proofs of Lemma 6.3 and Lemma 6.4 above, Lemma 6.1 holds.  

6.3.2 Proof of Correctness of MapG_E and MapG_F 
We now show Lemma 6.2: LVG and GVG are well-formed mediated schema mappings as 

defined in Section 4.3.3.2. Recall that Definition 4.17 requires that a well-formed relational 

mediated schema mapping obeys the following lemmas, one for each of the numbered bullets in 

Definition 4.17: 

Lemma 6.16: ∀ mapping statements ms with IDB name q, let rq ∈ G be a 

relation with name q and attributes = Vars(MSq) and ξ(q,rq). Let qj be a fresh 

IDB name (i.e., an IDB name that appears in no other mapping statements in 

MapE_F or in any other local view definitions or global view definitions in 
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MapG_EF). 

lvms = qj(Vars(ms)) :- rq  

gvms = qj(Vars(ms)) :- body(rq) 

lvms ∈LVG 

gvms ∈ GVG  □ 

 

Lemma 6.17: relations g ∈ G s.t. ξ(e,g) and ξ(e1,g) implies e1 = e (i.e., directly 

corresponding to a relation in E or F), let qj be a fresh IDB name (i.e., qj is an 

IDB name that appears in no other mapping statements in MapE_F or in any other 

local view definitions or global view definitions in MapG_EF). 

lvg = qj(attributesg) :- g(attributesg)  

gvg = qj(attributesg) :- g(attributesg) 

lvg ∈LVG 

gvg ∈ GVG   □ 

 

Lemma 6.18: LVG and GVG contain no views other than those required above.  □ 

 We prove Lemma 6.16, Lemma 6.17, and Lemma 6.18 in Sections 6.3.2.1, 6.3.2.2, and 

6.3.2.3 respectively. 

6.3.2.1 Proof that Mapping Views for Relations Corresponding to IDBs are in 
MapG_EF 

We now prove Lemma 6.16 – mapping view for relations corresponding to IDBs are in 

MapG_EF. There are two cases: A mapping statement is represented by mapping equality 

relationships (Lemma 6.21) or mapping similarity relationships (Lemma 6.24). 

6.3.2.1.1 Proof that Mapping Views for Created by Mapping Equality 
Relationships are in G 

Assume that we are creating MapG_E (MapG_F can be shown mutatis mutandis). Let ms be a 

mapping statement with IDB name idb and ∀ relations r ∈ body(ms), Keep(r) = false (i.e., ms is 

going to be expressed using mapping equality relationships). We show that mapping views 
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created for mapping equality relationships in Lemma 6.21. To prove Lemma 6.21 we require 

Lemma 6.19 and Lemma 6.20. Lemma 6.19 shows that the relations in body(ms) in the first 

bullet of Definition 4.17 are the same as re1, …, rep in Step (2) in Definition 6.12 and Lemma 

6.20 shows that the variables used in Lemma 6.19 are isomorphic to one another. Both Lemma 

6.19 and Lemma 6.20 use the definitions of ms, idb, and r as above: 

Lemma 6.19: ∀ mapping statements ms ∈ MapE_F, re1, …, rep in Step (2) in 

Definition 6.12 equals the relations in body(ms) the first bullet of Definition 

4.17. 

Proof: Since we know that each IDB only appears in at most one mapping 

statement over E (Remark 6.1), from the definition of µ, a relation r ∈ body(ms) 

IFF ∃ e ∈ E such that µ(r, e) and either Me(d, e), or Ms(d, e) for some d ∈ 

MapE_F. Since Keep(r) = false, it follows from bullet 4.b of Definition 6.6 that 

Me(d,e). From the definition of Merge (Definition 5.1), Lemma 6.9 (there are 

no fundamental conflicts or implication rules used in the creation of G), and 

Lemma 6.8 (there is no transitivity of equality in MapE_F), it follows that there 

exists some g s.t. χ(e,g) and e ∈ E IFF Me(d,e). Hence re1, …, rep in Step (2) of 

Definition 6.12 is a set of elements corresponding to those relations that are in 

the body of ms. By Lemma 6.10 the names of re1, …, rep equal the names of the 

relations in the body of ms, and thus re1, …, rep equals the relations in body(ms) 

in Definition 4.17.  □ 

 

Lemma 6.20: ∀ mapping statements ms ∈ MapE_F, the elements in Mappedrei ∀ 

i, 1 ≤ i ≤ p, where p = |MappedRE| in Step (2) of Definition 6.12 are isomorphic 

to the variables of r in body(ms) in the second part of Definition 4.17. 

Proof: ∀ r in body(ms), by the definition of µ:  

• ∃ e ∈E s.t. C(Root(E),e) and µ(r,e) 

• ∃ d ∈MapE_F s.t. Me(d,r).  
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• ∀ attributes a ∈ attributesr, ∃ element e1 ∈ E s.t. C(e,e1) and µ(a,e1).  

• ∃ d ∈ MapE_F s.t. µ(ms) = d.  

• ∀ variables v s.t. v ∈ distinguished(ms) or v ∈ Joined(ms), there exists a 

unique e2 ∈ E s.t. µ(v,e2) and d1 ∈ MapE_F s.t. C(d, d1), Me(d1,e2), and 

C(d,d1).  

We know that there will be no more elements e3 ∈ E and d3 ∈ MapE_F s.t. 

Me(d3, e3) and C(d,d3) since each IDB only appears in at most one mapping 

statement over E (Remark 6.1). From these facts and the definition of Merge 

(which requires a value to be taken from the mapping before from either of the 

other schemas), it follows that the elements in Mappedr in the second bullet of 

6.2.1 are isomorphic to the attributes of r in body(ms) in the second part of 

Definition 4.1723.  □ 

We are now ready to prove that LVG and GVG are correct for relations created as a result of 

mapping equality relationships: 

Lemma 6.21: ∀ relations created in G as a result of mapping equality 

relationships as in the second bullet of 6.2.1, LVG and GVG contain the required 

mappings from Definition 4.17.  

Proof: We show that: 1. the left hand sides of both lvms and gvms (which are 

identical) are created correctly, 2. the right hand side of lvms is created correctly, 

and 3. the right hand side of gvms is created correctly. For each we first show the 

definition in Section 6.2.1 followed by the definition in Definition 4.17:  

1. [The left hand side of lvms and gvms] (MappedRE) = qj(Vars(ms)). q and qj 

are both fresh IDB names, and since the name does not matter, only 

that it is unused elsewhere, we may safely assume that they are equal. 

                                                      
23 Note that they differ only on the existential variables that are not joined-on (see Section 

6.1.2.1 for how we could make this identical) 
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From Lemma 6.19 the elements of RE = body(ms). From that and 

Lemma 6.20, it follows that MappedRE = Vars(ms). Hence q(MappedRE) 

= qj(Vars(ms)). 

2. [The right hand side of lvms] g(AG) = rq. Given Lemma 6.1, we know 

that there exists a unique relation rq ∈ G s.t. nrq = idb and attributesr = 

Vars(MSq). Thus it follows that g(AG) = rq. 

3. [The right hand side of gvms] re1(Mappedre1), …, rep(Mappedrep) = 

body(ms) – This follows directly from Lemma 6.19 and Lemma 6.20. 

Hence ∀ relations created in G as a result of mapping equality relationships as 

in the second bullet of 6.2.1, LVG and GVG contain the required mappings from 

Definition 4.17, and Lemma 6.21 holds.  □ 

6.3.2.1.2 Proof that Mapping Views Created by Mapping Similarity Relationships 
are in G 

We proceed here much as in the previous section. Assume that we are creating MapG_E 

(MapG_F can shown mutatis mutandis). Let ms be a mapping statement with IDB name idb and ∀ 

r ∈ body(ms), Keep(r) = true. (i.e., ms is going to correspond to mapping similarity 

relationships). We require Lemma 6.22 and Lemma 6.23 each of which use the definitions of 

ms, idb, and r as above and only refer to the case where mapping similarity relationships are 

under consideration (i.e., excluding mapping equality relationships): 

Lemma 6.22: ∀ mapping statements ms ∈ MapE_F, re1, …, rep = relations in 

the body of ms.  

Proof: 

• By the definition µ: a relation r ∈ body(ms), IFF µ(r, e) and either 

Me(e1, e), or Ms(e1, e) for some e1 ∈ MapE_F.  

• Since Keep(r) = true, Ms(e1,e).  

• From µ: ∃ element e1 ∈ E s.t. µ(ms,e), µ(r,e1), Ms(e,e1).  
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• From the definition of Merge and hence χ and the fact that we have 

constrained the input to disallow any mappings that would contain 

transitivity of equality in MapE_F: ∃ some g1 ∈ G s.t. χ(e,g), χ(e1,g1), 

H(g,g1).  

• Hence RE consists of all of the relations in ms. 

• We know that there will be no more elements e3 ∈ E and d3 ∈ MapE_F 

s.t. Me(e1, e3) and C(e1,d3) since we know that each IDB only appears 

in at most one mapping statement over E (Remark 6.1).  □ 

 

Lemma 6.23: ∀ mapping statements ms ∈ MapE_F, ∀ attributes a ∈ attributesr, r 

∈ body(ms), VM(v,a)
24 IFF ∃ e1 ∈ E, e2 ∈ MapE_F, g1 ∈ G s.t. µ(a,e1), µ(v, e2), 

ψg(g1,e1), name(g1) = name(e2). Proof:  

• From µ: ∀ attributes a ∈ attributesr, r ∈ body(ms), if VM(v,a) then ∃ aE, 

rE ∈ E, vmape_f, msmape_f ∈ MapE_F s.t. µ(a,aE), µ(v, vmape_f), µ(r,rE), 

µ(ms, msmape_f), C(rE,aE), C(msmape_f, vmape_f), Ms(vmape_f,aE), and 

Ms(msmape_f,rE).  

• We know that there will be no more elements e3 ∈ E and d3 ∈ MapE_F 

s.t. Me(d3, e3) and C(mape_f,d3) since we know that each IDB only 

appears in at most one mapping statement over E (Remark 6.1). 

• From the definition of Merge and hence χ: ∃ rg, vg, ag ∈ G s.t. χ(rE,rg), 

χ(aE,ag), χ(msmape_f,g) C(g,gv), H(gv,ag), C(rg,aE).  

• Hence Lemma 6.23 holds.  □ 

We are now ready to prove Lemma 6.24. 

                                                      
24 Recall that VM is defined to be the mapping of a variable in Definition 6.4 in Section 

6.3.2. 
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Lemma 6.24: ∀ relations created in G as a result of mapping similarity 

relationships as in the third bullet of 6.2.1, LVG and GVG contains the required 

mappings from Definition 4.17.  

Proof: We break this down into three parts: 1. showing that the left hand sides 

of both lvms and gvms (which are identical) are created correctly, 2. showing that 

the right hand side of lvms is created correctly, and 3. showing that the right 

hand side of gvms is created correctly.  

1. [The left hand sides of both lvms and gvms] q(VarsMapped) = 

qj(Vars(ms)). From Lemma 6.23 and the definition of ψg we know that 

ψg is defined on exactly the variables in ms. Hence VarsMapped = 

Vars(ms). Since ms = ms and q and qj are both fresh IDB names, 

q(VarsMapped) is functionally equivalent to qj(Vars(ms)). 

2. [The right hand side of lvms] g(AG) = rq. Given the proofs in Section 

6.3.1, we know that there exists a unique relation rq ∈ G where nrq = idb 

and attributesr = Vars(MSq). Thus g(AG) = rq.  

3. [The right hand side of gvms] AMrelg(re1), …, AMrelg(rep) = body(ms). 

Lemma 6.22 proves that ER = the relations in body(ms). From Lemma 

6.23 we know that each AMrelg(rej), rej ∈ RE, contains the same 

attributes as its corresponding relation in body(ms). Hence AMrelg(re1), 

…, AMrelg(rep) = body(ms). 

Hence, ∀ relations created in G as a result of mapping similarity 

relationships as in the third bullet of 6.2.1, LVG and GVG contains the 

required mappings from Definition 4.17, and Lemma 6.24 holds.  □ 

Since all relations corresponding to IDBs are created by either a result of mapping equality 

relationships or mapping similarity relationships, since we have now proved Lemma 6.21 and 

Lemma 6.24, Lemma 6.16 holds. 
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6.3.2.2 Proof that MapG_EF is Correct for Relations in G Corresponding to 
Relations in E or F 

We are now ready to prove Lemma 6.17: MapG_EF is correct for relations in G corresponding 

to relations in E or F. By the proof in Section 6.3.1.1 we know that all non-mapping included 

relations will exist in G with the proper attributes. Section 4.3.3.2 requires that GVG and LVG 

must each include q(attributesg) :- g(attributesg), where q is a fresh IDB name for each g ∈ G 

s.t. g corresponds to a non-mapping included relation in E or F. The requirements in the first 

bullet in Section 6.2.1 will add exactly those mapping views. Hence Lemma 6.17 holds.  

6.3.2.3 Proof that No Other Mapping Views Exist in MapG_EF 

We are now ready to prove Lemma 6.18: no other mapping views exist in MapG_EF. Since 

there exist no more relations in G than those required for Lemma 6.16 and Lemma 6.17 and the 

relationships in G are also only those required to satisfy Lemma 6.16 and Lemma 6.17, there are 

no other mapping views in GVG and LVG, Lemma 6.18 holds.  

Since Lemma 6.16, Lemma 6.17, and Lemma 6.18 holds, Lemma 6.2 holds.  

Since Lemma 6.1 holds (Section 6.3.1) and Lemma 6.2 as shown here, Theorem 6.2 also 

holds. 

6.4 Allowing More than Two Mapping Statements per IDB 
In Section 6.1 we restrict the input to consider only IDB names that appear in two mapping 

statements. We make this restriction not for the sake of having a correct mediated schema, but 

to ensure the correctness of MapG_EF. The reason is as follows. Consider the case when we allow 

IDBs to appear in more than two mapping statements; unless the mapping statements are 

mapped in pairs, there is no method for differentiating between joins (i.e., the relationships 

between relations within a mapping statement) and unions (i.e., the relationship between 

relations in separate mapping statements with the same IDB name) in MapE_F. As an example, 

consider the mapping in Example 6.5: 

Example 6.5: 

q7(x,y) :- e3(x,y,w) 
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q7(x,y) :- f1(x,y) 

q7(x,y) :- f2(y,z,x)  □ 

If only one element in MapE_F corresponded to the concept of q7, the result would be the 

mapping in Figure 6.2. While the correct model G is, in fact, the model in Figure 6.3, MapG_EF 

could not be created correctly without referring to MapE_F. In the current creation of MapG_EF 

given MapG_EF, we assume that all relations in F that are the destination of a mapping 

relationship from the same mapping element are related in MapG_EF by a join. However, now the 

relations in MapG_EF could either be related through a join or through a union; MapG_EF does not 

encode enough information for us to be able to differentiate between the two. Figure 6.9 shows 

how duplicating elements in MapE_F can represent the difference between a join and a union in 

MapE_F. Hence MapG_E and MapG_F can be created from E, F, and MapE_F rather than needing to 

refer all the way back to MapE_F. This mapping results in the same model G as shown in Figure 

6.3 

e3

b ca x y

q7 f1

g hd

f2

i

E FMapE_F

jx y

q7

 

Figure 6.9: A Vanilla mapping for the conjunctive mapping in Example 6.5 that retains 
enough information to create MapG_E and MapG_F. 

However, this strategy relies on the transitivity of mapping equality relationships, and hence 

only works in the case where mapping equality relationships are used. If mapping similarity 

relationships are used, then the strategy does not work since those relationships are not 

transitive. For example, if all of the mapping equality relationships in Figure 6.9 were replaced 

with mapping similarity relationships, there would be two relations corresponding to q7 in G. 
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6.5 Encoding Alternative Conjunctive Definitions in Merge 
A key idea of generic Merge is that every schema element in E, F, or MapE_F should be 

present in some form in G. Hence, though the encoding in Section 6.1.2.1 can encode the 

majority of the alternate scenarios in Section 4.4, there are some situations described in Section 

4.4 that cannot be encoded using generic Merge alone. As one would expect, both require 

discarding MSC 1: Completeness as in Section 4.4.1.1. In Section 6.5.1 we discuss when MapE_F 

is assumed to contain no components (Section 4.4.2) and minimality is also discarded as 

discussed in Section 4.4.1.2. In Section 6.5.2 we discuss when relations in E and F not 

referenced in MapE_F are not retained.  

6.5.1 Relaxing MSC 3: Not Keeping All Attributes of Relations 
Corresponding to Relations in D 

6.5.1.1 Problems with G 
Recall the third Mediated Schema Criterion: “For every component QC in MapE_F not 

subsumed by any intersection in MapE_F, there exists a canonical query for QC over G and 

MapG_EF.” If it is relaxed, it is unclear whether to retain attributes represented by existential 

variables in MapE_F. Using only Encode, Decode, and Merge, it is impossible to encode the case 

when attributes represented by existential variables in MapE_F in non-mapping-included relations 

are excluded from G unless relations that appear in MapE_F are retained. Consider the mapping 

from Example 4.13:  

q2(x) :- e1(x,y) 

q2(x) :- f1(x,z) 

This mapping can be encoded in a Vanilla mapping using either mapping equality 

relationships or mapping similarity relationships. If we connect q2 to e1 and f1 with similarity 

mapping relationships, then q2 can be created without representing either y or z as in Figure 6.8. 

The concepts of y and z are still retained in e1 and f1, so the Generic Merge Requirements for 

Merge are satisfied. 

However, if q2 is connected to e1 and f1 with equality mapping relationships, as shown in 

Figure 6.10, then the representation of q2 will contain both y and z since Merge retains all 
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relationships in the input, and y, z, and the Contains relationships connecting them must be 

represented in G to agree with the GMRs. Hence, because of the GMRs because e1 and f1 are 

only represented by q2, it is impossible to build a mediated schema where q2 must include y and 

z. 

e1

a y x

q2 f1

zb

E FMapE_F

 

Figure 6.10: A mapping that does not allow the attributes to be kept. 

The use of the equality mapping corresponds to encoding the case where the only relations 

related by MapE_F that are kept are the relations that appear in D; in this case G would not contain 

either f1 or e1. Unfortunately, this is the most natural situation in which the user likely would not 

want to have y or z in the mediated schema either. This case could, however, be handled by a 

combination of Model Management operators. 

6.5.1.2 Problems with MapG_EF 

Another problem can exist if all attributes of a relation r in G created from a mapping 

statement are not kept. This time it is not a problem of building G but a problem of creating 

MapG_EF. In this case, the problem occurs if r is created from mapping similarity relationships 

and all attributes that are joined-on are not retained. In this case, because those attributes are not 

to be kept in the mediated schema, they do not appear in MapE_F, so there is no way to tell that 

those attributes are to be joined-on. It is difficult, if not impossible, to see how this could be 

handled sensibly by any combination of Model Management operators. 

6.5.2 Relaxing MSC 1 (G is complete): Discarding Relations not in 
MapE_F 

A key idea of Merge is that every element in E, F, and MapE_F should be represented in some 

fashion in the merged model. Hence, as in the previous case, if there are relations in E and F 
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that are not to be mentioned at all in G, a separate differencing operator would need to remove 

them from the relations that were not needed in G. 

6.6 Conclusions 
In Chapter 4 we considered the problem of using a conjunctive mapping to create a mediated 

schema. In Chapter 5 we introduced a generic Merge operator for use in creating mediated 

schemas and other applications. In this chapter we showed how Merge could be used to encode 

the algorithm in Chapter 4. We now consider the lessons that we have learned from this 

exercise. 

6.6.1 Creating Mediated Schema Easy using Model Management 
Vanilla mappings can handle mappings under the restrictions in Section 6.1 and can be used 

to encode the alternatives described in Section 4.4. For example, given the same relations and 

conjunctive mappings, Figure 6.11 through Figure 6.13 show how to create a Vanilla mapping 

that will satisfy three different alternatives: Figure 6.11 shows how to create mappings if MSC 

1: Completeness is relaxed (Section 4.4.1.1), Figure 6.12 shows a mapping that satisfies the 

base semantics (Definition 4.18), and Figure 6.13 shows a Vanilla mapping where MSC 5: 

minimality (Section 4.4.1.2) is relaxed.  

 

e3

b t x

q1 f1

zc

E FMapE_F

e1

a y

 

Figure 6.11: A Vanilla mapping in which the mediated schema retains only relations 
defined in the mapping 
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Figure 6.12: A Vanilla mapping for the base semantics: non-mapping-included 
relationships represented by a relation in the mediated schema 

e3
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q1 f1
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E FMapE_F
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Figure 6.13: A Vanilla mapping where all relations in the input are retained 

In addition, Vanilla mappings can express some of the kinds of relationships described in 

Section 4.5.3 as being inexpressible for conjunctive mappings even restricted to the case of 

relational schemas. 

6.6.2 Creating Mapping Views Difficult Using Model Management 
While Model Management and Merge are adept at specifying and creating a mediated 

schema, they are lacking when it comes to creating the mapping views that allow queries to be 

translated. In the simplest case, conjunctive mappings using only two mapping statements per 

IDB, creating the mapping is straightforward. However, as is shown in Section 6.4 even in the 

case where there are more than two mapping statements per IDB this rapidly becomes very 

difficult to understand or even impossible to encode in Model Management models, mappings, 

and operators without resorting to the Expression property of the mapping elements – which is 

not very generic. It is difficult to envision any generic representation that would be able to 

handle all such subtleties needed here. This thesis provides the first test of such an end-to-end 

application; clearly more work is needed at this boundary to see what application support Model 

Management is capable of providing beyond just creating schemas. 
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Chapter 7  

Conclusions and Future Directions 

7.1 Conclusions 
As more and more data is stored by more and more people, the number of overlapping 

sources of data about any given topic is going to increase. In that milieu, it will be increasingly 

important to have systems that are capable of rapidly querying multiple databases 

simultaneously. In this thesis we explore how both how to create such systems based on 

information about how the data sources are related to one another and also how to query those 

systems efficiently once the system is built. In particular, this thesis makes the following 

contributions: 

• In Chapter 3 we provide the MiniCon algorithm that proves that conjunctive queries 

can be efficiently answered in data integration systems that use Local-As-View 

(LAV) mappings. The query rewriting for such systems is done by answering 

queries using views, where queries are answered using stored queries rather than the 

underlying relations used to define the views. We show in the first large-scale 

evaluation of algorithms for answering queries using views that our MiniCon 

algorithm is faster than previous algorithms for the same problem, sometimes by an 

order of magnitude. We extend the MiniCon algorithm to include arithmetic 

comparison predicates, and offer a sound but incomplete solution to this problem. 

Finally, we show how MiniCon can be extended to rewriting queries in query 

optimization, which both requires equivalent rewritings and allows access to the 

relations that define the views.  

• In Chapter 4 we leave behind the assumption that the mediated schema is given to us 

a priori, and discuss how to create the mediated schema given that the source 

schemas are related to one another using conjunctive mappings – mappings that 

consist of conjunctive queries. We define a set of mediated schema criteria that 

describe desirable features in the mediated schema, regardless of how the mediated 

schema is created, and show a mediated schema and mappings that adhere to these 
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requirements. We also show by examining the mappings required by the 

relationships between the local sources, even when the relationships between local 

sources are very simple, the traditional LAV and GAV mappings from mediated 

schema to source schemas may not be sufficiently expressive to express the mapping 

from mediated schema to source schemas. While others have shown that GAV and 

LAV may not be expressive enough to form the mapping from mediated schema to 

source schema, Chapter 4 gives an underlying reason for why this occurs. 

• In Chapter 5 we extend the problem of mediated schema creation using conjunctive 

mappings in Chapter 4 to Merge: the problem of merging models for many 

applications, including data integration, view integration, and ontology merging. 

Unlike previous algorithms that concentrate on solving meta-model specific 

problems, we describe how to handle conflicts that occur in merging two models. 

We provide a generic definition for Merge which includes a first class mapping 

between input models and describe when we expect that it will be able to be fully 

automatic and when user intervention is expected. We show how with other Model 

Management operators Merge in a specific meta-meta-model can subsume previous 

work from view integration, ontology merging, and programming languages. 

• In Chapter 6 we show that the Merge defined in Chapter 5 can be used along with 

simple import and export operators to mimic the semantic mediated schema creation 

used in Chapter 4. We show that given an input mapping between the sources 

(which is outside the scope of this thesis), creating the mediated schema is simple 

and intuitive in most cases, but that creating the mappings from mediated schema to 

sources is more difficult and sometimes impossible to be done in a comprehensible 

fashion using Model Management. This provides not only verification of Merge, but 

also a first glimpse at how Model Management can be expected to help solve more 

of the requirements of the applications other than simply creating the mediated 

schema. 
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7.2 Future Directions 
There are a number of future directions that we are interested in pursuing, all in the realm of 

extending and Merge other Model Management operators to be more useful and concrete in 

helping with the semantics of given applications rather than being as divorced from the 

applications as it is now. 

7.2.1 Schema Creation for Peer Data Management Systems 
Much of the work in dealing with multiple databases recently has moved from data 

integration to peer data management systems (Aberer et al. 2002; Arenas et al. 2003; Bernstein 

et al. 2002; Halevy et al. 2003; Ooi et al. 2003). In a peer data management system, there are 

many different sources that can be added in an ad-hoc fashion. Deciding what schema these 

sources should be queried in is a notion of much concern. Some work has been done on 

answering queries given mappings between peers saying how those schemas are related 

(Tatarinov et al. 2004). This work is a huge leap forward, but can only answer queries where the 

concepts are common not only to the schema that the user has, but to all the intermediate 

schemas that give mappings to the destination schemas. The work in Chapter 4 on automatically 

determining a mediated schema based on mappings between the source schemas could be 

leveraged to create schemas to use for querying in peer-based data management systems. 

7.2.2 Generic Merge for Complex Structures 
Within the generic Merge described in Chapter 5, in some of our experiments we 

encountered a complex structure in one model that expressed a similar concept to a complex 

structure in another model, but there was no obvious mapping for the individual elements even 

though the structures as a whole were similar. An open question is how best to express such 

similarities and exploit them. 

7.2.3 EnforceConstraints 
We would like to see a model-driven implementation of the EnforceConstraints operator that 

we proposed in Section 5.3.2. The goal of this operator is to coerce models that are valid in a 

meta-meta-model (e.g., Vanilla), but not in any particular meta-model (e.g., relational schemas) 

into being valid in particular meta-models. Preliminary work suggests that some of the work 
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created for the purpose of translating between data models can be leveraged in order to create 

this operator. In particular some of the work by Atzeni and Torlone in viewing meta-models as 

consisting of different patterns and changing a schema from one meta-model to another (Atzeni 

et al. 1996) seems promising, as does some of the similar work in M(DM) (Barsalou et al. 

1992). 

7.2.4 Semantic Applications for Model Management 
Model Management is at a pivotal point: thus far it has focused on schema-level operators 

without considering the overall context in which they are used. A critical step toward this 

broader picture is to build a Model Management system that considers an application from end-

to-end, including the data. One natural target application is three-way merge described in 

Section 5.7.2. This problem is common not only in core database applications but also in file 

versioning and versioning support for computer-supported collaborative work. Creating three-

way merge requires rigorous definitions and implementations of two Model Management 

operators: Diff, which takes the difference of two models, and EnforceConstraints, which 

coerces models to adhere to the constraints of a specific data model. Creating prototypes of 

these operators and analyzing results at both the schema and data level will show that Model 

Management can solve real world problems in the context of the entire application and will 

likely expose new Model Management research problems.  
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Appendix A  
Proof of Correctness of the MiniCon Algorithm  

A.1 Preliminaries 
We consider conjunctive queries and views without built-in predicates. We assume the query 

has the form Q( X )  :- 1 1 …
n n

e ( X ), ,e ( X ) . 

Without loss of generality we assume that no variable appears in more than one view, and 

the variables used in the views are disjoint from those in the query. Furthermore, we assume 

that the heads of the views and the query do not contain multiple occurrences of any variable. 

We apply variable mappings to tuples and to atoms with the obvious meaning, i.e., 

= ϕ ϕ ϕ… nQ( X ) ( ( x ), ( x ), , ( x ))1 2  where = … nX ( x , ,x )1 .Recall that a maximally-contained 

rewriting is, in general, a union of conjunctive rewritings. A conjunctive rewriting has the form 

′Q (Y )  :- … k kV (Y ),V (Y ), ,V (Y )1 1 2 2 . 

Note that for any i ≠j it is possible that Vi = Vj. Given a conjunctive rewriting Q', the 

expansion of Q', denoted by Q'' is the query in which the view atoms are replaced by their 

definitions (i.e., they are unfolded). Note that when expanding the view definitions we need to 

create fresh variables for the existential variables in the views. We assume we have a function 

fi(x) that returns the i th fresh copy of a variable x. For a given subgoal gi ∈ Q', we denote by 

exp(i) the set of subgoals in Q'' obtained by expanding the definition of Vi. Given two head 

homomorphisms h1 and h2 over the variables of a view V, we say that h2 is more restrictive than 

h1 if whenever h1(x)=h1(y), then h2(x)=h2(y). Recall that the MiniCon Algorithm produces 

conjunctive rewritings of the form Q'( EC( X ))  :- Ψ Ψ…
m mC C C m CV ( EC( (Y ))), ,V ( EC( (Y )))

1 11 . 

Where for a variable x in Q, EC(x) denotes the representative variable of the set to which x 

belongs. EC is defined to be the identity on any variable that is not in Q.  

Remark 7.1: The following property will be used in the soundness proof. 

Suppose that a subgoal g ∈ Q is in Gi, i.e., φi(g) ∈hi(Vi). The expansion Q'' will 

contain an atom τ(g), where, for a variable x:  
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τ(x) = EC(x) if φi(x) is a head variable in hi(Vi), and 

τ(x) = fi(x) otherwise  □ 

A.2 Proof of Soundness 
We need to show that every conjunctive rewriting Q' that is obtained by the MiniCon 

Algorithm is contained in Q. To show soundness, we show that there is a containment mapping 

Υ, from Q to Q''. We define an intermediate Υi for i = 0, ..., k by induction as follows. The 

containment mapping Υ will be defined to be Υk.  

U2. For all x where x ∈Vars(Q) and EC(x) ∈Vars(Q''), Υ0(x) = EC(x).  

U3. Υi is an extension of Υi-1, defined as follows: for all x in the Domain(φi), if x ∉ Domain 

(Υi-1) then Υ_i(x) = fi(EC(φi(x))).  

Now we show that Υ is a containment mapping.  

• Mapping of the head: we need to show that =Y( X ) EC( X ) . Because of U1, it suffices 

to show that for every variable in ∈x X , EC(x) appears in Q''. By Property 3.1, clause 

C1, we know whenever x is in the domain of φ and is a head variable in Q, φ maps x to 

a head variable in h(V). By Property 3.2, clause D1, we know that given a MCD set, all 

the head variables in Q are in the domain of some MCD in the set. From the definition 

of Ψi, we know that X  is a subset of the union of the ranges of the Ψi's, and hence, EC(x) 

is in Q'' for every ∈x X . 

• Mapping of a subgoal g. We need to show that Q'' includes Υ(g). By Remark 7.1 we 

know that Q'' includes τ(g). It suffices to show that Υ(g) = τ(g), which follows 

immediately from the definition of Υ.  

A.3 Completeness 
Let P be a maximally-contained rewriting of Q using V, and let R be the rewriting produced 

by the MiniCon Algorithm. The MiniCon Algorithm is complete if R  P. Since both R and P 

are unions of conjunctive queries, it suffices to show that if p' is a conjunctive rewriting in P, 

then there exists a conjunctive rewriting r' in R, such that r'  p' (Sagiv et al. 1981). Since p' is 

part of a maximally-contained rewriting of Q, there exists a containment mapping θ from Q to 
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the expansion p'' of p' (Chandra et al. 1977). We will use θ to show that there exists a set of 

MCDs that are created by the MiniCon Algorithm such that when the MCDs are combined, we 

obtain a conjunctive rewriting r' that contains p'.  

We proceed as follows:  

• ∀ subgoals gi ∈ p', we define Gi to be the set of subgoals g ∈ Q, such that θ(g) ∈ exp(i) 

(i.e., Gi includes the set of subgoals in Q that are mapped to the expansion of gi in p''). 

Note that for i ≠ j, the sets Gi and Gj are disjoint.  

• We denote by θi the restriction of the containment mapping θ to the variables appearing 

in Gi.  

• The mapping θi is a mapping from Vars(Gi) to Vars(exp(gi)). However, it can be written 

as a composition of two mappings, one from Vars(Gi) to hi(Vars(Vi)) (where hi is a head 

homomorphism on Vi), and another from hi(Vars(Vi)) to Vars(exp(gi)). Formally, there 

exists a mapping τi: Vars(Gi)  hi(Vars(Vi)) and a renaming α of the variables in 

hi(Vars(Vi)), such that θ_i(x) = α(τi(hi(x))) for every variable x ∈Gi. 

We choose hi to be the least restrictive head homomorphism on Vars(Vi) for which τi and 

α exist. Note that since we chose hi to be the least restrictive head homomorphism, then 

any MCD created by the MiniCon Algorithm for Vi would at least as restrictive as τi 

(hence, τi depends only on Q and the view Vi, and not on how Vi is used in the rewriting 

p').  

• We show that we now have all the components of a MCD, which we will denote by Ci: 

 hi is a head homomorphism on Vars(Vi),  

 i ih (V ( A))  is the result of applying hi to the head variables A  of Vi.  

 τi is a partial mapping from Vars(Q) to hi(Vars(Vi)), and  

 Gi is a set of subgoals in Q that are covered by τi 

Furthermore, the MCD Ci satisfies the conditions of Property 3.1 which are 

enforced by the MiniCon Algorithm: 
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C1. For any head variable x of Q, τi(x) is a head variable of hi(Vi), because 

θi(x) is a head variable of p''. 

C2. It follows from the fact that θi is a restriction of a containment 

mapping from Q to p'', that if τi(x) is an existential variable in hi(Vi), 

then for every subgoal g1 ∈ Q that includes x (1) all the variables in g1 

are in the domain of τi, and (2) τi(g1) ∈hi(Vi).  

In addition, note that C1,...,Ck satisfy Property 3.2, which is the condition that the 

MiniCon Algorithm checks before it combines a set of MCDs:  

D1. G1 ∪ ... ∪ Gk= Subgoals(Q) because θ is a containment mapping from 

Q to p'', and  

D2. for every i ≠ j, Gi ∩ Gj = ∅ because of the way we constructed the Gi's.  

• The only difference between the MCD Ci and a MCD created by the MiniCon 

Algorithm is that τi may not be the minimal mapping necessary to satisfy Property 3.1. 

However, this is easy to fix by simply decomposing the MCD Ci into a set of MCDs that 

satisfy Property 3.1 exactly and contain only minimal mappings for τi and minimal sets 

of subgoals in their fourth component. Note that even after decomposing the MCDs, the 

Gi's are still disjoint subsets of subgoals in Q, and hence Property 3.2 is still satisfied.  

• At this point we have shown that we have a set of MCDs C1, ..., Cl, that satisfy Property 

3.1 and Property 3.2. Furthermore, each of the mappings τi in the MCDs less restrictive 

than θ in the following sense: for any variables x, y, if τi(x)=τi(y) then θ(x)=θ(y) 

As a result, when procedure combineMCDs creates the function EC, it will have the 

property that EC(x)=EC(y) only if θ(x)=θ(y). Consequently, the conjunctive rewriting r' 

that is produced when C1, ..., Cl are combined will have the same property: whenever the 

same variable appears in two argument positions in r', those two argument positions 

will have the same variable in p'. Hence, there is a containment mapping from r' to p', 

and therefore p'  r'.  
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Appendix B  
Examples of Relational Mathematical Mapping Requirements 

• Functionality: It is important to realize functionality is talking about the entire state at 

once, rather than just about the state of one relation. For example, if  

I(m1) =  

{m11(<1>), m12(<3>)} 

{m11(<1>), m12(<2>)} 

m1_m2({m11(<1>), m12(<3>)} m21(<3>), {m11(<1>), m12(<2>)}  m22(<4>)) is 

functional despite mapping m11(<1>) to two different values in m2 because the mapping 

takes the state as a whole (including the state of m12) rather than just the state of m11. 

Similar arguments apply to injectivity. 

• Totality: For example, m1_m2(e1(<1, 2>))  f1(<1>, <2>) would be a total function if 

I(m1) = σm1 = {e1(<1, 2>}.  

• Surjectivity: For example, m1_m2(e1(<1, 2>))  f1(<1>, <2>) would be a surjective 

function if I(m2) = σm2 = {f1(<1>, <2>)}. 
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Appendix C  
Our Modifications to the BDK Algorithm 

BDK combine the representation of our Has-a and Type-of relationships into one 

relationship. They represent the fact that an element r Has-a element x of type y by an arrow 

from r to y with the label x. The different representations are shown in Figure C.1 (a single Has-

a relationship) and in Figure C.2 (a violation of the one-type restriction). Although they 

represent both the Vanilla Has-a and Type-of relationships with a single relationship, the BDK 

algorithm only involves duplicate element types, not duplicate containers, hence our 

modification involves only transforming the Vanilla Type-of relationships rather than the 

associated Has-a and Contains relationships. 

r

y

x

 

r

x

y  
(a) (b) 

Figure C.1: Modeling Has-a and Type-of relationships. (a) In the BDK meta-meta-
model (b) In Vanilla 

r

y

x

z

x

 

r

x

y z  
(a) (b) 

Figure C.2: A violation of the one-type restriction. (a) In the BDK meta-meta-model (b) 
In Vanilla 

Applying the BDK algorithm to a model M expressed in Vanilla requires the following 

conceptual steps: 

1. Apply all implied relationships (listed in Section 5.4.1) that can lead to the inclusion of 

additional Type-of or Is-a relationships. 
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2. Apply a transformation T1(M) N to transform M into a model N in BDK’s meta-meta-

model. This transformation operates in the following fashion: 

a. Each element m of M becomes a node n in N, where the label of n is the value 

of the ID property of m. 

b. Each Vanilla Is-a relationship between two elements in M becomes a BDK Is-a 

relationship between the corresponding nodes in N. 

c. For each Vanilla Type-of relationship in M, a BDK Has-a relationship with 

label “t” is created between corresponding nodes in N. Note that the label is 

unimportant except that it must be the same for the BDK algorithm to function 

correctly. 

3. Run the BDK algorithm to change weak schemas (those that do not obey the one-type 

restriction) into strong schemas (those that obey the one-type restriction). 

4. Remove all Type-of and Is-a relationships from M (i.e., all relationships imported into N 

are removed) 

5. Apply a transformation T2(N) M to add into M: 

a. All nodes from N that do not correspond to elements in M (i.e., nodes that were 

created to help resolve one-type conflicts). 

b. All relationships in N (i.e., all relationships that were originally imported into N 

plus all of the changes and additions to resolve one-type conflicts). All Is-a 

relationships are added directly between corresponding elements since the Is-a 

relationships are the same in BDK and in Vanilla. All BDK Has-a relationships 

are transformed into Vanilla Type-of relationships, and their labels are 

discarded (since we specified that these would all be equal to the arbitrary 

choice “t”, no information is lost in this transformation) 

6. All implied relationships are removed. 

This algorithm guarantees: 
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1. All relationships originally in M are retained at least implicitly. All relationships that are 

not Is-a or Type-of relationships are retained. All Is-a and Type-of relationships are 

imported from N. Since the BDK transformation only changes the relationships based 

on the implication rule “If T(q, r) and I(r, s) then T(q, s),” which exists in Vanilla and 

makes the same guarantee of retaining all relationships at least implicitly, this is 

retained. 

2. No element in M has more than one type. The BDK algorithm ensures that this is true 

for Has-a relationships in N. No Type-of relationships are included in M other than 

those in N, and T2’s transformation between Has-a and Type-of relationships cannot 

violate this. The final step of removing implied relationships cannot violate this since 

no new relationships are added. 

3. The associativity and commutativity properties of BDK are retained. Both T1 and T2 

are entirely order independent. Note that in order for the conflict resolution to be 

associative and commutative, the algorithm must be run only once at the end of a series 

of merges (see (Buneman et al. 1992) for an explanation as to why). 
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Appendix D  
Compose 

The Compose operator takes a mapping, MapA_B, between models A and B and a mapping, 

MapB_C, between models B and C and returns, MapA_C, the composed mapping between A and C. 

We define Compose based on the definition of right composition (i.e., composition driven by 

the right hand mapping) in (Bernstein 2003). 

Let m be a mapping element in mapping MapA_B between models A and B. Define 

domain(m) (respectively, range(m)) to be all elements e such that e ∈A (respectively e ∈ B) and 

Me(m, e). For each element e in the domain of each mapping element m in MapB_C, Compose 

must identify the mapping elements in MapA_B that provide input to e. We compose each 

element mB_C ∈ MapB_C with the union of all elements mA_B = mAB1, …, mABn ∈ MapA_B where 

range(mA_B) ∩ domain(mB_C) ≠ ∅. 

Given this decision, we define the composition MapA_C of MapA_B and MapB_C constructively 

as follows: 

1. (Copy) Create a copy MapA_C of MapB_C. Note that MapA_C and MapB_C have 

corresponding mapping relationships to B and C and, therefore, the same domains and 

ranges. 

2. (Pre-compute Input) ∀ objects mA_C in MapA_C, let Input(mA_C) be the set of all elements 

mA_B in MapA_B such that range(mA_B) ∩ domain(mB_C) ≠ ∅. 

3.  (Define domains) ∀ mA_C ∈ MapA_C,  

a. If ( ) ( )ACmInputm ABi mdomainmrange
ACABi

⊇
∈∪ )(

, then set domain(mA_C) = 

( )∪ )( ACABi mInputm ABimdomain
∈

. 
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b. Else if mA_C is not needed as a support element25 (because none of its 

descendants satisfies (3a)), then delete it, else set domain(mA_C) = range(mA_C) = 

∅. 

Step 3 defines the domain of each object mA_C in MapA_C. Input(mA_C) is the set of all objects 

in MapA_B whose range intersects the domain of mA_C. If the union of the ranges of Input(mA_C) 

contains the domain of mA_C, then the union of the domains of Input(mA_C) becomes the domain 

of mA_C. Otherwise, mA_C is not in the composition, so it is either deleted (if it is not a support 

object, required to maintain the well-formed-ness of MapA_C), or its domain and range are 

cleared (since it does not compose with objects in MapA_B). 

                                                      
25 A support element is an element needed to support the structural integrity of the model 

(i.e., an element needed to ensure that the result is a model) 
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Appendix E  
Three-Way Merge Algorithm 

1. MapO_A = Match(O, A) (can be automatic from History properties) 

2. MapO_B = Match(O, B) (can be automatic from History properties) 

3. MapO_A′ = Apply(MapO_A) such that if e∈MapO_A if domain(e) is identical to range(e), 

then delete e (we are capturing the things changed in A) 

4. MapO_B′ = Apply(MapO_B) such that if e∈MapO_B if domain(e) is identical to range(e), 

then delete e (we are capturing the things changed in B) 

5. ChangedA = range(MapO_A′) (the things changed in A) 

6. ChangedB = range(MapO_B′) (the things changed in B) 

7. MapChA_ChB = Match(ChangedA, ChangedB)  

8. MapChB_ChA = Match(ChangedB, ChangedA) 

9. A′ = Diff(ChangedA, ChangedB, MapChA_ChB)  

(A′ represents the things changed in A that were not changed in B, and mutatis mutandis 

for B′ below) 

10. B′ = Diff(ChangedB, ChangedA, MapChB_ChA) 

11. MapA_B = Match(A,B) (according to OIDs) 

12. G = Merge(A, MapA_B, B)  

13. MapG_A′ =Match(G,A′) 

14. GA = Merge(G, MapG_A′, A′) with preference for A′ 

15. MapGA_′B′ =Match(GA′,B′) 

16. GAB = Merge(GA′, MapGA′_B′, B′) with preference for B′  

(GAB represents the full merge with a preference for those things that have changed in 

either A or B but not both) 
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17. DeletedA = Diff(O,A,MapO_A)  

18. DeletedB = Diff(O, B, MapO_B)  

19. MapDeletedA_ChangedB = Match(DeletedA, ChangedB)  

20. MapDeletedB_ChangedA = Match(DeletedB, ChangedA)  

21. ShouldDeleteA = Diff(DeletedA, ChangedB, MapDeletedA_ChangedB)  

22. ShouldDeleteB = Diff(DeletedB, ChangedA, MapDeletedB_ChangedA)  

23. MapGAB_SDA = Match(GAB, ShouldDeleteA)  

24. GABSDA = Diff(GAB, ShouldDeleteA, MapGAB_SDA)  

25. MapGABSDA_SDB = Match(GABSDA, ShouldDeleteB)  

26. Final result = Diff(GABSDA, ShouldDeleteB, MapGABSDA_SDB)  
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Appendix F  
The PROMPT Algorithm 

1. The user performs setup by loading the models, A and B, and specifying some options. 

If the operation is merge, the result model C is initialized to be a new model with a new 

root and A and B as that root's children. 

2. PROMPT generates an initial list of suggestions, based largely on content or syntactic 

information. It examines the objects, but not the structural information (i.e., the position 

of the objects or their participation in specific relationships as represented by 

relationships between the objects). 

If the operation is merge: 

a. ∀ pairs of objects a ∈ A and a ∈ B with identical names PROMPT either 

merges the a and b in C or removes either a or b from C. 

b. ∀ pairs of objects a ∈ A and b ∈ B with linguistically similar names a link is 

created between them in C (with a lower degree of confidence than if the names 

were identical). This means that both a and b are still in C, but PROMPT 

suggests that they may need to be merged by adding them to the ToDo list. 

If the operation is match and the user has tagged one model (say, A) as more general 

during setup, then PROMPT assumes that the objects in the less general model (say, B) 

should be linked in as sub-objects of the objects in A. If there is a top-level object, t, in 

B, with the same name as an object in A, then the two objects are merged in C. 

Otherwise finding a parent object for t is added to the ToDo list. 

3. The user selects and performs an operation such as merging an object or resolving an 

item on the ToDo or Conflict lists. 

4. PROMPT performs any automatic updates that it can and creates new suggestions. It 

has the ability to: 

a. Execute any changes automatically determined as necessary by PROMPT. 
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b. Add any conflicts caused by the user's actions in step 3 to the Conflicts list 

c. Add to the ToDo list any other suggested operations or make new suggestions 

based on linguistic similarity or structural stability. 

5. Steps 3 and 4 are repeated until the ontologies are completely merged or matched. 
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