

Processing Queries and Merging Schemas

in Support of Data Integration

Rachel Amanda Pottinger

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

2004

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Rachel Amanda Pottinger

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Co-Chairs of Supervisory Committee:

Philip A. Bernstein

Alon Y. Halevy

Reading Committee:

Philip A. Bernstein

Alon Y. Halevy

Renée J. Miller

Date: __________________________

In presenting this dissertation in partial fulfillment of the requirements for the doctoral

degree at the University of Washington, I agree that the Library shall make its copies freely

available for inspection. I further agree that extensive copying of the dissertation is allowable

only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright

Law. Requests for copying or reproduction of this dissertation may be referred to Proquest

Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, or to the

author.”

Signature___

Date___

University of Washington

Abstract

Processing Queries and Merging Schemas in Support of Data Integration

Rachel Amanda Pottinger

Co-Chairs of the Supervisory Committee:

Affiliate Professor Philip A. Bernstein
Department of Computer Science and Engineering

Associate Professor Alon Y. Halevy

Department of Computer Science and Engineering

The goal of data integration is to provide a uniform interface, called a mediated schema, to

a set of autonomous data sources, which allows users to query a set of databases without

knowing the schemas of the underlying data sources.

This thesis describes two aspects of data integration: an algorithm for answering queries

posed to a mediated schema and the process of creating a mediated schema. First, we present

the MiniCon algorithm for answering queries in a data integration system and explain why

MiniCon outperforms previous algorithms by up to several orders of magnitude.

Second, given two relational schemas for data sources, we propose an approach for using

conjunctive queries to describe mappings between them. We analyze their formal semantics,

show how to derive a mediated schema based on such mappings, and show how to translate

user queries over the mediated schema into queries over local schemas. We then show a

generic Merge operator that merges schemas and mappings regardless of data model or

application. Finally, we show how to implement the derivation of mediated schemas using the

generic Merge operator.

i

Table of Contents

List of Figures .. iii
List of Tables ..v
Chapter 1: Introduction...1

1.1 Data Warehouses and Data Integration .. 3
1.2 Querying in a Data Integration System .. 6
1.3 Mediated Schema Creation... 9
1.4 Generically Merging Schemas.. 10
1.5 Outline of Dissertation.. 12

Chapter 2: Background ...14
2.1 Queries and Views.. 14
2.2 Query Containment and Equivalence ... 16
2.3 Answering Queries Using Views.. 17
2.4 Query Rewriting in Data Integration .. 18

Chapter 3: MiniCon ...23
3.1 Introduction .. 23
3.2 Previous Algorithms ... 26
3.3 The MiniCon Algorithm... 31
3.4 Experimental Results .. 39
3.5 Comparison Predicates ... 46
3.6 Cost-Based Query Rewriting.. 50
3.7 Related Work.. 56
3.8 Conclusions .. 58

Chapter 4: Creating a Mediated Schema...60
4.1 Introduction .. 60
4.2 Generic Mediated Schema Creation ... 62
4.3 Creating a Relational Mediated from Conjunctive Mappings 71

4.4 Alternate Definitions of G .. 98

4.5 Extensions... 101
4.6 Global-As-View and Local-As-View ... 103

ii

4.7 Conclusions ..106
Chapter 5: Generic Merge.. 107

5.1 Introduction ..107
5.2 Problem Definition ...110
5.3 Conflict Resolution...116
5.4 Resolving Fundamental Conflicts...120
5.5 The Merge Algorithm...128
5.6 Algebraic Properties of Merge..132
5.7 Alternate Merge Definitions ...141
5.8 Evaluation...143
5.9 Conclusions ..154

Chapter 6: Using Merge to Create a Mediated Schema .. 155
6.1 Using Merge with Conjunctive Mappings..155
6.2 Using Syntactic Merge with Conjunctive Mappings164
6.3 Correctness of MergeConjunctiveMediatedSchemaCretaion...........173
6.4 Allowing More than Two Mapping Statements per IDB..................192
6.5 Encoding Alternative Conjunctive Definitions in Merge194
6.6 Conclusions ..196

Chapter 7: Conclusions and Future Directions .. 198
7.1 Conclusions ..198
7.2 Future Directions ..200

Bibliography .. 202
Appendix A: Proof of Correctness of the MiniCon Algorithm................................... 215

A.1 Preliminaries ..215
A.2 Proof of Soundness ..216
A.3 Completeness ...216

Appendix B: Examples of Relational Mathematical Mapping Requirements 219
Appendix C: Our Modifications to the BDK Algorithm... 220
Appendix D: Compose.. 223
Appendix E: Three-Way Merge Algorithm ... 225
Appendix F: The PROMPT Algorithm.. 227

iii

List of Figures

1.1: A typical data management scenario today.. 2
1.2: Data warehouse architecture .. 3
1.3: Data integration architecture .. 5
3.1: First phase of the MiniCon algorithm: Forming MCDs... 34
3.2: MiniCon second phase: Combining the MCDs.. 37
3.3: Running times for chain queries with two distinguished variables in the views.................. 40
3.4: Running times for chain queries where the views are short and the query is long 41
3.5: Running times for chain queries where all variables in the views are distinguished 42
3.6: Running times for star queries ... 43
3.7: Running times for complete queries where three variables are distinguished 44
3.8: MiniCon algorithm with comparison predicates with existential variables 49
3.9: MiniCon algorithm with comparison predicates with no existential view variables 49
5.1: Examples of models to be merged ... 108
5.2: A mapping using and similarity mapping relationships ... 112
5.3: A more complicated mapping between the models in Figure 5.1 113
5.4: The result of performing the merge in Figure 5.3 .. 116
5.5: A merge that violates the one-type restriction.. 119
5.6: Different relationship kinds in Vanilla... 121
5.7: Model M is a minimal covering of model N .. 124
5.8: Resolving the one-type conflict of Figure 5.5.. 125
5.9: Merging the models in (a) causes the cycle in (b).. 127
5.10: Merging multiple cardinalities ... 128
5.11: Results of Merge on modified version of Figure 5.1... 131
5.12: Showing associativity requires intermediate mappings ... 134
5.13: Initial morphisms created to show associativity... 135
5.14: A series of mappings and models... 138
5.15: A series of merges .. 139
5.16: A three-way merge assuming name equality. .. 141
5.17: Subjects being composed ... 152
5.18: Modeling in Vanilla the Rental class from the Renter subject in Figure 5.17 153

iv

6.1: How to encode relevant relational schema information in Vanilla156
6.2: A Vanilla representation of a conjunctive mapping ...158
6.3: Result of Merge of Figure 6.2 ...159
6.4: Relationships in MergeConjunctiveMediatedSchemaCreation...................................165
6.5: Pictorial representation of relationships used in creating Mappede....................................168
6.6: Variables used in Step (2) of Definition 6.12...168
6.7: Variables used in Step (3) of Definition 6.12...169
6.8: A mapping that allows the attributes not to be kept ...172

6.9: A Vanilla mapping for Example 6.5 retaining enough information to create MapG_EF.....193

6.10: A mapping that does not allow the attributes to be kept. ...195
6.11: A Vanilla mapping where mediated schema retains only relations in the mapping.........196
6.12: A Vanilla mapping for the base semantics ...197
6.13: A Vanilla mapping where all relations in the input are retained......................................197
C.1: Modeling Has-a and Type-of relationships ...220

C.2: A violation of the one-type restriction...220

v

List of Tables

3.1: Example buckets created by Bucket Algorithm...27

3.2: MCDs formed as part of our example of the MiniCon Algorithm.......................................34

3.3: The number of views that MiniCon can process in under 10 seconds45

vi

Acknowledgements

Portions of this thesis have been previously published. Most of Chapter 3 appeared in

(Pottinger et al. 2001), and much of Chapter 5 appeared in (Pottinger et al. 2003).

This thesis could not have been written without the help of a great many people. I begin by

thanking my advisors for all their time, their dedication, and the great fun that we had doing

research together. In particular I thank Alon Halevy for teaching me what research is and how

much fun it can be. I thank Phil Bernstein for helping me to learn how to do research with

other people, honing my research (and writing) skills, and for giving instantaneous feedback. I

thank the remaining member of my reading committee, Renée Miller, for her amazing ability

to quickly grasp what I’m working on and her unfailing generosity with her time. The

remaining members of my committee have also been great to work with. Dan Weld has helped

me out when I had difficulties, and Dan Suciu showed me how much fun it is to have two

database faculty in a department.

I also thank the graduate student members of the database group at the University of

Washington. Special thanks go to Zack Ives for being a founding member of the group with

me as well as a great friend. AnHai Doan has always been a sounding board and giver of

advice that is as useful as it is entertaining. Marc Friedman did a great job at introducing me to

the agony of having someone read your technical paper and helping me learn how to react.

Peter Mork worked with me on merging ontologies, engaged me in many fruitful technical

conversations and also provided fantastic moral support — you rule! Jayant Madhavan has

also been fantastic to talk over ideas with. They, along with the other database students over

the years, especially Nilesh Dalvi, Luna Dong, Mikhail Gubanov, Ashish Gupta, Yana

Kadiyska, Isaac Kunen, Gerome Miklau, Bart Niswonger, and Igor Tatarinov, have been

fantastically supportive in reading drafts, coming to practice talks, and discussing ideas over

IHOP breakfasts and otherwise.

In addition to graduate students, I’ve had the chance to work with a number of fantastic

undergraduates: Shiori Betzler, Ewa Jaslikowska, Jake Kreutzer, Hakim Weatherspoon, Seth

Whelan, and Theodora Yeung were great students to work with and helped me learn how to

direct undergraduate research.

Having Phil Bernstein — who works at Microsoft research — as an advisor, has meant that

I’ve been lucky enough to have a second research group. I spent three wonderful summers as

vii

an intern in the Microsoft Research Database Group. Thanks to Roger Barga, Jonathan

Goldstein, Paul Larson, and David Lomet for being great group members. Thanks to Jayant

Madhavan, Peter Mork, and Michalis Petropoulos for being great summer officemates, and the

rest of the interns, particularly repeat interns Hongfei Guo and Jingren Zhou (Jingren is now

hired permanently) for being great people to learn with and from. Finally, thanks to Sergey

Melnik, now in the group, for great conversations, technical and otherwise.

I’ve been very lucky to have many funding sources. Thanks to Microsoft Research for

having me as a fellow for three years, NSF for also providing a three year fellowship, and

Lucent Bell Labs for my GRPW grant. Muthu Muthukrishnan was a great mentor for the

summer I was at Bell Labs and has continued to provide great advice and mathematical

puzzles since. My final fellowship is an Achievement Reward for College Scientists where my

fellowship was donated by Dottie and Hunter Simpson, who have both been extremely

generous to fund me and great sources of inspiration. Thank you all.

I’ve always benefited from always having great teachers, in computer science and

otherwise. Without their teachings on how to love learning, I would never have gotten a PhD.

In particular, thanks to Mr. Gensure for teaching me Pascal in high school (and being so nice

when I dropped his class for art). At Duke, Carla Ellis has been a continuing source of

technical and moral support in addition to teaching me the invaluable skill of how to read a

technical paper. Finally, also at Duke, Owen Astrachan has been instrumental in hooking me

on computer science as a career and keeping my interest there. Thank you so much to all of

you and all the rest of my teachers.

When I came to graduate school, I had tremendous support from older graduate students

who showed me the ropes. A special thanks goes to Mike Ernst for teaching me not only how

to be a better researcher, but also how to critique papers and talks and being a fabulous friend

as well. Many others helped to show me the ropes, including AJ Bernheim Brush, Craig

Kaplan, Tessa Lau, Brian Michalowski, Todd Millstein, Denise Pinnel Salisbury, Sean

Sandys, and Doug Zongker. Thank you everyone; I did my best to pass along your good

advice!

At the other end of the spectrum are the students who helped me through this difficult last

year of finishing up and getting a job. The group of graduating students, particularly AJ

Bernheim Brush, Jeff Hightower, Kurt Partridge, Emily Rocke, and Neil Spring have been

invaluable; I shall miss the grammar smack downs. My officemates this year have also been

viii

great pillars of support; an office won’t be an office without Ankur Jain, Jessica Miller, and

Marianne Shaw.

In between are all of the other students who have come to practice talks, discussed

research, read my papers, and generally been great friends and people such as Miguel

Figueroa, Krzysztof Gajos, Maya Rodrig, Vibha Sazawal, Sarah Schwarm, Tammy

VanDeGrift, and Ken Yasuhara. Thank you all so much.

The staff of the University of Washington Department of Computer Science and

Engineering have always been fantastic both to work with and to come to know as friends.

Particular thanks go to Patrick Allen, Frankye Jones, and Lindsay Michimoto for being great

friends and helpful well above and beyond the call of duty.

My thanks also go to the faculty of the department. David Notkin has been an unyielding

source of support and friendship; I can’t imagine how these past few years would have been

without him. Richard Anderson and Ed Lazowska have also been fantastic sources of support.

My thanks to the three of you for being great friends. Thanks go to them and the rest of the

faculty for showing me how to be a good faculty member.

I thank my friends outside the department for reminding me that, all evidence to the

contrary, there is life outside of computer science and academia. Kelly Shaw has been a

fantastic source of support, both in school and out, for the past 11 years. Wendy Brophy,

Jenny Exelbierd, and Robert “Wob” Flowers have all kept me laughing when the laughs were

running low.

My parents — Edie Carlson, Rachel Maines, and Garrel Pottinger — helped me to love

learning and also helped me realize that sometimes you need to put the book down. Thanks

also go to my in-laws, Jay and Shelley Wolfman for proving all those “in-law” jokes wrong;

I’m looking forward to having them live closer. My sister, Chloe Meadows, has always been

there for me and willing to put up with me. Thank you.

Finally, my husband, Steve Wolfman, has been unbelievably helpful, supportive, and

wonderful. I’ve been very lucky to have him as first a fellow undergraduate student, then a

fellow graduate student, and now a fellow faculty member. I wouldn’t have gotten here

without him.

ix

Dedication

To my husband, Steve Wolfman.

For keeping my head in the air and my feet on the ground.

1

Chapter 1

Introduction

Initially databases were largely self-contained. Each database had its own locus of expertise,

and in that locus of expertise, that database was the sole arbiter of facts and how those facts

should be expressed. This meant, among other things, that each database was required to

interact with only one schema, a representation of the concepts contained in the database. A

schema consists of a set of relations, each of which is represented as a table. For example, if the

database was used to make airplane reservations, the database would store airport data in

exactly one representation, and that representation would be described by one or more relations.

In this situation, interaction between databases was very uncommon. One reason is that it was

extremely manually intensive to set up multiple databases talking to one another. In addition

because such care was invested in how to set up the database schema, people were very loath to

change it.

However, the falling cost of disks, fast processors, and fast and stable network connections

have led to many sources of overlapping information, such as different sources available to find

out about airfares. In order to determine what the correct answer to a query – a question over the

database – is, the answer must now be asked over multiple sources. Consider Example 1.1:

Example 1.1: Figure 1.1 shows a scenario that might occur if the reader were

trying to plan a beach vacation. Three different elements might need to be

incorporated (1) where to find a beach (2) where there is good weather and (3)

where cheap flights can be found. Each of these pieces of information can in

turn be found from a number of different sources. For example, cheap flight

information can come from the travel websites AAA, Expedia, Orbitz, or any of

a number of other sources. □

2

Fodors wunder
ground

AAA Expedia

Beach Good
Weather

Cheap
Flight

weather.
com

Orbitz

Figure 1.1: A typical data management scenario today often requires incorporating data
from multiple sources.

In addition to the existence of many different data sources, there are many more database

users with different goals. Because there are so many different queries that users may be

interested in, it is not feasible to decide a priori how to partition each user query into queries

over the data sources; the user queries must be reformulated at query time into queries over

each of the different data sources.

Example 1.2: Continuing with Example 1.1, if there were a small number of

types of queries that were to be asked, it would be easy to figure out how to

reformulate such queries. For example, if the goal of the system was only to

find cheap flights, it would be relatively easy to figure out how to translate a

query that the user would ask over the system into queries over AAA, Expedia,

or Orbitz. However, there are a large number of queries that users may want to

ask over the system, so it is impractical to pre-compute how to reformulate all

possible user queries. □

This process is similar but distinct from the traditional process of query optimization. In

query optimization the user’s query is asked over a declarative language (such as SQL), and

then the query is rewritten in a procedural form. In both query reformulation and query

optimization the goal is to create query plans on the fly, hence some of the same techniques that

3

are helpful in query optimization are also useful in query reformulation. Query reformulation,

however is a separate process. Even after a data integration query over the mediated schema has

been reformulated, it will still need to be optimized for efficient execution.

This scenario where many users are accessing many different databases simultaneously is

very common these days, and not just across the World Wide Web. For example, in order to

perform their work, bio-medical researchers may need to combine information about genes with

information about proteins, each of which can be found in any number of data sources.

Similarly, researchers from other fields such as astronomy and literature require information

from many different sources. These two examples typify today’s data management challenges:

in today’s world, there is a vast user base wishing to combine data from many overlapping

databases without having to know where that data comes from. In this thesis we describe

mechanisms to make querying multiple databases simultaneously faster for users and how to

improve system construction for administrators.

1.1 Data Warehouses and Data Integration

Data
Source

Data
Source

Data Warehouse

Data Extraction,
Transformation, Loading

Application

Data
Source

Figure 1.2: Data warehouse architecture

4

When querying multiple databases simultaneously there are two main data modeling

choices; Either (1) the data can be gathered in a central location and then queried over that

central repository or (2) the data can be left in the individual sources, queries can be rewritten to

be over each of the individual sources, and then the data can be combined. The former approach

is taken by data warehousing systems, such as the system in Figure 1.2. The latter approach is

taken by data integration systems such as the system shown in Figure 1.3.

1.1.1 Data Warehouses
The goal of a data warehouse is to gather all of the data relevant to a particular set of queries

in the same place. An example data warehouse architecture is shown in Figure 1.2. The

application talks to the data warehouse. In order to render the data warehouse usable, all data is

processed as a batch through a data extraction, transformation, and loading (ETL) module. This

module operates in a batch fashion. At some point when the warehouse is not being queried, the

ETL module extracts the data from the base sources through querying the underlying sources,

cleans the data such that the data is internally consistent, transforms it to be in the schema of the

data warehouse rather than being in the schemas of the individual data sources, and then loads

the data into the data warehouse. Queries are asked over the data warehouse’s schema and then

immediately executed over the warehouse’s contents without needing to refer to the original

data sources. Because the data has all been stored together and the ETL layer has pre-computed

many of the transformations that must occur, data warehouses are particularly good for

answering queries that require particularly costly computations that reuse much of the same

data. For example, the prototypical data warehouse example is that of seeing what different

regions have different characteristics for Wal-Mart sales data. However, because the data has to

go through the ETL level before it can be queried, data in data warehouses is often stale. Hence

data warehouses are inappropriate for queries that require fresh data.

5

1.1.2 Data Integration

Data
Source

Data
Source

Wrapper

Query Processor

Application

Wrapper

Data
Source

Wrapper

Query Reformulator
Data

Source
Catalog

Figure 1.3: Data integration architecture

A data integration system, unlike a data warehouse, leaves the data at the sources. One

example of a data integration architecture is shown in Figure 1.3. As such, querying in a data

integration system is more complex than querying in data warehousing. As with data

warehousing, user queries are asked through some application. This application asks queries

over a mediated schema, which is a schema that has been designed to represent data from all the

data sources in the data integration system, much like the data warehouse’s schema.

Since the data has not been pre-computed to be in the mediated schema, the application

queries must be reformulated into queries over the data sources that the data is stored in. The

query reformulator is responsible for looking at the data source catalog to determine what

sources are relevant to the query. Following Example 1.1, if a query asked for cheap airfares,

the query reformulator would determine from the data source catalog that the AAA, Orbitz, and

Expedia sources were relevant, and would translate the query over the mediated schema into a

6

reformulated query over the data sources. This reformulated query would then be given to the

query processor which would determine the best way to execute the query (e.g., which data

source should be contacted when and how the results should be combined) using statistics from

the data source catalog.

Query processing is complicated by the unpredictability of network delays, inaccuracy of

statistics, and individual variance from the capabilities of different sources. Work on processing

distributed queries has been studied extensively in such projects as eddies and (Avnur et al.

2000) adaptive query processing (Ives 2002) and surveyed, e.g., (Kossmann 2000). When the

query processor is ready for data from an individual data source, the query processor queries the

data source’s wrapper, which translates the data from its native format to the format required by

the query processor (Kushmerick et al. 1997). For example, if the data was from the web, the

wrapper might change it from HTML to relational data. The query processor then combines the

data returned from each data source’s wrapper and passes that data back to the application.

Because the data is not cached ahead of time as it is in data warehouses, the data can be

fresher than data that is stored in a data warehouse. In addition, there is no requirement to store

all the data, which may be very large, or it may even be impossible to warehouse all the data

because the data sources do not want you to have their entire database (e.g., the web retailer

Amazon does not want anyone to have their entire database, though they are happy to expose

parts of it for people to build applications on top of). Hence data integration systems are good

for queries where freshness is paramount or the overall amount of data is very large but the

amount needed to answer the queries is relatively small. Conversely data integration, like many

distributed systems, is not good for applications that require very large quantities of data to be

processed or for systems requiring strict performance guarantees.

In this thesis, though we discuss creating the schema for a data warehouse, our primary

contributions are making querying data integration systems faster for users and improving

system construction for administrators.

1.2 Querying in a Data Integration System
Since queries are asked over the mediated schema but the data is stored in the source

schemas, queries are posed over the mediated schema and then translated into queries over the

7

source schemas in which the data is stored. For this translation to occur, we need to know how

the source schemas are related to the mediated schema. There are two solutions that are

commonly proposed in database literature, both of which use the concept of a view – a query

that has been named for reuse. In the first solution, Global-As-View (GAV), the mediated

schema is formalized as a set of views over the local sources; this approach simply uses

traditional views as has been used extensively in database literature. For a recent survey of

GAV approaches see (Lenzerini 2002). In the second solution, Local-As-View (LAV) (Levy et

al. 1996), the local sources are formalized as a set of views over the mediated schema.

In GAV, each mediated schema relation is defined in terms of the local sources that

correspond to it. For example, continuing with the scenario in Example 1.1, in GAV the data

integration system would store that the mediated schema relation of “airfare” can be found by

asking a query over AAA, Orbitz and Expedia.

Translating a query in GAV requires only replacing the mediated schema relation in the

query with the set of local sources that can provide data for that mediated schema relation.

Continuing with the scenario in Example 1.1, translating a query about finding the cheapest

airfare to Maui would require only replacing the occurrence of the relation “airfare” with the

view (i.e., stored query) defining how to find information about airfares in AAA, Orbitz, and

Expedia. Unfortunately, because GAV describes the mediated schema in terms of the local

sources, adding new sources is a complicated procedure; the definition for each mediated

schema relation may need to be modified to describe how to retrieve data from the new sources.

In the continuing example, for instance, if the system were going to add on Air Canada, the

view defining airfare would have to change, as would the view defining any other concept to

which Air Canada could contribute.

LAV, on the other hand, describes each source as a view over the mediated schema. In our

continuing example, there might be a view explaining that AAA could give information about

flights that could be bought at the same time as a rental car was rented. Hence, adding a new

source to the data integration system requires only adding new queries describing how the local

source can answer queries over the mediated schema relations. Again, following our continuing

example, if Air Canada were to be added to a LAV system, the information about AAA, Orbitz,

8

and Expedia would all remain the same, and new queries would be added only to define what

data Air Canada contains.

Unfortunately answering queries in LAV is much more complex; since the local sources are

described in terms of the mediated schema rather than the other way around, translating queries

over the mediated schema into queries over the local source schemas is not as simple. In the

running example, to find the cheapest airfare to get to a destination with good weather in LAV,

we would have to look at the views defining airfare described above and then decide how to

combine those sources of information with information about which destinations have good

weather. Rewriting a query over the mediated schema into queries over the source schema relies

on a technique known as answering queries using views; for a survey on answering queries

using views see (Halevy 2001).

Answering queries using views is also used in query optimization – the process of

transforming a declarative query into a procedure for executing the query – in order to reduce

execution time for traditional database systems. In query optimization the input is a declarative

explanation of what parts of the schema need to be used, and the output is a procedural plan that

explains how the query can be executed efficiently. Here views can be used as caches of pre-

computed information and can speed up the procedural plan considerably, though the

underlying relations are available as well.

In Chapter 3 we present the first contribution of this thesis: the MiniCon Algorithm, a fast

algorithm for answering queries using views in the context of data integration and show how it

can be extended to the case of query optimization. Prior to the MiniCon Algorithm, many

researchers believed that using LAV to describe a data integration architecture would be

prohibitively slow since answering queries using views is NP-Complete in the size of the query,

even for query languages with limited expressiveness (Levy et al. 1995). Chapter 3 shows not

only the MiniCon algorithm but also shows – in the first large-scale experiments on answering

queries using views – that MiniCon is practical in many cases and faster than previous

algorithms for answering queries using views, sometimes by orders of magnitude. Thus

assuming that the mediated schema is related to the source schemas using LAV, answering

queries over it is sufficiently fast for users. Next we turn our attention to how to create the

mediated schema initially.

9

1.3 Mediated Schema Creation
Mediated schema creation today is often ad-hoc. Mediated schemas are typically formed by

a committee deciding what concepts should be represented in the mediated schema and how to

represent those concepts. The designers can guarantee that the mediated schema will meet their

requirements. On the other hand, it is problematic for a number of reasons:

• If the mediated schema is related through the mapping languages of GAV or LAV,

these languages may overly restrict the way in which the sources can be related to one

another.

• Mediated schema creation in this fashion is very expensive. Experts cost money, and

bringing them together costs time and money. This means that not only will it take

considerable effort to create the mediated schema in the first place, but updating it will

be much more expensive in the long run. Because sources change over time, the

mediated schema must be flexible enough to add new concepts, which is difficult in this

situation. Though using experts to build the mediated schema may be required in some

circumstances, in other scenarios such as coordinating disaster relief, the mediated

schema may need to be built up much more quickly and automatically.

• There is no guarantee that the mediated schema satisfies any requirements about what

should be in the mediated schema.

Mechanisms for creating a mediated schema out of sources have previously been studied in

database research; such projects generally focus on how to resolve conflicts such as synonyms

and homonyms in relation names or how to ensure that the resulting schema is valid in a

particular data model – e.g., SQL. Batini, Lenzerini, and Navathe provide a survey of such

methods (Batini et al. 1986). Buneman, Davidson, and Kosky (Buneman et al. 1992) provide a

general theory of what it means to merge two source schemas to create a third schema. Others

have approached the problem from a more pragmatic point of view, such as the Database

Design and Evaluation Workbench (Rosenthal et al. 1994) that allow users to manipulate

schemas, including combining multiple views into one schema. Still others have created formal

criteria for when two schemas consist of the same information, both for data integration and

10

other applications (Hull 1984; Kalinichenko 1990; Miller et al. 1993). But none of these papers

have tackled the following problem: given two schemas, how should we create a mediated

schema and also the mappings from the mediated schema to the sources.

In Chapter 4 we describe the second contribution of this thesis. We define a set of Mediated

Schema Criteria to which any mediated schema must adhere. We then provide the first

investigation of creating a data integration system from such criteria. We then explain that

creating a mediated schema requires at a minimum two source schemas and information relating

the two schemas. The intuition for this is shown in Example 1.3:

Example 1.3: Continuing with Example 1.2, in order to create the mediated

schema we must know not only the schemas but where they overlap. For

example, in order to create a mediated schema for Expedia and Orbitz we must

know that both of them represent airfare information and how that airfare

information is stored, and which elements of those representations correspond

to each other. □

In Chapter 4 we show that the information relating the local sources drives the choice of

mediated schema. Moreover, the language that is used to describe the relationship between the

local sources affects the choice of language needed to relate the mediated schema and the

source schemas (e.g., GAV or LAV). In particular, we show that even in the case where two

schemas are related to one another through a very simple language, neither GAV nor LAV are

expressive enough to relate the mediated schema to the source schemas if the Mediated Schema

Criteria are satisfied.

1.4 Generically Merging Schemas
While Chapter 4 concentrates only on creating a mediated schema for data integration in the

context of the relational data model, merging complex descriptions such as schemas happens in

a number of contexts in addition to data integration. Some examples are:

• In data warehouse creation, one can view creating the data warehouse as the problem of

merging schemas.

11

• Ontology merging is increasingly important due to the proliferation of large ontologies

through such efforts as medical informatics and the growing interest in the semantic

web.

• In software engineering, current trends toward aspect-oriented programming or subject-

oriented programming require merging class definitions.

In each of these examples, two or more schemas are merged to create a third schema, and in

particular their meta-data — data about how other data is stored, i.e., schema information — is

merged. Managing meta-data is integral to creating database applications, yet meta-data

functionality is often built from scratch for each new application. Chapter 5 contributes Merge,

a generic merge solution that describes how to merge schemas not only across different

applications, but also across different meta-models (i.e., XML DTDs, relational schemas, etc.).

Merge is designed to be part of a larger system called Model Management. The goal of Model

Management is to reduce the effort of creating meta-data applications (e.g., building a data

warehouse or propagating changes in schema evolution) with three key abstractions: models,

mappings, and operators. A model is a formal description of a complex application artifact, such

as a database schema, an application interface, a UML model, or an ontology. A mapping

describes the relationship between two models. An operator (e.g., Merge, Match, Compose,

Diff) manipulates models and mappings as objects. As an example of how Model Management

helps with meta-data applications, Model Management can create the mediated schema for data

integration by first using Match to create a mapping between two local schemas and then Merge

the autonomous local schemas to create the common schema. Similarly, applying more

operators can create a common schema if there are more than two local schemas.

Merge combines two input models based on a mapping between them. For instance, suppose

the data integration example in Example 1.1 merged the customer account databases for two

travel agencies. These models, though potentially very similar, can contain many differences.

Consider customers’ names. One travel agency might store FirstName and LastName while the

other stores simply Name. How should names be represented in the merged model? In addition,

suppose that one bank uses a relational database and the other uses XML; not only must the

models be merged, the merge must be performed across different types of models. Although this

12

example uses database schemas, Merge is designed for other model types as well, such as

merging ontologies and merging classes in object-oriented programming.

Previous merging algorithms either concentrated on resolving data-model-specific conflicts

(e.g., a column in a relational model cannot have sub-columns) or used data models that were

not rich enough to express many relevant conflicts. In Chapter 5 we describe a Merge that is

generic enough to be useful in many different data models yet specific enough to resolve

application-specific conflicts. To do so we show three levels of detail. At the most abstract

level, we define the input, output, and desired properties of Merge with respect to typical

merging scenarios. At a more detailed level we show a representation for models and show that

Merge in this representation, when used with other Model Management operators, subsumes

many previous merging algorithms. Even though the previous algorithms were designed

specifically for the data models from different merging problems (e.g., view integration and

ontology merging), Merge can subsume them.

Chapter 6 contributes the most detailed Merge analysis; how Merge interacts with the

semantics of the applications in which it will be used. We take the inputs defined in Chapter 4

and show that for most cases Merge as defined in Chapter 5 can be used to build the output

defined in Chapter 4, particularly when building the mediated schema is concerned, though

building the mappings from the mediated schema to the local sources is more difficult. This first

attempt at encoding a semantic operation in Model Management gives us a glimpse into when it

succeeds at its goals of allowing users not only to build up the schemas they require but the rest

of the application as well, and when human intervention is required.

1.5 Outline of Dissertation
The remainder of this dissertation is structured as follows.

Chapter 2 provides background of terminology that is used throughout the thesis.

Chapter 3 introduces the MiniCon Algorithm, a fast algorithm for answering queries using

views in data integration. We also show that the MiniCon Algorithm outperforms previous

algorithms for answering queries using views, sometimes by orders of magnitude. In addition,

we show how to extend the algorithm to the traditional problem of query optimization.

13

In Chapter 4 we describe how to create the mediated schema based on a set of Mediated

Schema Requirements we have created. We show why traditional GAV or LAV mappings

between local sources are insufficient to express the relationship between mediated schemas.

We then show the first bottom-up mediated schema creation algorithm, and show how to

rewrite queries over that schema.

In Chapter 5 we describe how to extend mediated schema creation to a more general

problem: how to merge to schemas. We describe an algorithm for merging schemas that can be

in data integration, view integration, ontology merging, and other database and non-database

applications. We describe the semantics of Merge in general and for a specific representation,

Vanilla, in which Merge subsume previous algorithms. Finally, we merge two large anatomy

ontologies to show that Merge scales and is useful in practice.

In Chapter 6 we show how to emulate the mediated schema creation of Chapter 4 using

Model Management operators, especially Merge as defined in Chapter 5. We concentrate on

showing one method that can be done entirely through encoding the mapping and schemas in

multiple Model Management operators.

Chapter 7 concludes.

14

Chapter 2

Background

In this chapter we present background terminology used throughout this thesis. In much of

this thesis we are concerned with relational database schemas:

Definition 2.1: (Relational database schema). A relational database schema is a

set of relations. Each relation r consists of an ordered list of attributes attributesr

= [ar1, …, arm]. We use the term relation state when referring to the set of tuples

in a relation, i.e., the database of the relational database schema □

In the remainder of this chapter we define concepts used throughout the thesis. As in the

bulk of the thesis, we describe these concepts within the context of relational database schemas:

queries and views (Section 2.1), query containment and equivalence (Section 2.2), answering

queries using views (Section 2.3) and query rewriting in data integration (Section 2.4).

2.1 Queries and Views
One of the chief goals of a database system is to answer queries: an application asks a query

over a database and then the database system returns values to the application. Queries are

expressed in a query language. Throughout this thesis we use conjunctive queries (i.e., select-

project-join queries without arithmetic comparisons) when a query language is required.

Definition 2.2: (Conjunctive query). A conjunctive query Q has the form q(X)

:- n ne (X),...,e (X)1 1 where q and e1, ..., en are predicate names referring to

database relations. The atoms n ne (X),...,e (X)1 1 are collectively the body of the

query, denoted body(Q) or Subgoals(Q). Each i ie (X) is a subgoal or

Extensional Database Predicate (EDB). The atom q(X) is called the head. Its

predicate name, q, is called the IDB name of Q, denoted IDB(Q), which is the

15

name of the answer relation. The tuples nX ,X ,...,X1 contain either variables or

constants.

We require that the query Q be safe, i.e., that ⊆ ∪ ∪… nX X X1 (that is,

every variable that appears in the head must also appear in the body). The

variables in X are the distinguished variables of the query, and all the others

are existential variables, denoted distinguished(Q) or existential(Q) respectively.

Join predicates in this notation are expressed by multiple occurrences of the

same variables; i.e., if a variable appears multiple times in the same conjunctive

query, we require that the value of the variable be the same each time it

appears. For a query Q we denote the variables that have multiple occurrences

by Joined(Q).

We denote individual variables by lowercase letters and constants appear in

quotation marks. The semantics of conjunctive queries requires that the

database values that satisfy the restrictions required by the body are returned in

a relation with the name of the head of the query. Unions are expressed by

conjunctive queries having the same head predicate. We use Vars(Q) to refer to

the set of variables in Q, and Q(D) to refer to the result of evaluating the query Q

over the database D. □

Example 2.1: Consider the following schema that we use throughout this

chapter and Chapter 3. The relation cites(p1,p2) stores pairs of publication

identifiers where p1 cites p2. The relation sameTopic stores pairs of papers that

are on the same topic. The unary relations inSIGMOD and inVLDB store ids of

papers published in SIGMOD and VLDB respectively. The following query

asks for pairs of papers on the same topic that also cite each other.

Q(x,y) :- sameTopic(x,y), cites(x,y), cites(y,x) □

A view is a named query. If the query result is stored, we refer to it as a materialized view,

and we refer to the result set as the extension of the view. Occasionally we consider queries that

16

contain subgoals with comparison predicates <, ≤, ≠. In this case, we require that if a variable x

appears in a subgoal of a comparison predicate, then x must also appear in an ordinary subgoal.

2.2 Query Containment and Equivalence
The concepts of query containment and equivalence enable us to compare the values that

two queries will return if they are both asked over the same database instance. In this thesis we

primarily use these concepts to determine when a query over a mediated schema is correctly

translated into a query over source schemas. We say that a query Q1 is contained in the query

Q2, denoted by Q1 Q2, if the answer to Q1 is a subset of the answer to Q2 for any database

instance. We say that Q1 and Q2 are equivalent if Q1 Q2 and Q2 Q1, i.e., they produce the

same set of tuples for any given database.

Query containment and equivalence have been studied extensively for conjunctive queries

and unions of conjunctive queries (Chandra et al. 1977; Sagiv et al. 1981), conjunctive queries

with arithmetic comparison predicates (Klug 1988; Kolaitis et al. 1998; Levy et al. 1993; Zhang

et al. 1993), and recursive queries (Chaudhuri et al. 1992; Chaudhuri et al. 1994; Levy et al.

1993; Sagiv 1988; Shmueli 1993).

In this thesis we demonstrate containment using containment mappings, which provide a

necessary and sufficient condition for testing query containment (Chandra et al. 1977).

Definition 2.3: (Containment mapping). Given a partial mapping τ on the

variables of a query, we extend τ to apply to subgoals of the query as follows:

If all the variables of a subgoal g are in the domain of τ and map to a subgoal

with the same predicate name and arity, we say that τ maps g. A mapping τ

from Vars(Q2) to Vars(Q1) is a containment mapping if (1) τ maps every subgoal

in the body of Q2 to a subgoal in the body of Q1, and (2) τ maps the head of Q2

to the head of Q1. The query Q2 contains Q1 if and only if there is a containment

mapping from Q2 to Q1 (Chandra et al. 1977). □

17

2.3 Answering Queries Using Views
Informally speaking, the problem of answering queries using views is the following.

Suppose we are given a query Q over a database schema, and a set of view definitions V1, ..., Vn

over the same schema. Is it possible to answer the query Q using only the answers to the views

V1, ..., Vn, and if so, how? The problem of answering queries using views has recently received

significant attention because of its relevance to a wide variety of data management problems

(Halevy 2001): query optimization (Chaudhuri et al. 1995; Levy et al. 1995; Zaharioudakis et

al. 2000), maintenance of physical data independence (Yang et al. 1987) (Tsatalos et al. 1996)

(Popa et al. 2000), data integration (Duschka et al. 1997b; Kwok et al. 1996; Lambrecht et al.

1999; Levy et al. 1996), and data warehouse and web-site design (Harinarayan et al. 1996;

Theodoratos et al. 1997). For a recent survey on answering queries using views, see (Halevy

2001). There are two main contexts in which the problem of answering queries using views has

been considered. In the first context, where the goal is query optimization or maintenance of

physical data independence (Chaudhuri et al. 1995; Tsatalos et al. 1996; Yang et al. 1987), we

search for an expression that uses the views and is equivalent to the original query as defined in

Definition 2.4. The second context is that of data integration, where views describe a set of

autonomous heterogeneous data sources; we discuss the goals in this context in Section 2.4

Formally, given a query Q and a set of view definitions V = V1, …,Vm, a rewriting of the

query using the views is a query expression Q′ whose body predicates are either V1, …,Vm or

comparison predicates.

Definition 2.4: (Equivalent rewriting). Let Q be a query, and V =V1, …,Vn be a

set of views, both over the same database schema. A query Q′ is an equivalent

rewriting of Q using V if for any database D, the result of evaluating Q′ over

V1(D), …,Vn(D) is the same as Q(D). □

To tell if two queries are equivalent, we depend on the notion of unfolding or expanding a

query as defined in Definition 2.5:

18

Definition 2.5: (Unfolding or expanding a query). Let Q be a query q(X) :-

n ne (X),...,e (X)1 1 . Q' is an expansion or unfolding of Q if for each i ie (X) s.t. ei

is defined by view Vi, we replace each occurrence of ei with the definition of Vi,

substituting either the values of iX for distinguished variables in Vi and fresh

variable names for the existential variables in Vi. □

Remark 2.1. Since different views may have similar definitions, they may

evaluate to the same values even though the view name is different. Thus it is

often necessary to unfold a query asked over a view in order to check on

whether or not it is equivalent to another query. Example 2.2 gives an example

of both the concept of finding an equivalent rewriting and view unfolding. □

Example 2.2: Consider the query from Example 2.1 and the following views.

The view V1 stores pairs of papers that cite each other, and V2 stores pairs of

papers on the same topic, each of which cites at least one other paper.

Q(x,y) :- sameTopic(x,y), cites(x,y), cites(y,x)

V1(a,b) :- cites(a,b), cites(b,a)

V2(c,d) :- sameTopic(c,d), cites(c,c1), cites(d,d1)

The following is an equivalent rewriting of Q :

Q′ (x,y) :- V1(x,y), V2(x,y).

To check that Q′ is an equivalent rewriting, we unfold Q′ w.r.t. the view

definitions to obtain Q′′, and show that Q is equivalent to Q′′ using a

containment mapping (in this case it is the identity on x and y and x1 y, y1

x).

Q′′(x,y) :- cites(x,y), cites(y,x), sameTopic(x,y), cites(x,x1), cites(y,y1) □

2.4 Query Rewriting in Data Integration
As explained in Chapter 1, one of the main uses of algorithms for answering queries using

views is in the context of data integration systems that provide their users with a uniform

19

interface to a multitude of data sources (Friedman et al. 1997; Kwok et al. 1996; Lambrecht et

al. 1999; Levy et al. 1996; Ullman 1997). Since users pose queries in terms of a mediated

schema and the data is stored in the sources, in order to be able to translate users’ queries into

queries on the data sources, the data integration system needs a description of the contents of

the sources. One of the approaches to specifying such descriptions is to describe a data source

as a view over the mediated schema, specifying which tuples can be found in the source, an

approach known as Local-As-View (LAV) (see Chapter 1). For example, in the domain

described in Example 2.1, we may have two data sources, S1 and S2, containing pairs (p1, p2)

of SIGMOD and VLDB papers (respectively) such that p1 cites p2 and p2 cites p1. The sources

can be described as follows:

S1(a,b) :- cites(a,b), cites(b,a), inSIGMOD(a), inSIGMOD(b)

S2(a,b) :- cites(a,b), cites(b,a) inVLDB(a), inVLDB(b)

Given a query Q, the data integration system first needs to reformulate Q to refer to the data

sources, i.e., the views. There are two differences between this application of answering queries

using views and that considered in the context of query optimization. First, the views in data

integration are assumed to adhere to the open world assumption (Definition 2.6):

Definition 2.6: (Open world assumption). A complete view definition is one for

which a view provides all tuples that match the view’s definition. A sound view

definition is any view definition for which the results of the view are those

tuples defined by the body of the view; all view definitions are assumed to be

sound. A view definition under the open world assumption is assumed to be

sound but not complete. □

Due to the open world assumption, views in a LAV data integration system are not assumed to

contain all the tuples in their definition since the data sources are managed autonomously; i.e.,

LAV view definitions are not complete. For example, the source S1 may not contain all the

pairs of SIGMOD papers that cite each other. Because of the open world assumption the goal is

to find what is known as certain answers:

20

Definition 2.7: (Certain answers). Let V be a view definition over a schema S, I

be an instance of the view V and Q a query over S. A tuple t is a certain answer

to Q under the open world assumption if t is an element of Q(D) for each

database D with I ⊆ V(D) (Abiteboul et al. 1998). □

Second, we cannot always find an equivalent rewriting of the query using the views because

there may be no data sources that contain all of the information the query needs. Instead, we

consider the problem of finding a maximally-contained rewriting (Duschka et al. 1997c).

Maximally-contained rewritings are defined with respect to a particular query language in

which we express rewritings. Intuitively, a maximally-contained rewriting is one that provides

all the answers possible from a given set of sources. Formally, it is defined as follows.

Definition 2.8: (Maximally-contained rewriting). The query Q′ is a maximally-

contained rewriting of a query Q using the views V = V1, …,Vn w.r.t. a query

language L if

1. for any database D, and extensions v1, …,vn of the views such that vi ⊆

Vi(D), for 1 ≤ i ≤ n, then Q′(v1, …,vn) ⊆ Q(D),

2. there is no other query Q1 in the language L, such that for every

database D and extensions v1, …,vn as above (a) Q′(v1, …,vn) ⊆ Q1(v1,

…, vn) and (b) Q1(v1, …,vn) ⊆ Q(D), and (c) there exists at least one

database for which 1. is a strict set inclusion.

3. Q1 and Q′ are in L.

Q does not have to be in L. □

Given a conjunctive query Q and a set of conjunctive views V, the maximally-contained

rewriting of a conjunctive query may be a union of conjunctive queries (we refer to the

individual conjunctive queries as conjunctive rewritings). Hence, considering Definition 2.8, if

the language L is less expressive than non-recursive Datalog, there may not be a maximally-

contained rewriting of the query. When the queries and the views are conjunctive and do not

21

contain comparison predicates, it follows from (Levy et al. 1995) that we need only consider

conjunctive rewritings Q′ that have at most the number of subgoals in the query Q.

Example 2.3: Continuing the example begun in Example 2.1, assuming we

have the data sources described by S1, S2 and V2 and the same query Q, the

rewriting that will generate the most sound answers given the sources is:

Q′(x,y) :- S1(x,y), V2(x,y)

Q′(x,y) :- S2(x,y), V2(x,y) □

The rewriting in Example 2.3 is a union of conjunctive queries, describing multiple ways of

obtaining an answer to the query from the available sources. The rewriting is not an equivalent

rewriting, since it misses any pair of papers that is not both in SIGMOD or both in VLDB, but

we do not have data sources to provide us such pairs. Furthermore, since the sources are not

guaranteed to have all the tuples in the definition of the view, our rewritings need to consider

different views that may have similar definitions. For example, suppose we have the following

source S3:

S3(a,b) :- cites(a,b), cites(b,a), inSIGMOD(a), inSIGMOD(b)

The definition of S3 is identical to that of S1. However, because of source incompleteness, it

may contain different tuples than S1. Hence, our rewriting will also have to include the

following in addition to the other two rewritings.

Q′(x,y) :- S3(x,y), V2(x,y)

The ability to find a maximally-contained rewriting depends in subtle ways on other

properties of the problem. It follows from (Abiteboul et al. 1998) that if (1) the query contains

comparison subgoals, or (2) the views are assumed to be complete (i.e., the closed world

assumption holds), then there may not be a maximally-contained rewriting if we consider L to

be the language of unions of conjunctive queries or even if we consider Datalog with recursion.

In addition, even if a maximally-contained rewriting exists, a maximally-contained rewriting

with respect to L (Definition 2.8) will only provide all certain answers if L is monotone

(Duschka et al. 1998). A query Q over a schema R is monotonic if ∀ states σi, σj of R, σi ⊆ σj

22

implies that Q(σi) ⊆ Q(σj) (Abiteboul et al. 1995). However, given that in all cases that we

consider the queries and views are monotone, a maximally-contained rewriting is guaranteed to

return all certain answers.

Given these definitions we are now ready to present the rest of the thesis.

23

Chapter 3

MiniCon

3.1 Introduction
In Chapter 1, we motivated the problem of answering queries using views as a method for

reformulating queries asked in a Local-As-View (LAV) data integration system. In this chapter,

we assume that a data integration system has been set up using LAV as the mapping language

between the mediated schema and the data sources, and focus on how to translate user queries

into queries over the data sources using a technique called answering queries using views (a.k.a.

rewriting queries using views). We defined answering queries using views in Chapter 2, both

for finding equivalent rewritings (Definition 2.4) in query optimization of physical data

independence and for data integration where the goal is to find maximally-contained rewritings

(Definition 2.8). While the problem is NP-Complete in the number of subgoals of the query, the

number of query subgoals is generally quite small. On the other hand, in some data integration

applications, the number of data sources may be quite large – for example, data sources may be

a set of web sites, a large set of suppliers and consumers in an electronic marketplace, or a set of

peers containing fragments of a larger data set in a peer-to-peer environment. Hence, the

challenge in this context is to develop an algorithm that scales up in the number of views.

We consider the problem of answering conjunctive queries using a set of conjunctive views

in the presence of a large number of views. In general, this problem is NP-Complete because it

involves searching through a possibly exponential number of rewritings (Levy et al. 1995).

Previous work has mainly considered two algorithms for this purpose. The bucket algorithm,

developed as part of the Information Manifold System (Levy et al. 1996), controls its search by

first considering each subgoal in the query in isolation, and creating a bucket that contains only

the views that are relevant to that subgoal. The algorithm then creates rewritings by combining

one view from every bucket. As we show, the combination step has several deficiencies, and

24

does not scale up well. The inverse-rules algorithm, developed in (Duschka et al. 1997a; Qian

1996), is used in the InfoMaster System (Duschka et al. 1997a). The inverse-rules algorithm

considers rewritings for each database relation independent of any particular query. Given a

user query, these rewritings are combined appropriately. We show that the rewritings produced

by the inverse-rules algorithm need to be further processed in order to be appropriate for query

evaluation. Unfortunately, in this additional processing step the algorithm must duplicate much

of the work done in the second phase of the bucket algorithm.

Based on the insights into the previous algorithms, we introduce the MiniCon algorithm,

which addresses their limitations and scales up to a large number of views. The key idea

underlying the MiniCon algorithm is a change of perspective: instead of building rewritings by

combining rewritings for each query subgoal or database relation, we consider how each of the

variables in the query can interact with the available views. The result is that the second phase

of the MiniCon algorithm needs to consider drastically fewer combinations of views. Hence, as

we show experimentally, the MiniCon algorithm scales much better. The specific contributions

of this chapter are the following:

• We describe the MiniCon algorithm and its properties.

• We present a detailed experimental evaluation and analysis of algorithms for answering

queries using views. The experimental results show (1) the MiniCon algorithm

significantly outperforms the bucket and inverse-rules algorithms, and (2) the MiniCon

algorithm scales up to hundreds of views, thereby showing for the first time that

answering queries using views can be efficient on data integration systems with many

sources. We believe that our experimental evaluation in itself is a significant

contribution that fills a void in previous work on this topic.

• We describe an extension of the MiniCon algorithm to handle comparison predicates

and experimental results on its performance.

• We describe an extension of the MiniCon algorithm to the context of cost-based query

optimization, where the goal is to find the single cheapest plan for the query using the

views. In doing so we distinguish the role of two sets of views: those that are needed for

the logical correctness of the plan, and those that are only needed to reduce the cost of

25

the plan. We show that different techniques are needed in order to identify each of these

sets.

This chapter focuses on answering queries using views for select-project-join queries under

set semantics. While such queries are quite common in data integration applications, many

applications will need to deal with queries involving grouping and aggregation, semi-structured

data, nested structures and integrity constraints. Indeed, the problem of answering queries using

views has been considered in these contexts as well (Calvanese et al. 1999; Cohen et al. 1999;

Duschka et al. 1997c; Grumbach et al. 1999; Gryz 1998; Gupta et al. 1995; Papakonstantinou et

al. 1999; Srivastava et al. 1996). In contrast to the above works, our focus is on obtaining a

scalable algorithm for answering queries using views and the experimental evaluation of such

algorithms. Hence, we begin with the class of select-project-join queries.

Remark 3.1: It is important to emphasize at this point that this chapter

concentrates on ensuring that the rewriting of the query obtains as many

answers as possible from a set of views, which is the main concern in the

context of data integration. The bulk of this chapter is not concerned with the

problem of finding the rewriting that yields the cheapest query execution plan

over the views, which would be the main concern if our goal was query

optimization. In Section 3.6 we present an extension of the MiniCon algorithm

to the context of query optimization, and show how the ideas underlying the

MiniCon algorithm apply in that context as well. In addition, we do not

consider here the issue of ordering the results from the sources. □

The chapter is organized as follows. Section 3.2 discusses the limitations of the previous

algorithms. Section 3.3 describes the MiniCon algorithm, and Section 3.4 presents the

experimental evaluation. Section 3.5 describes an extension of the MiniCon algorithm to

comparison predicates. Section 3.6 describes how to extend the MiniCon algorithm to context

of query optimization, and Section 3.7 concludes. The proof of the MiniCon algorithm is

described in Appendix A.

26

3.2 Previous Algorithms
The theoretical results on answering queries using views (Levy et al. 1995) showed that

when there are no comparison predicates in the query, the search for a maximally-contained

rewriting can be confined to a finite space: an algorithm needs to consider every possible

conjunction of n or fewer view atoms, where n is the number of subgoals in the query. Two

previous algorithms, the bucket algorithm and the inverse-rules algorithm, attempted to find

more effective methods to produce rewritings that do not require such exhaustive search. In this

section, we briefly describe these algorithms and point out their limitations. In Section 3.4, we

compare these algorithms to our MiniCon algorithm and show that the MiniCon algorithm

significantly outperforms them. We describe the algorithms for queries and views without

comparison subgoals.

3.2.1 The Bucket Algorithm
The bucket algorithm was developed as part of the Information Manifold System (Levy et al.

1996). The key idea underlying the bucket algorithm is that the number of query rewritings that

need to be considered can be drastically reduced if we first consider each subgoal in the query

in isolation and determine which views may be relevant to a particular subgoal. The bucket

algorithm is even more effective in the presence of comparison subgoals because comparison

subgoals often enable the bucket algorithm to deem many views as being irrelevant to a query.

We illustrate the bucket algorithm with the following query and views. Note that the query

now only asks for a set of papers, rather than pairs of papers.

Q1(x) :- cites(x,y),cites(y,x),sameTopic(x,y)

V4(a) :- cites(a,b), cites(b,a)

V5(c,d) :- sameTopic(c,d)

V6(f,h) :- cites(f,g),cites(g,h),sameTopic(f,g)

In the first step, the bucket algorithm creates a bucket for each subgoal in Q1. The bucket for

a subgoal g contains the views that include subgoals to which g can be mapped in a rewriting of

the query. If a subgoal g unifies with more than one subgoal in a view V, then the bucket of g

27

will contain multiple occurrences of V.1 The bucket algorithm would create the buckets in Table

3.1.

Table 3.1: Example buckets created by Bucket Algorithm

cites(x,y) cites(y,x) sameTopic(x,y)

V4(x) V4(x) V5(x,y)

V6(x,y) V6(x,y) V6(x,y)

Note that it is possible to unify the subgoal cites(x,y) in the query with the subgoal cites(b,a)

in V4, with the mapping x b, y a. However, the algorithm did not include the entry V4(y)

in the bucket because it requires that every distinguished variable in the query be mapped to a

distinguished variable in the view.

 In the second step, the algorithm considers conjunctive query rewritings, each consisting of

one conjunct from every bucket. Specifically, for each element of the Cartesian product of the

buckets, the algorithm constructs a conjunctive rewriting and checks whether it is contained (or

can be made to be contained by adding join predicates) in the query. If so, the rewriting is added

to the answer. Hence, the result of the bucket algorithm is a union of conjunctive rewritings.

In our example, the algorithm will try to combine V4 with the other views and fail (as we

explain below). Then it will consider the rewritings involving V6, and note that by equating the

variables in the head of V6 a contained rewriting is obtained. Finally, the algorithm will also

discover that V6 and V5 can be combined. Though not originally described as part of the bucket

algorithm, it is possible to add an additional simple check that will determine that the resulting

rewriting will be redundant (because V5 can be removed). Hence, the only rewriting in this

example (which also turns out to be an equivalent rewriting) is:

1 If we have knowledge of functional dependencies in the schema, then it is often possible to

recover the values of attributes that have been projected away, but we do not consider this case

here.

28

Q1′(x) :- V6(x,x)

The main inefficiency of the bucket algorithm is that it misses some important interactions

between view subgoals by considering each subgoal in isolation. As a result, the buckets contain

irrelevant views, and hence the second step of the algorithm becomes very expensive. We

illustrate this point on our example.

Consider the view V4, and suppose that we decide to use V4 in such a way that the subgoal

cites(x,y) is mapped to the subgoal cites(a,b) in the view, as shown below:

Q1(x) :- cites(x,y), cites(y, x), sameTopic(x,y)

 ↓ ↓ ?

V4(a) :-cites(a,b), cites(b, a)

We can map y to b and be able to satisfy both cites predicates. However, since b does not

appear in the head of V4, if we use V4, then we will not be able to apply the join predicate

between cites(x,y) and sameTopic(x,y) in the query. Therefore, V4 is not usable for the query,

but the bucket algorithm would not discover this.

Furthermore, even if the query did not contain sameTopic(x,y), the bucket algorithm would

not realize that if it uses V4, then it has to use it for both of the query subgoals. Realizing this

would save the algorithm exploring useless combinations in the second phase.

As we explain later, the MiniCon algorithm discovers these interactions in the first phase. In

this example, MiniCon will determine that V4 is irrelevant to the query. In the case in which the

query does not contain the subgoal sameTopic(x,y), the MiniCon algorithm will discover that

the two cite subgoals need to be treated atomically.

3.2.2 The Inverse-Rules Algorithm
Like the bucket algorithm, the inverse-rules algorithm (Duschka et al. 1997a; Qian 1996)

was also developed in the context of a data integration system. The key idea underlying the

algorithm is to construct a set of rules that invert the view definitions, i.e., rules that show how

to compute tuples for the database relations from tuples of the views. Given the views in the

previous example, the algorithm would construct the following inverse rules:

R1: cites(a, f1(a)) :- V4(a)

29

R2: cites(f1(a), a) :- V4(a)

R3: sameTopic(c,d) :- V5(c,d)

R4: cites(f, f2(f,h)) :- V6(f,h)

R5: cites(f2(f,h), h) :- V6(f,h)

R6: sameTopic(f, f2(f,h)) :- V6(f,h)

Consider the rules R1 and R2; intuitively, their meaning is the following. A tuple of the form

V4(p1) in the extension of the view V4 is a witness of two tuples in the relation cites. It is a

witness in the sense that V4(p1) tells that the relation cites contains a tuple of the form (p1, Z),

for some value of Z, and that the relation also contains a tuple of the form (Z, p1), for the same

value of Z.

In order to express the information that the unknown value of Z is the same in the two atoms,

we refer to it using the functional Skolem term f1(Z). Note that there may be several values of Z

in the database that cause the tuple (p1) to be in the self-join of cites, but all that we know is that

there exists at least one such value.

The rewriting of a query Q using the set of views V is simply the composition of Q and the

inverse rules for V. Hence, one of the important advantages of the algorithm is that the inverse

rules can be constructed ahead of time in polynomial time, independent of a particular query.

The rewritings produced by the inverse-rules algorithm, as originally described in (Duschka

et al. 1997a), are not appropriate for query evaluation for two reasons. First, applying the

inverse rules to the extension of the views may invert some of the useful computation done to

produce the view. Second, we may end up accessing views that are irrelevant to the query. To

illustrate the first point, suppose we use the rewriting produced by the inverse-rules algorithm in

the case where the view V6 has the extension {(p1, p1), (p2, p2)}.

First, we would apply the inverse rules to the extensions of the views. Applying R4 would

yield cites(p1, f2(p1,p1)), cites(p2, f2(p2,p2)), and similarly applying R5 and R6 would yield the

following tuples:

cites(p1, f2(p1,p1)),

cites(f2(p1,p1),p1),

30

cites(f2(p2,p2),p2),

sameTopic(p1,p1),

sameTopic(p2,p2).

Applying the query Q1 to the tuples computed above obtains the answers p1 and p2.

However, this computation is highly inefficient. Instead of directly using the tuples of V6 for the

answer, the inverse-rules algorithm first computed tuples for the relation cites, and then had to

re-compute the self-join of cites that was already computed for V6. Furthermore, if the

extensions of the views V4 and V5 are not empty, then applying the inverse rules would produce

useless tuples as explained in Section 3.2.1.

Hence, before we can fairly compare the inverse-rules algorithm to the others, we need to

further process the rules. Specifically, we need to expand the query with every possible

combination of inverse rules. However, expanding the query with the inverse rules turns out to

repeat much of the work done in the second phase of the bucket algorithm. In our example,

since we have four rules for cites and two rules for sameTopic, we may need to consider 32 such

expansions in the worst case.

In the experiments described in Section 3.4 we consider an extended version of the inverse-

rules algorithm that produces a union of conjunctive queries by expanding the definitions of the

inverse rules. We expanded the subgoals of the query one at a time, so we could stop an

expansion of the query at the moment when we detect that a unification for a subset of the

subgoals will not yield a rewriting (thereby optimizing the performance of the inverse-rules

algorithm). We show that the inverse-rules algorithm can perform much better than the bucket

algorithm, but the MiniCon algorithm scales up significantly better than either algorithm.

Remark 3.2: It is important to clarify why our study considers the extended

version of the inverse-rules algorithm, rather than the original version. It is easy

to come up with (real) examples in which the execution of plan generated by

the original inverse-rules algorithm would be arbitrarily worse than that of the

bucket algorithm or the MiniCon algorithm. Hence, we face the usual tradeoff

between spending significant time on optimization, but with much more

substantial savings at run-time. An optimizer that would accept the result of the

31

original inverse-rules algorithm would definitely try to optimize the plan by

trying to reduce the number of joins it needs to perform. By using the extended

version of the inverse-rules algorithm we are putting all three algorithms on

equal footing in the sense that one does not need more optimization than the

other. Optimizations will still be applied to them, but the same optimizations

can be applied to the results of each of the algorithms. □

3.3 The MiniCon Algorithm
The MiniCon algorithm begins like the bucket algorithm, considering which views contain

subgoals that correspond to subgoals in the query. However, once the algorithm finds a partial

mapping from a subgoal g in the query to a subgoal g1 in a view V, it changes perspective and

looks at the variables in the query. The algorithm considers the join predicates in the query

(which are specified by multiple occurrences of the same variable) and finds the minimal

additional set of subgoals that need to be mapped to subgoals in V, given that g will be mapped

to g1. This set of subgoals and mapping information is called a MiniCon Description (MCD),

and can be viewed as a generalization of buckets. In the second phase, the algorithm combines

the MCDs to produce the rewritings. It is important to note that because of the way we construct

the MCDs, the MiniCon algorithm does not require containment checks in the second phase,

giving it an additional speedup compared to the bucket algorithm. Section 3.3.1.1 describes the

construction of MCDs, and Section 3.3.2 describes the combination step. For ease of exposition

we describe the MiniCon algorithm for queries and views without constants. The proof of

correctness of the MiniCon algorithm can be found in Appendix A.

3.3.1.1 Forming the MCDs
We begin by introducing a few terms that are used in the description of the algorithm. Given

a mapping τ from Vars(Q) to Vars(V), we say that a view subgoal g1 covers a query subgoal g if

τ(g)=g1.

A MCD is a mapping from a subset of the variables in the query to variables in one of the

views. Intuitively, a MCD represents a fragment of a containment mapping from the query to

32

the rewriting of the query. The way in which we construct the MCDs guarantees that these

fragments can later be combined seamlessly.

As seen in our example, we need to consider mappings from the query to specializations of

the views, where some of the head variables may have been equated (e.g., V6(x,x) instead of

V6(x,y) in our example). Hence, every MCD has an associated head homomorphism. A head

homomorphism h on a view V is a mapping h from Vars(V) to Vars(V) that is the identity on the

existential variables, but may equate distinguished variables, i.e., for every distinguished

variable x, h(x) is distinguished, and h(x)=h(h(x)). Note that the consideration of the head

homomorphisms adds no complexity to the MiniCon algorithm. Since the MiniCon algorithm

must check to see if each view subgoal can cover each query subgoal, the least restrictive head

homomorphism (which is the one that the MiniCon algorithm uses) follows immediately from

looking at which positions in the view the query variables must be assigned to in order for the

view to be used in a partial containment mapping.

Formally, we define MCDs as follows.

Definition 3.1: (MCD). A MCD, C for a query Q over a view V is a tuple of the

form (hC, CV(Y) , φC, GC) where:

• hC is a head homomorphism on V,

• CV(Y) is the result of applying hC to V, i.e., = CY h (A) , where A are

the head variables of V,

• φC is a partial mapping from Vars(Q) to hC(Vars(V)),

• GC is a subset of the subgoals in Q which are covered by some subgoal

in hC(V) using the mapping φC (note: not all such subgoals are

necessarily included in GC). □

In words, φC is a mapping from Q to the specialization of V obtained by the head

homomorphism hC. GC is a set of subgoals of Q that we cover by the mapping φC. Property 3.1

below specifies the exact conditions we need to consider when we decide which subgoals to

include in GC. Note that CV(Y) is uniquely determined by the other elements of a MCD, but is

part of a MCD specification for clarity in our subsequent discussions. Furthermore, the

33

algorithm will not consider all the possible MCDs, but only those in which hC is the least

restrictive head homomorphism necessary in order to unify subgoals of the query with subgoals

in a view.

The mapping φC of a MCD C may map a set of variables in Q to the same variable in hC(V).

In our discussion, we sometimes need to refer to a representative variable of such a set. For each

such set of variables in Q we choose a representative variable arbitrarily, except that we choose

a distinguished variable whenever possible. For a variable x in Q, ECφC(x) denotes the

representative variable of the set to which x belongs. ECφC(x) is defined to be the identity on any

variable that is not in Q.

The construction of the MCDs is based on the following observation on the properties of

query rewritings. The proof of this property is a corollary of the correctness proof of the

MiniCon algorithm.

Property 3.1: Let C be a MCD for Q over V. Then C can only be used in a non-

redundant rewriting of Q if the following conditions hold:

C1. For each head variable x of Q which is in the domain of φC, φC(x) is a

head variable in φC(V).

C2. If φC(x) is an existential variable in hC(V), then for every g, subgoal of Q,

that includes x (1) all the variables in g are in the domain of φC, and (2)

φC(g) ∈ hC(V) □

Clause C1 is the same as in the bucket algorithm. Clause C2 captures the intuition we

illustrated in our example, where if a variable x is part of a join predicate which is not enforced

by the view, then x must be in the head of the view so the join predicate can be applied by

another subgoal in the rewriting. In our example, clause C2 would rule out the use of V4 for

query Q1 because the variable b is not in the head of V4, but the join predicate with

sameTopic(x,y) has not been applied in V4.

34

Figure 3.1: First phase of the MiniCon algorithm: Forming MCDs.

The algorithm for creating the MCDs is shown in Figure 3.1. Consider the application of the

algorithm to our example with the query Q1 and the views V4, V5, and V6. The MCDs that will

be created are shown in Table 3.2.

We first consider the subgoal cites(x,y) in the query. As discussed above, the algorithm does

not create a MCD for V4 because clause C2 of Property 3.1 would be violated (the property

would require that V4 also cover the subgoal sameTopic(x,y) since b is existential in V4). For the

same reason, no MCD will be created for V4 even when we consider the other subgoals in the

query.

Table 3.2: MCDs formed as part of our example of the MiniCon Algorithm

V(Y) h Φ G

V5(c,d) c c, d d x c, y d 3

V6(f,f) f f, h f x f, y g 1,2,3

procedure formMCDs(Q,V)
/* Q and V are conjunctive queries. */

C = ∅
For each subgoal g ∈ Q

For view V ∈ V and every subgoal v ∈ V
Let h be the least restrictive head homomorphism on V such that there exists a mapping φ, s.t.

φ(g)=h(v).
If h and φ exist, then add to C any new MCD C that can be constructed where:

(a) φC respectively hC is an extension of φ (respectively h),
(b) GC is the minimal subset of subgoals of Q such that GC, φC and hC satisfy Property 3.1
(c) It is not possible to extend φ and h to φC′ and hC′ s.t. (b) is satisfied and GC′, as defined in

(b), is a subset of GC.
Return C

35

In a sense, the MiniCon algorithm shifts some of the work done by the combination step of

the bucket algorithm to the phase of creating the MCDs. The bucket algorithm will discover that

V4 is not usable for the query when combining the buckets. However, the bucket algorithm

needs to discover this many times (each time it considers V4 in conjunction with another view),

and every time it does so, it uses a containment check, which is much more expensive. Hence,

as we show in the next section, with a little more effort spent in the first phase, the overall

performance of the MiniCon algorithm outperforms the bucket algorithm and the inverse-rules

algorithm.

Another interesting observation is the difference in performance in the presence of repeated

occurrences of the same predicate in the views or the query. For the bucket algorithm repeated

occurrences lead to larger buckets, and hence more combinations to check in the second phase.

For the inverse-rules algorithm, repeated occurrences mean there are more expansions to check

in the second phase. In contrast, the MiniCon algorithm can more often rule out the

consideration of certain occurrences of a predicate due to violations of Property 3.1.

Remark 3.3: When we construct a MCD C, we must determine the set of

subgoals of the query GC that are covered by the MCD. The algorithm includes

in GC only the minimal set of subgoals that are necessary in order to satisfy

Property 3.1. To see why this is not an obvious choice, suppose we have the

following query and views:

Q1′(x) :- cites(x,y),cites(z,x), inSIGMOD(x)

V7(a) :- cites(a,b), inSIGMOD(a)

V8(c) :- cites(d,c), inSIGMOD(c)

One can also consider including the subgoal inSIGMOD(x) in the set of covered

subgoals for the MCD for both V7 and V8, because x is in the domain of their

respective variable mappings anyway. However, our algorithm will not include

inSIGMOD(x), and will instead create a special MCD for it.

The reason for our choice is that it enables us to focus in the second phase

only on rewritings where the MCDs cover mutually exclusive sets of subgoals

36

in the query, rather than overlapping subsets. This yields a more efficient

second phase. □

3.3.2 Combining the MCDs
Our method for constructing MCDs pays off in the second phase of the algorithm, where we

combine MCDs to build the conjunctive rewritings. In this phase we consider combinations of

MCDs, and for each valid combination we create a conjunctive rewriting of the query. The final

rewriting is a union of conjunctive queries.

The following property states that the MiniCon algorithm need only consider combinations

of MCDs that cover pair-wise disjoint subsets of subgoals of the query. The proof of the

property follows from the correctness proof of the MiniCon algorithm.

Property 3.2: Given a query Q, a set of views V, and the set of MCDs C for Q

over the views in V, the only combinations of MCDs that can result in non-

redundant rewritings of Q are of the form C1, …, Cl, where

D1.
1CG ∪ … ∪

lCG = Subgoals(Q),

For every i ≠ j,
iCG ∩

jCG = ∅. □

The fact that we only need to consider sets of MCDs that provide partitions of the subgoals

in the query drastically reduces the search space of the algorithm. Furthermore, even though we

do not discuss it here, the algorithm can also be extended to output the rewriting in a compact

encoding that identifies the common sub-expressions of the conjunctive rewritings, and

therefore leads to more efficient query evaluation. We note that had we chosen the alternate

strategy in Remark 3.3, clause D2 would not hold.

Given a combination of MCDs that satisfies Property 3.2, the actual rewriting is constructed

as shown in Figure 3.2.

In the final step of the algorithm we tighten up the rewritings by removing redundant

subgoals as follows. Suppose a rewriting Q′ includes two atoms A1 and A2 of the same view V,

whose MCDs were C1 and C2, and the following conditions are satisfied: (1) whenever A1

(respectively A2) has a variable from Q in position i, then A2 (respectively A1) either has the

37

same variable or a variable that does not appear in Q in that position, and (2) the ranges of
1

ϕC

and
2

ϕC do not overlap on existential variables of V. In this case we can remove one of the two

atoms by applying to Q′ the homomorphism τ that is (1) the identity on the variables of Q and

(2) is the most general unifier of A1 and A2. The underlying justification for this optimization is

discussed in (Levy et al. 1995), and it can also be applied to the bucket algorithm and the

inverse-rules algorithm.

Even after this step, the rewritings may still contain redundant subgoals. However, removing

them involves several tests for query containment; both inverse-rules algorithm and the bucket

algorithm require these removal steps as well.

Figure 3.2: MiniCon second phase: Combining the MCDs.

procedure combineMCDs(C)
/* C are MCDs formed by the first step of the algorithm. */

/* Each MCD has the form (hC, CV(Y) , φC, GC, ECC). */
Given a set of MCDs, C1, …,Cn, we define the function EC on Vars(Q) as follows:
If for i ≠ j,

i
ECϕ (x) ≠

j
ECϕ (x), define ECC (x) to be one of them arbitrarily but consistently across all

y for which
i

ECϕ (y) =
i

ECϕ (x)

Let Answer = ∅
For every subset C1, …, Cn of C such that

1 2 nC C CG G G∪ ∪ ∪… = subgoals(Q) and for every i ≠ j,

i jC CG G∩ = ∅

Define a mapping φi on the iY 's as follows:
If there exists a variable x ∈ Q such that φi=y
Ψi(y) = x

Else
Ψi is a fresh copy of y

Create the conjunctive rewriting

n nC C C CQ'(EC(X)) : V (EC((Y))),...,V (EC((Y)))− Ψ Ψ
1 11 1

Add Q′ to Answer.
Return Answer

38

In our example, the algorithm will consider using V5 to cover subgoal 3, but when it realizes

that there are no MCDs that cover either subgoal 1 or 2 without covering subgoal 3, it will

discard V5. Thus the only rewriting that will be considered is

Q1′(x) :- V6(x,x).

Constants in the query and views: When the query or the view include constants, we make

the following modifications to the algorithm. First, the domain and range of φC in the MCDs

may also include constants. Second, a MCD also records a (possibly empty) set of mappings ψC

from variables in Vars(Q) to constants.

When the query includes constants, we add the following condition to Property 3.1:

• If a is a constant in Q it must be the case that either (1) φC(a) is a distinguished variable

in hC(V) or (2) φC(a) is the constant a.

When the views have constants, we modify Property 3.2 as follows:

• We relax clause C1: a variable x that appears in the head of the query must either be

mapped to a head variable in the view (as before) or be mapped to a constant a. In the

latter case, the mapping x a is added to ψC.

• If φC(x) is a constant a, then we add the mapping x a to ψC. (Condition C2 only

applies to existential variables, and therefore if φC(x) is a constant that appears in the

body of V but not in the head, a MCD is still created).

Next, we combine MCDs with some extra care. Two MCDs, C1 and C2, both of whom have x

in their domain, can be combined only if they (1) either both map x to the same constant, or (2)

one (e.g., C1) maps x to a constant and the other (e.g., C2) maps x to distinguished variable in the

view. Note that if C2 maps x to an existential variable in the view, then the MiniCon algorithm

would never consider combining C1 and C2 in the first place, because they would have

overlapping GC sets. Finally, we modify the definition of EC, such that whenever possible, it

chooses a constant rather than a variable.

The following theorem summarizes the properties of the MiniCon algorithm. Its full proof is

given in Appendix A.

39

Theorem 3.1: Given a conjunctive query Q and conjunctive views V, both

without comparison predicates or constants, the MiniCon algorithm produces

the union of conjunctive queries that is a maximally-contained rewriting of Q

using V. □

It should be noted that the worst-case asymptotic running time of the MiniCon algorithm is

the same as that of the bucket algorithm and of the inverse-rules algorithm after the

modification described in Section 3.2.2. In all cases, the running time is O(nmM)n, where n is the

number of subgoals in the query, m is the maximal number of subgoals in a view, and M is the

number of views.

The next section describes experimental results showing the differences between the three

algorithms in practice.

3.4 Experimental Results
The goal of our experiments was twofold. First, we wanted to compare the performance of

the bucket algorithm, the inverse-rules algorithm, and the MiniCon algorithm in different

circumstances. Second, we wanted to validate that MiniCon can scale up to large number of

views and large queries. Our experiments considered three classes of queries and views: (1)

chain queries, (2) star queries and (3) complete queries, all of which are well known in the

literature (Steinbrunn et al. 1997).

 To facilitate the experiments, we implemented a random query generator which enables us

to control the following parameters (1) the number of subgoals in the queries and views, (2) the

number of variables per subgoal, (3) the number of distinguished variables, and (4) the degree

to which predicate names are duplicated in the queries and views. The results are averaged over

multiple runs generated with the same parameters (at least 40, and usually more than 100). All

graphs either contain 95% confidence intervals or the intervals were less than twice as thick as

the line in the graph and were thus excluded. An important variable to keep in mind throughout

the experiments is the number of rewritings that can actually be obtained.

40

In most experiments we considered queries and views that had the same query shape and

size. Our experiments were all run on a dual Pentium II 450 MHz running Windows NT 4.0

with 512MB RAM. All of the algorithms were implemented in Java and compiled to an

executable.

3.4.1 Chain Queries

Chain queries with 10 subgoals and two
distinguished variables

0

0.5

1

1.5

2

0 100 200 300 400

Number of Views

T
im

e
(i

n
 S

ec
o

n
d

s)

MiniCon Algorithm

Inverse Rules

Figure 3.3: Running times for chain queries with two distinguished variables in the views.
It shows that the MiniCon algorithm and the inverse-rules algorithms both scale up to
hundreds of views. The MiniCon algorithm outperforms the inverse-rules algorithm by a
factor of 2.

In the context of chain queries we consider several cases. In the first case, shown in Figure

3.3, only the first and last variables of the query and the view are distinguished. Therefore, in

order to be usable, a view has to be identical to the query, and as a result there are very few

rewritings. The bucket algorithm performs the worst, because of the number and cost of the

query containment checks it needs to perform (it took on the order of 20 seconds for 5 views of

size 10 subgoals, and hence we do not even show it on the graph). The inverse-rules algorithm

and the MiniCon algorithm scale linearly in the number of views, but the MiniCon algorithm

outperforms the inverse-rules algorithm by a factor of about 2 (and this factor is independent of

query and view size). In fact, the MiniCon algorithm can handle more than 350 views with 10

41

subgoals each in less than one second. Since executing a query over 350 sources would likely

take considerably more time than one second, this should be sufficiently fast.

Chain queries; 2 variables distinguished,
Query of length 12 Views of lengths 2, 3, and 4

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 100 200 300 400

Number of Views

T
im

e
(i

n
 S

ec
o

n
d

s)

MiniCon Algorithm

InverseRules

Figure 3.4: Running times for chain queries where the views are of lengths 2, 3 and 4, and
the query has 12 subgoals.

The difference in the performance between the inverse-rules algorithm and the MiniCon

algorithm in this context and in others is due to the second phases of the algorithms. In this

phase, the inverse-rules algorithm is searching for a unification of the subgoals of the query

with heads of inverse rules. The MiniCon algorithm is searching for sets of MCDs that cover all

the subgoals in the query, but cover pair-wise disjoint subsets. Hence, the MiniCon algorithm is

searching a much smaller space, because the number of subgoals is smaller than the number of

variables in the query. Moreover the MiniCon algorithm is performing better because in the first

phase of the algorithm it already removed from consideration views that may not be usable due

to violations of Property 3.1. In contrast, the inverse-rules algorithm must try unifications that

include such views and then backtrack. The amount of work that the inverse-rules algorithm

will waste depends on the order in which it considers the subgoals in the query when it unifies

them with the corresponding inverse rules. If a failure appears late in the ordering, more work is

wasted. The important point to note is that the optimal order in which to consider the subgoals

depends heavily on the specific views available and is, in general, very hard to find. Hence, it

42

would be hard to extend the inverse-rules algorithm such that its second phase would compare

in performance to that of the MiniCon algorithm.

In the second case we consider, shown in Figure 3.4, the views are shorter than the query (of

lengths 2, 3 and 4, while the query has 12 subgoals).

Chain queries with 8 subgoals and all
variables distinguished

0

50

100

150

200

250

300

350

1 2 3 4 5 6

Number of Views

T
im

e
(i

n
 S

ec
o

n
d

s)

MiniCon Algorithm

Inverse Rules

Bucket Algorithm

Figure 3.5: Running times for chain queries where all variables in the views are
distinguished. The containment check required by the bucket algorithm causes it to be
roughly twice as slow as either the MiniCon algorithm or inverse-rules algorithm.

Finally, as shown in Figure 3.5, we also considered another case in which all the variables in

the views are distinguished. In this case, there are many rewritings (often more than 1000), and

hence the performance of the algorithms is limited because of the sheer number of rewritings.

Since virtually all combinations produce contained rewritings, any complete algorithm is forced

to form a possibly exponential number of rewritings; for queries and views with 8 subgoals, the

algorithms take on the order of 100 seconds for 5 views. The graph in Figure 3.5, shows that on

average the MiniCon algorithm performs better than the inverse-rules algorithm by anywhere

between 10% and 25%. However, in this case the variance in the results is very high, and hence

it is hard to draw any general conclusions. (The confidence intervals cannot be shown in the

graph without cluttering it.) The reason for the large variance is that some of the queries in the

workload have a huge number of rewritings (and hence take much more time), while others

have a very small number of rewritings. Other experiments showed that the savings for the

MiniCon algorithm over the inverse-rules algorithm, as expected, grew with the number of

43

views and the number of subgoals in the query; this is because the number of combinations that

was considered was much higher and thus the smaller search space that the MiniCon algorithm

considered was much more evident.

3.4.2 Star and Complete Queries

Star queries with 10 subgoals with
distinguished non-joined variables

0

2

4

6

8

10

1 3 5 7 9

11 13 15 17 19

Number of Views

T
im

e
(i

n
 S

ec
o

n
d

s)

Bucket Algorithm

MiniCon Algorithm

Inverse Rules

Figure 3.6: Running times for star queries, where the distinguished variables in the views
are those not participating in the joins. The MiniCon algorithm significantly outperforms
the inverse-rules algorithm.

In star queries, there exists a unique subgoal in the query that is joined with every other

subgoal, and there are no joins between the other subgoals. In the cases of two distinguished

variables in the views or all view variables being distinguished, the performance of the

algorithms mirrors the corresponding cases of chain queries. Hence, we omit the details of these

experiments. Figure 3.6 shows the running times of the inverse-rules algorithm and the

MiniCon algorithm in the case where the distinguished variables in the views are the ones that

do not participate in the joins. In this case, there are relatively few rewritings. We see that the

MiniCon algorithm scales up much better than the inverse-rules algorithm. For 20 views with

10 subgoals each, the MiniCon algorithm runs 15 times faster than the inverse-rules algorithm.

Here the explanation is that the first phase of the MiniCon algorithm is able to prune many of

44

the irrelevant views, whereas the inverse-rules algorithm discovers that the views are irrelevant

only in the second phase, and often it must be discovered multiple times.

Complete queries with 10 subgoals and three
distinguished variables

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50

Number of Views

T
im

e
(i

n
 S

ec
o

n
d

s)

MiniCon Algorithm

InverseRules

Figure 3.7: Running times for complete queries where three variables are distinguished.
As in Figure 3.6, the MiniCon algorithm significantly outperforms the inverse-rules
algorithm

An experiment with similar settings but for complete queries is shown in Figure 3.7. In

complete queries every subgoal is joined with every other subgoal in the query. As the figure

shows, the MiniCon algorithm outperforms the inverse-rules algorithm by a factor of 2.3 for 20

views, and by a factor of 3 for 50 views, which is less of a speedup than with of star queries.

The explanation for this is that there are more joins in the query, and thus the inverse-rules

algorithm is able to detect useless views earlier in its search because failures to unify occur

more frequently. Finally, we also ran some experiments on queries and views that were

generated randomly with no specific pattern. The results showed that the MiniCon algorithm

still scales up gracefully, but the behavior of the inverse-rules algorithm was too unpredictable

(though always worse than the MiniCon algorithm) due to the nature of when the algorithms

discover that a rule cannot be unified.

3.4.3 Summary of Experiments
In summary, our experiments showed the following points. First, the MiniCon algorithm

scales up to large numbers of views and significantly outperforms the other two algorithms.

45

This point is emphasized by Table 3.3, where we tried to push the MiniCon algorithm to its

limits. The table considers the number of subgoals and number of views that the MiniCon

algorithm is able to process given 10 seconds. In some cases, the algorithm can handle

thousands of views, which is a magnitude that was clearly out of reach of previous algorithms.

Table 3.3: The number of views that the MiniCon algorithm can process in under 10
seconds in various conditions

Query type Distinguished # of subgoals # of views

Chain All 3 45

Chain All 12 3

Chain Two 5 9225

Chain Two 99 115

Star Non Joined 5 12235

Star Non Joined 99 35

Star Joined 10 4520

Star Joined 99 75

Second, the experiments showed that the bucket algorithm performed much worse than the

other two algorithms in all cases. More interesting was the comparison between the MiniCon

algorithm and the inverse-rules algorithm. In all cases the MiniCon algorithm outperformed the

inverse-rules algorithm, though by differing factors. In particular, the performance of the

inverse-rules algorithm was very unpredictable. The problem with the inverse-rules algorithm is

that it discovers many of the interactions between the views in its second phase, and the

performance in that phase is heavily dependent on the order in which it considers the query

46

subgoals. However, since the optimal order depends heavily on the interaction with the views, a

general method for ordering the subgoals in the query is hard to find. Finally, all three

algorithms are limited in cases where the number of resulting rewritings is especially large since

a complete algorithm must produce a possibly exponential number of rewritings.

Although we have shown how to expect MiniCon to behave in a large number of classes of

queries and views, in order to draw conclusions for how MiniCon would perform in a real data

integration application we would need access both to the query workload and to the data

sources. In particular, while we expect that many sources would have existential variables and

thus lead to faster query rewriting, we would need to do a thorough investigation.

3.5 Comparison Predicates
The effect of comparison predicates on answering queries using views is quite subtle. If the

views contain comparison predicates but the query does not, then the MiniCon algorithm

without any changes still yields the maximally-contained query rewriting. On the other hand, if

the query contains comparison predicates, then it follows from (Abiteboul et al. 1998) that there

can be no algorithm that returns a maximally-contained rewriting, even if we consider

rewritings that are recursive Datalog programs (let alone unions of conjunctive queries).

In this section we present an extension to the MiniCon algorithm that would (1) always find

only correct rewritings (2) find the maximally-contained rewriting in many of the common

cases in which comparison predicates are used, and (3) is guaranteed to produce the maximally-

contained rewriting when the query contains only semi-interval constraints, i.e., when all the

comparison predicates in the query are of the form x ≤ c or x < c, where x is a variable and c is

a constant (or they are all of the form x ≥ c or x > c). We refer to this algorithm as MiniCon IP.

We show experiments demonstrating the scale up of the extended algorithm. Finally, we show

an example that provides an intuition for which cases the algorithm will not capture.

In our discussion, we refer to the set of comparison subgoals in a query Q as I(Q). Given a set

of variables X , we denote by
X

I (Q) the subset of the subgoals in I(Q) that includes (1) only

variables in X or constants and (2) contains at least one existential variable of Q. Intuitively,

X
I (Q) denotes the set of comparison subgoals in the query that must be satisfied by the view if

47

X is the domain of a MCD. We assume without loss of generality that I(Q) is logically closed,

i.e., that if I(Q)╞ g, then g∈I(Q). We can always compute the logical closure of I(Q) in time that

is quadratic in the size of Q (Ullman 1989).

We make three changes to the MiniCon algorithm to handle comparison predicates. First, we

only consider MCDs C that satisfy the following conditions:

1. If x ∈ Vars(Q), φC(x) is an existential variable in hC(V) and y appears in the same

comparison atom as x, then y must be in the domain of φC.

2. If X is the set of variables in the domain of the mapping φC, then I(hC(V))╞ φC X(I) .

The first condition is an extension of Property 3.1, and the second condition guarantees the

comparison subgoals in the view logically entail the relevant comparison subgoals in the query.

Because of the second condition, the only subgoals in
X

I (Q) that may not be satisfied by V

must include only variables that φC maps to distinguished variables of V. As a result, such a

subgoal can simply be added to the rewriting after the MCDs are combined.

The second change is that we disallow all MCDs that constrain variables to be incompatible

with the variables they map in the query. For example, if a query has a subgoal x > 17 and a

MCD maps x to a view variable a, and a < 5 is in the view, then we can ignore the MCD.

The third change we make to the MiniCon algorithm is the following: after forming a

rewriting Q′ by combining a set of MCDs, we add the subgoal EC(g) for any subgoal of I(Q) that

is not satisfied by Q′.

Example 3.1: Consider a variation on our running example, where the

predicate year denotes the year of publication of a paper.

Q2(x) :- inSIGMOD(x), cites(x,y), year(x,r1), year(y,r2), r1 ≥ 1990, r2 ≤ 1985

V9(a,s1) :- inSIGMOD(a), cites(a,b), year(a,s1), year(b,s2), s2 ≤ 1983

V10(a,s1) :- inSIGMOD(a), cites(a,b), year(a,s1), year(b,s2), s2 ≤ 1987

Our algorithm would first consider V9 with the mapping {x a, y b, r1

s1, r2 s2}. In this case, the subgoal r2 ≤ 1985 is satisfied by the view, but r1

48

≥ 1990 is not. However, since s1 is a distinguished variable in V9, the

algorithm can create the rewriting:

Q2′(x) :- V9(x,r1), r1 ≥ 1990

When the algorithm considers a similar variable mapping to V10, it will notice

that the constraint on r2 is not satisfied, and since it is mapped to an existential

variable in V10, no MCD is created. □

Example 3.2: The following example provides an intuition for which

rewritings our extended algorithm will not discover. Consider the following

query and view:

Q3(u) :- e(u,v), u ≤ v

V11(a) :- e(a,b), e(b,a)

The algorithm will not create any MCD because the subgoal u ≤ v in the query

is not implied by the view. However, the following is a contained rewriting of

Q3.

Q3'(u) :- V11(u)

In general, in order to find a containment mapping in the presence of

comparison predicates, (Klug 1988) shows that we must find a mapping for

every ordering of the variables. For example, we must consider two different

containment mappings, depending on whether a ≤ b or a >b. In each of these

mappings, the subgoal e(u,v) may be mapped to a different subgoal. Our

algorithm will only find rewritings in which the target of the mapping for a

subgoal in the query is the same for any possible order on the variables. □

49

Chain queries with two distinguished
variables, 10 subgoals, and 5 variables

constrained

0

0.1

0.2

0.3

0.4

0 100 200 300 400

Number of Views

T
im

e
(i

n
 S

ec
o

n
d

s)

MiniCon
Algorithm

MiniCon IP
Algorithm

Figure 3.8: Experiments with the MiniCon algorithm and comparison predicates. The
query and view shapes are the same as in Figure 3.3. The graph shows that adding
comparison predicates does not appreciably slow the MiniCon algorithm, and the
additional views that can be pruned cause the algorithm to speed up overall.

Chain queries with all variables distinguished,
5 subgoals, and 15 variables constrained

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Views

T
im

e
(i

n
 S

ec
o

n
d

s)

MiniCon Algorithm

MiniCon IP Algorithm

Figure 3.9: Running times for the MiniCon algorithm and comparison predicates when all
of the variables in the views are distinguished

Figure 3.8 and Figure 3.9 show sample experiments that we ran on the extended algorithm in

the case of chain queries. In the experiments, we took the identical queries and views and added

50

a number of comparison subgoals of the form x < c or x > c to the queries under consideration

by MiniCon IP.

The experiments show that the same trends we saw without comparison predicates appear

here as well. In general, the addition of comparison predicates reduces the number of rewritings

because more views can be deemed irrelevant. This is illustrated in Figure 3.9 where all of the

variables in the views are distinguished and therefore without comparison predicates there

would be many more rewritings. However, since the comparison predicates reduce the number

of relevant views, the algorithm with comparison predicates scales up to a larger number of

views. In Figure 3.8, the number of rewritings is very small, but the addition of the overhead to

deal with comparison predicates does not appreciably slow the MiniCon algorithm.

3.6 Cost-Based Query Rewriting
The previous sections considered the problem of answering queries using views for the

context of data integration, where the incompleteness of the data sources required that we

consider the union of all possible rewritings of the query. In this section we show how the

principles underlying the MiniCon Algorithm can also be used for answering queries using

views in the context of query optimization (as in (Tsatalos et al. 1996) (Chaudhuri et al. 1995)),

and in the process, shed some light on query optimization with views. The fundamental

difference in this context is that we want the cheapest rewriting of the query using the views.

Since the views are assumed to be complete (i.e., include all the tuples satisfying their

definition) and since we are looking for an equivalent rewriting, we can limit ourselves to a

single rewriting.

The following example shows how considering cost affects the result of a rewriting

algorithm.

Example 3.3: Suppose we have the following query and views:

Q4(x,y) :- e1(x,y), e2(y,z), e3(z,x)

V12(a,b,c) :- e1(a,b), e2(b,c)

V13(d,e,f) :- e2(d,e), e3(e,f)

V14(g) :- e1(g,h), e3(i, g)

51

If the join of e1 and e3 is very selective, the cheapest rewriting of the query

may be the following (assuming the subgoals are joined from left to right):

Q4′(x,y) :- V14(x), V12(x,y,z), V13(y,z,x)

Here, the view V14 does not contribute to the logical correctness of the query,

but only to reducing the cost of the query plan. The MiniCon Algorithm would

not consider V14(x) because it would not create a MCD for V14, since Property

3.1 would not be satisfied. □

In general, the problem of answering queries using views in the context of query

optimization requires that we consider views for two different roles: the logical correctness of

the query, and the reduction in the cost of the rewriting. In fact, it is shown in (Chirkova et al.

2001) that the optimal query execution plan may include an exponential (in the size of the query

and schema) number of views in the second role, while it follows from (Levy et al. 1995) that

the number of views in the first role is bounded by the number of subgoals in the query.

We proceed in two steps. In Section 3.6.1 we show how the information captured in MCDs

can be used to improve the bottom-up dynamic-programming algorithm used in (Tsatalos et al.

1996) for query optimization using materialized views. However, the algorithm we describe in

Section 3.6.1 only considers views that contribute to the logical correctness of the rewriting, and

therefore may not produce the optimal rewriting. In Section 3.6.2 we show how we can augment

the resulting rewriting with cost-reducing views. Note that the approach we describe in Section

3.6.2 is inherently heuristic, and its goal is to avoid the exhaustive enumeration whose cost

(according to (Chirkova et al. 2001)) would be prohibitive.

3.6.1 Modifying GMAP to Consider MCDs
In the context of query optimization, we may have access to the database relations in

addition to the views. In order to uniformly treat database relations and views, we assume that

for every database relation E we define a view of the form EV (X) :- E(X) , where X is a

tuple of distinct variables. In our running example we will assume that we do not have access to

the database relations.

52

We first briefly recall the principles underlying the GMAP algorithm (Tsatalos et al. 1996),

and then describe how we modify it to exploit MCDs. The GMAP algorithm is a modification

of System-R style bottom-up dynamic programming, except that the optimizer builds query

execution plans by accessing a set of views, rather than a set of database relations. Hence, in

addition to the meta-data that the query optimizer has about the materialized views (e.g.,

statistics, indexes) the optimizer is also given as input the query expressions defining the views.

The GMAP algorithm begins by considering only views that can be used in a rewriting of

the query (e.g., pruning views that refer to relations not mentioned in the query or do not apply

necessary join predicates). The algorithm distinguishes between partial query execution plans

of the query and complete execution plans, that provide an equivalent rewriting of the query

using the views. The enumeration of the possible join trees terminates when there are no more

unexplored partial plans.

The GMAP algorithm grows the plans by combining a partial plan (using all join methods)

with an additional view. A partial plan P is pruned from further consideration if there is another

plan P′ such that (1) P′ is cheaper than P, and (2) P′ contributes the same or more to the query

than P. Informally, a plan P′ contributes more to the query than the plan P if it covers more of

the relations in the query and selects more of the attributes that are needed further up the query

tree.

Our algorithm precedes the join enumeration phase by the creation of MCDs, but it considers

only a subset of the views that were considered in the data integration context.

In our discussion, we use the following notation to make use of the variable mappings used

in procedure combineMCDs (Figure 3.2). Given a set of MCDs, C = C1, ...,Cl, we denote by

VtoQC, the set of atoms Ψ Ψ
l lC C C l CV (EC((Y))),...,V (EC((Y)))

1 11 , as defined in procedure

combineMCDs. VtoQC effectively creates a set of atoms of the heads of the views in C, such

that the atoms use the variables of Q whenever possible. Hence, VtoQC makes explicit exactly

which join predicates need to be applied between view atoms in the rewriting. So, in our

example, if C1 denotes the set of MCDs created for the views in the rewriting Q4', then VtoQ
1C

 is

V12(x,y,z), V13(y,z,x), V14(x).

Given a query Q and a set of views, V1, …, Vn, our algorithm proceeds as follows:

53

1. We prune from further consideration any view V for which there does not exist a

variable mapping Ψ from the variables of V to the variables of Q, such that for every

subgoal g ∈ V, Ψ(g) is a subgoal in Q. (This condition is similar to that of a

containment mapping (Chandra et al. 1977), except that we do not require that Ψ

map the head of V to the head of Q.) Views that do not satisfy this condition cannot

be part of an equivalent rewriting of Q using the views. In our example, if we also

had a view defined as:

V15(m,n) :- e1(m,n), e4(m)

then we would prune V15 because it cannot be part of an equivalent rewriting of Q

(the subgoal e4 cannot be mapped to Q).

2. With the views selected in the first step, we construct the MCDs as described in

Section 3.3.1.1. In our example we would create MCDs for V12 and V13, but we do

not create a MCD for V14 because it does not satisfy Property 3.1.

3. We now begin the bottom-up construction of candidate solutions. A candidate

solution is a query execution plan over the views, which may either be a partial or

complete plan for the query.2

a. For the base case, we start with plans that access a single view. Specifically, for

every MCD C, we create the atom VtoQ{C}. We then select the best access path

to (the single atom in) VtoQ{C}. In our example, we create the atoms V12(x,y,z)

and V13(y,z,x).

b. With every candidate solution P, we associate a subset of the subgoals of the

query, denoted by PG. Intuitively, this set specifies which subgoals in the query

are covered by the solution P, and this information is gleaned from the MCDs.

In the base case, the set PG associated with the candidate solution constructed

for the view in MCD C is GC.

2 We describe the algorithm for the case where we construct only left-linear trees, but the

generalization to arbitrary bushy trees is straightforward.

54

We combine a candidate solution P with a candidate solution (of size 1) P'

only if the union of PG and P'G contains strictly more subgoals than either PG or

P'G. Using the information in PG and P'G enables us to significantly prune the

number of candidate solutions we consider compared to the GMAP algorithm.

For example, suppose our example also included the view:

V16(k,l) :- e1(k,l) and we had a partial solution, P, that included the single atom

V12(x,y,z). Then, we would not combine P with V16(x,y) since V16 does not

cover any more subgoals than V12. On the other hand, we would consider

adding V13(y,z,x) to P since V13 covers e3, which is not covered by P, and P

covers e1 which is not covered by V13.

Given the views in P (whose corresponding MCDs are C) and the view V in

P', whose MCD is CV, we compute ∪ V{ { C }}VtoQ C . This tells us exactly which

join predicates need to be applied between P and P' (specifically, whenever P

and P' share a variable, a join predicate needs to be applied). We will try

combining P and P' using every possible join method for every join predicate

that needs to be applied.

c. As in the GMAP algorithm, we distinguish complete solutions, which

correspond to equivalent rewritings of the query using the views, and partial

solutions which can possibly be extended to complete solutions. Furthermore,

as in GMAP, we compare every pair of candidate solutions P and P'. If P is both

cheaper than P' and contributes as much or more to the query, then we prune P'.

For example, if we had two candidate solutions P1, which consists of V12(x,y,z)

and the candidate solution P2 which consists of V16(x,y), if P1 is cheaper than

P2 we would prune P1 because P1 is both cheaper than P2 and contributes more

than P1. However, if P2 is cheaper than P1, we would prune neither candidate

solution because P1 contributes more than P2.

d. We terminate when there are no new combinations of partial solutions to be

explored.

55

3.6.2 Adding Cost-Reducing Views
As stated earlier, the algorithm in Section 3.3 may not produce the cheapest plan because it

only considers views that are needed for the logical correctness of the plan, and not cost-

reducing views. (Note, however, that the algorithm will always find a plan if one exists even

when we do not have access to the database relations). In this section we describe a heuristic

approach to augmenting the plan produced in the previous section with cost-reducing views.

Informally, we consider each cost-reducing view in turn, and try to place it in the places in the

plan where it may have an effect. For example, consider the view V14(x) in our example. This

view can only be useful if it is placed before the atom V12(x,y,z) (in order to reduce the number

of values of x) or after the atom V12(x,y,z) (to reduce the size of the join with V13(y,z,x).

However, V14(x) is useless if placed after V13(y,z,x).

We denote the plan produced by the algorithm in the previous section by Pmg. Recall that we

are considering left-linear plans in our description. We create cost-reducing view atoms as

follows:

1. As in the previous section, we consider only views that can be part of an equivalent

rewriting of the query using the views.

2. We create MCDs for these views, except that we do not require the MCDs to satisfy

Property 3.1. Denote the resulting MCDs by C1, ...,Ck. In our example we would create

MCDs for V12(x,y,z), V13(y,z,x), V14(x).

3. Let the set of MCDs corresponding to the views in the plan Pmg be Cmg. For every MCD

Cj, 1 ≤ j ≤ k, we compute ∪mg j{ { C }}VtoQ C , and we denote by Uj the atom corresponding to

Cj in ∪mg j{ { C }}VtoQ C (recall that ∪mg j{ { C }}VtoQ C computes an atom for every MCD). We

will now try to insert the atoms U1, ...,Uk in the plan Pmg.

4. With every join operation in Pmg we can associate a set of variables, specifically, the

variables that occur in the sub-tree of the join operator. The positions in Pmg that are

relevant to the atom Uj are the join operators beginning with the first operator whose

56

variable set includes any of the variables in Uj, and ending with the first join operator

that includes all the variables in Uj.

For every j, 1 ≤ j ≤ k, we proceed as follows. We consider the cheapest plan P'mg,

that results from inserting Uj in one of the positions relevant to Uj. If a variable in Uj

appears in the left-most leaf of the join tree, then we also consider the plan in which Uj

is the left child of the first join operator in the plan. If Pmg is cheaper than Pmg, we

replace Pmg by the plan P'mg.3

5. We continue iterating through the cost-reducing view atoms until no change is made to

the resulting plan.

In our example, we would consider placing the atom V14(x) as the first or second left-most

leaf of the tree (i.e., either before V12(x,y,z) or immediately after it).

It is important to note that our algorithm may still not obtain the cheapest plan. The main

reason is that we are beginning from the plan Pmg, and only modifying it locally, while the

cheapest plan may actually be an augmentation of a plan that was found to be more expensive

than Pmg in the cost-based join enumeration. It is possible to consider applying our algorithm to

several plans from the cost-based join enumeration, rather than only to the cheapest one.

However, in general, obtaining the cheapest plan may involve a prohibitively expensive search.

3.7 Related Work
Algorithms for rewriting queries using views are surveyed in (Halevy 2001). Most of the

previous work on the problem focused on developing algorithms for the problem, rather that on

studying their performance. In addition to the algorithms mentioned previously, algorithms have

been developed for conjunctive queries with comparison predicates (Yang et al. 1987), queries

and views with grouping and aggregation (Cohen et al. 1999; Grumbach et al. 1999; Gupta et al.

3 For ease of exposition, we chose to describe a relatively conservative condition on the

positions in which we can insert a cost-reducing view atom. Several further optimizations are

possible the most obvious of which is that we would not insert a cost-reducing view atom in a

plan after all the joins performed in the view have already been performed in the plan.

57

1995; Srivastava et al. 1996), queries over semi-structured data (Calvanese et al. 1999;

Papakonstantinou et al. 1999), and OQL queries (Florescu et al. 1996). The problem of

answering queries using views has been considered for schemas with functional and inclusion

dependencies (Duschka et al. 1997c; Gryz 1998), languages that query both data and schema

(Miller 1998), and disjunctive views (Afrati et al. 1999). Clearly, each of the above extensions

to the basic problem represents an opportunity for a possible extension of the MiniCon

algorithm. Two works (Abiteboul et al. 1998; Grahne et al. 1999) examine the complexity of

finding all the possible answers from a set of view extensions. They show that if the views are

assumed to be complete, then finding the maximal set of answers is NP-hard in the size of the

data. Hence, finding a maximally-contained rewriting may not be possible if we consider query

languages with polynomial data complexity. Mitra (Mitra 1999) developed a rewriting

algorithm that also captures the intuition of Property 3.1, and thus would likely lead to better

performance than the bucket algorithm and the inverse-rules algorithm. He also considered an

optimization similar to our method for removing redundant view subgoals.

Several works discussed extensions to query optimizers that try to make use of materialized

views in query processing (Afrati et al. 2001; Chaudhuri et al. 1995; Tsatalos et al. 1996) (Bello

et al. 1998; Popa et al. 2000; Zaharioudakis et al. 2000). In some cases, they modified the

System-R style join enumeration component (Chaudhuri et al. 1995; Tsatalos et al. 1996), and

in others they incorporated view rewritings into the rewrite phase of the optimizer (Popa et al.

2000; Zaharioudakis et al. 2000). These works showed that considering the presence of

materialized views did not negatively impact the performance of the optimizer. However, in

these works the number of views tended to be relatively small. In (Afrati et al. 2001) the authors

consider the problem of finding the most efficient rewriting of the query using a set of views, in

the context of query optimization. The paper considers three specific cost models, and for each

describes an algorithm that produces the cheapest plan. The algorithm we describe in Section

3.6 is independent of a particular cost model, and can incorporate the models described in

(Afrati et al. 2001). In addition, our algorithm can also handle cost models that consider relation

sizes, special orders and specific join implementations, as done in traditional query optimizers.

58

In (Popa et al. 2000), the authors consider a more general setting where they use a constraint

language to describe views, physical structures and standard types of constraints.

A commercial implementation of answering queries using views is described for Oracle 8i in

(Bello et al. 1998). Their algorithm works in two phases. In the first phase, the algorithm applies

a set of rewrite rules that attempt to replace parts of the query with references to existing

materialized views. The result of the rewrite phase is a query that refers to the views. In the

second phase, the algorithm compares the estimated cost of two plans: the cost of the result of

the first phase, and the cost of the best plan found by the optimizer that does not consider the

use of materialized views. The optimizer chooses to execute the cheaper of these two plans. The

main advantage of this approach is its ease of implementation, since the capability of using

views is added to the optimizer without changing the join enumeration module. On the other

hand, the algorithm considers the cost of only one possible rewriting of the query using the

views, and hence may miss the cheapest use of the materialized views.

3.8 Conclusions
This chapter makes two important contributions. First, we present a new algorithm for

answering queries using views, and second, we present the first experimental evaluation of such

algorithms. We began by analyzing the two existing algorithms, the bucket algorithm and the

inverse-rules algorithm, and found that they have significant limitations. We developed the

MiniCon algorithm, a novel algorithm for answering queries using views, and showed that it

scales gracefully and outperforms both existing algorithms. As a result of our work, we have

established that answering queries using views can be done efficiently for large-scale problems.

Finally, we described an extension of our algorithm to handle comparison predicates, and

showed that the techniques underlying the MiniCon algorithm are also useful for the context of

cost-based query optimization using views.

We close by briefly discussing another important extension of the MiniCon algorithm. In

data integration applications, where views represent data sources, we often have limited access

patterns to the data. For example, if Amazon.com has a relation Book(title, price), we cannot ask

for all tuples in the relation. Instead, we need to provide a value for the title in order to get a

price. The problem of answering queries using views in this context has been considered in

59

(Duschka et al. 1997c; Kwok et al. 1996; Lambrecht et al. 1999; Rajaraman et al. 1995). In

(Rajaraman et al. 1995) it is shown that when we consider equivalent rewritings, the rewriting

may be longer than the query. In (Duschka et al. 1997c) it is shown that if we are looking for

the maximally-contained rewriting, it may have to be a recursive Datalog program over the

views.

The MiniCon algorithm can be adapted in a straightforward fashion to the presence of

binding patterns. Specifically, we can follow the same strategy of (Duschka et al. 1997c), where

inverse rules were augmented by domain rules. In our case, we produce the rewriting by the

MiniCon algorithm by first ignoring the binding pattern limitations. Then we add domain rules,

and augment the rewriting by adding domain subgoals where necessary.

Hence, given that the mediated schema is related to the source schema through LAV

mappings, MiniCon can provide a fast method of rewriting the queries. In Chapter 4, Chapter 5,

and Chapter 6 we consider how mediated schemas are created.

60

Chapter 4

Creating a Mediated Schema

4.1 Introduction
In Chapter 3 we discussed how to answer queries when the mediated schema is related to the

source schemas using Local-As-View (LAV) mappings. We assumed that the mediated schema

had been created in some other process. In this chapter, we consider how to create the mediated

schema and the mappings to the source schemas for data integration.

Mechanisms for creating a mediated schema out of sources have previously been studied.

Such projects generally focus on how to resolve conflicts such as synonyms and homonyms in

relation names or how to ensure that the resulting schema is valid in a particular data model –

e.g., SQL. Batini, Lenzerini, and Navathe provide a survey of such methods (Batini et al. 1986).

Buneman, Davidson, and Kosky (Buneman et al. 1992) provide a general theory of what it

means to merge two source schemas to create a third schema. Others have approached the

problem from a more pragmatic point of view, such as the Database Design and Evaluation

Workbench (Rosenthal et al. 1994) that allow users to manipulate schemas, including

combining multiple views into one schema. Still others have created formal criteria for when

two schemas consist of the same information, both for data integration and other applications

(Hull 1984; Kalinichenko 1990; Miller et al. 1993). But none of these papers have tackled the

problem we describe in this chapter: given two schemas, how should we create a mediated

schema and also the mappings from the mediated schema to the sources.

Most research on querying data integration systems, such MiniCon (see Chapter 3), assumes

that the mediated schema has been created elsewhere and the mappings from the mediated

schema to the source schemas can be expressed in a particular language such as LAV or GAV.

However, systems constructed by a priori choosing GAV or LAV as the mapping language

restrict how the sources can be related to the mediated schema. This means that the mediated

schema may be less than ideal, since a mediated schema can only include information that can

be mapped to the data sources. For example, it might mean that the mediated schema has

61

information duplicated because there is no single representation of that information in the

mediated schema that can be mapped to the two representations in the two overlapping sources.

Others have previously noted that LAV and GAV have different expressive power, and

indeed are incomparable if no constraints are present in the mediated schema (Calì et al. 2002).

As well, additional, richer mapping languages such as GLAV (Friedman et al. 1999) and BAV

(McBrien et al. 2003) have been created. However, previous work has not examined how the

expressive power of relationships between elements in the source schemas affects the

expressive power required in the mediated schema to source schema mappings.

Regardless of how the mediated schema is created, the main goal of data integration is to

have users be able to query multiple databases without knowing where the data comes from.

Hence it is imperative that there be a common representation in the mediated schema of

concepts that come from different data sources and overlap. Thus, building the mediated

schema requires knowing how the source schemas are related to one another.

Example 4.1: In a data integration system helping passengers make airline

reservations, the mediated schema should include a unified representation of

airfares, regardless of whether the airfare came from the travel agent websites

Travelocity, or Expedia, or from an airline website, or from some other source;

the user just wants to find the cheapest fare, regardless of its source. In

addition, the mediated schema may contain concepts having no direct

correlation in any other local source. For example, if Travelocity gives the gate

information about a specific flight and Expedia does not, we may still wish to

include the gate information in the airfare representation. □

We propose that to create a mediated schema and the mapping from mediated schema to

source schemas, we must first understand the relationships between the sources and how this

drives the mediated schema creation. Our goal in this chapter is to study mediated schema

creation based on the above observations. We describe a simple version of the problem: Given

two schemas, E and F, and a mapping MapE_F that specifies how E and F are related to one

another, create a mediated schema G and mappings MapG_E and MapG_F where the mappings can

62

be used to translate queries over G into queries over E and F. How to find how two schemas are

is another problem, called schema matching; it is a major topic of ongoing research and is not

covered in this thesis; see (Rahm et al. 2001) for a recent survey and (He et al. 2003), (Kang et

al. 2003) and (Dhamankar et al. 2004) for examples of work since then. In this chapter we

concentrate only on data integration, though this work could be extended to other data

management problems.

Section 4.2 describes mediated schema creation for data integration of relational schemas.

Section 4.3 refines the problem for the specific case where MapE_F is a conjunctive mapping.

Section 4.4 describes alternate definitions and metrics. Section 4.5 discusses extensions to the

problem for relational schemas, including Section 4.5.1 which focuses on creating a mediated

schema for more than two sources. Section 4.6 discusses LAV and GAV as choices for data

integration systems in light of this work. Section 4.7 concludes.

4.2 Generic Mediated Schema Creation
In this section, we describe relational mediated schema creation for data integration without

pinning down the language for the mapping. That is, given two relational source schemas, E and

F, what other inputs are needed to create the mediated schema, and what kinds of properties

would we like the mediated schema to have? Allowing overlapping concepts in the mediated

schema to be accessed in the same fashion is a matter of convenience – if the goal were simply

to preserve all the information from the input sources, then the mediated schema could be

simply a union of the source schemas. Because of this, traditional metrics for schema design –

such as ensuring that the schema is in a normal form – are orthogonal to this issue, so we must

create a new set of criteria. Because we want these correctness criteria to be as independent of

the type of mapping between sources as possible, we define the correctness criteria first for a

very general class of mappings. In later sections, we build on this definition for the specific case

of a conjunctive mapping relating E and F to allow us to see what the semantics of a specific

mapping imply for the mediated schema and the mappings from the mediated schema to the

source schemas.

Recall the definition of a relational schema from Definition 2.1. We define a function Order

that describes the position of each attribute in its relation, that is, given a relational schema Σ

63

Order(arj) = j for all r ∈ Σ and arj ∈ attributesr. We also define a function n that maps each

element in Σ (e.g., relation or attribute) into a name. We occasionally abuse notation by equating

a schema object with its name.

Notice that by “relation,” we mean a schema for a relation. We use the word “state” to refer

to a set of tuples that conforms to a relation (i.e. its schema). Thus, we define the state of a

relation r (or relation state) to be a set or bag of m-tuples, where r has m attributes. The state of

a schema is a set of states of relations, one relation state for each relation in the schema. For a

relational schema Σ, I(Σ) is the set of all states of Σ. Thus, each σΣ ∈ I(Σ) denotes a state of Σ. For

each relation r ∈ Σ, we use πr(σ) to denote the state of r in schema state σ (i.e., the projection of

σ on r).

Given that we do not consider integrity constraints, states of relational schemas are closed

under union. Formally, given schema Σ, if σΣ1 ∈ I(Σ) and σΣ2 ∈ I(Σ), then σΣ1 ∪ σΣ2 ∈ I(Σ). Since

a schema is a set of relations, taking the union of two states σΣ1 and σΣ2 of a schema Σ amounts

to taking the union of the states of the relations in σΣ1 and σΣ2. That is, for each relation r in Σ,

πr(σΣ1 ∪ σΣ2) = πr(σΣ1) ∪ πr(σΣ2).

Without loss of generality, we assume that the relation names in different schemas are

disjoint. That is, given relations r1 and r2 of schemas Σ1 and Σ2 respectively, we assume that r1

and r2 have different names. This assumption can be enforced simply by assigning a unique

name to each schema and appending the unique schema name to the name of each relation in

that schema. It follows that if Σ1 and Σ2 are schemas, then Σ1 ∪ Σ2 is a (well-formed) schema

that consists of the union of the relations of Σ1 and Σ2. Since every two schemas are disjoint, we

can represent the state of the union of two schemas by a pair of states, one for each schema in

the union. That is, I(Σ1∪Σ2) = I(Σ1) × I(Σ2), so ∀σΣ1∈I(Σ1) ∀σΣ2 ∈I(Σ2), (σΣ1, σΣ2) ∈ I(Σ1 ∪Σ2).

We are now ready to define the information provided as input to the process of mediated

schema creation. Given two relational source schemas, E and F, the goal is to create a mediated

schema G over E and F. In addition to E and F, two other inputs are required: (1) how concepts

in E and F overlap and (2) how concepts independently of interest in E and F should be

expressed in the mediated schema along with the overlapping information. We express (1) as a

64

query over E and F that returns the same concept from E or F. We call such a query an

intersection, which we define in Definition 4.2. We express (2) as queries over E and F. Each

such query is called a component and is defined in Definition 4.3. Although intersections and

components are both expressed as queries, we give them different names to clarify their

different roles. We do not want to restrict our definitions of correctness to a particular query

language. Instead we define the notion of a generic query which is an arbitrary function over a

given relational schema, and therefore can be specialized to any concrete query language.

Definition 4.1: (Generic Query). A generic query Q over a relational schema Σ

is a function I(ΣQ) I(T) where ΣQ is the set relations in Q and a subset of the

relations in Σ and T is a relation (which may not be in Σ), called the target

relation for Q. Given a state σ′ ∈ I(ΣQ), the value returned by generic query Q on

σ′ is Q(σ′). If σ ∈ I(Σ), then we define Q(σ) to be equal to Q(ΣQ
())π σ . □

For example, in a conjunctive query, the head of the query is the target, T, the relations in

the body of the query are ΣQ, and the query’s conjunctive formulas define the function I(ΣQ)

I(T).

Definition 4.2: (Intersection). Let schema Σ = Σ1 ∪…∪ Σn. An intersection is a

generic query QN = qn1 ∪ … ∪ qnm s.t. m > 1 and each generic query qni is over

some schema Σj, 1 ≤ j ≤ n and the target relations of all qni are the same. Given

a state σ ∈ I(Σ), the state of an intersection QN over Σ is QN(σ). □

Example 4.2: an intersection for Undergrad may be described as follows, where

UBCUgrad and UWUgrad are in different schemas:

Undergrad(FirstName,LastName) :-UBCUgrad(FirstName,LastName,year), year < 5

Undergrad(FirstName, LastName) :- UWUgrad(FirstName,LastName, major) □

Definition 4.3: (Component). A component of a schema Σ is a generic query QC

over Σ. Given a state σ ∈ I(Σ), the state of a component QC of is QC(σ). □

65

Example 4.3: a component may be used to express that the concept “seniors at

UBC” should be represented separately in the meditated schema even though

that information is not explicitly represented in the input schemas:

UBCSenior(FirstName,LastName):-UBCUgrad(FirstName,LastName,year), year=4□

Intersections and components may overlap in the relations they contain; for example, a

relation may appear in the domain of both an intersection and a component. For example,

Undergrad and UBCSenior in Example 4.2 and Example 4.3 both use the relation UBCUgrad.

When this occurs, we want to eliminate the redundancy of the overlap to produce a minimal

output schema, G. Therefore we require a formal way to describe that overlap, which we do

using the concept of subsumption (Definition 4.4) to compare the states and schema definitions

of intersections and components.

Definition 4.4: (Generic query subsumption). Let component QC and

intersection QN be defined over the same schema Σ and have target relations

name TC and TN respectively. Suppose TC and TN have the same name, and

attributesTC ⊆ attributesTN. Then QC is subsumed by QN if for all σ ∈ I(Σ), QC(σ)

⊆ π(QN(σ)). □

Note that the definition of subsumption differs from the notion of containment because we

allow for QC(σ) to be a projection of QN(σ).

Example 4.4: The component:
Grad(FirstName,LastName) :-UBCGrad(FirstName, LastName)

is subsumed by the intersection below:
Grad(FirstName,LastName):-UWGrad(FirstName,LastName, Office)

Grad(FirstName,LastName):-UBCGrad(FirstName,LastName) □

At this point we have all of the formalism required to describe the input. However, the input

alone is not enough to solve the problem; we must define a set of criteria telling what the output

should be. The output is the mediated schema G and how G is related to each of the source

66

schemas. To relate G to the source schemas, we rely on the definition of a mapping in Definition

4.5.

Definition 4.5: (Mapping). A mapping MapΣ1_Σ2 over schemas Σ1 and Σ2 is an

expression that defines a subset of I(Σ1) × I(Σ2). 4 □

Definition 4.5 is broader than some of the common definitions of mappings. Hull (Hull

1986) would define a mapping MapΣ1_Σ2 over schemas Σ1 and Σ2 as a transformation from I(Σ1)

 I(Σ2). In many cases a Hull mapping suffices. However, as we show later sometimes we

require the additional expressiveness in Definition 4.5.

Consider a relation in the mediated schema that pulls information from more than one source

relation. The reason for combining those source relations into one mediated schema relation is

because we have identified an intersection or a component, QC, over the source relations that

characterize information that should be put together. The mediated schema relation may contain

more attributes than those required by that intersection or component over the source relations

because there may be other intersections or components over other sets of source relations that

overlap QC. We are interested in easily accessing each intersection or component. Thus, given a

component or intersection defined by a generic query QC, the mediated schema should have a

relation over which one can write a generic query Q that can be rewritten as an equivalent

generic query Q' over the local sources. We call this a canonical query for QC. We express this

formally in Definition 4.6. Note that we do not require that the canonical query be unique.

Canonical queries are defined for any generic query over E ∪ F, not just components or

intersections.

4 MapΣ1_Σ2 is a function if for every state σ1 ∈ I(Σ1) there is at most one state σ2 ∈ I(Σ2) s.t.

<σ1, σ2> ∈ I(MapΣ1_Σ2). If MapΣ1_Σ2 and its inverse are functions, then MapΣ1_Σ2 is injective.

MapΣ1_Σ2 is surjective if ∀σ2 ∈ I(Σ2), ∃ σ1 ∈ I(Σ1) s.t. <σ1, σ2> ∈ I(MapΣ1_Σ2). MapΣ1_Σ2 is total if ∀

σ1 ∈ I(Σ1), ∃ σ2 ∈ I(Σ2) s.t. <σ1, σ2> ∈ I(MapΣ1_Σ2). Examples of the definitions are included in

Appendix B.

67

This situation is somewhat backwards from the normal situation. We are trying to ensure that

we can capture all values for E ∪ F in G rather than that queries over G will get all values from

E ∪ F. Hence we restate certain answers (Definition 2.7) for our situation to avoid confusion:

Given an instance σEF ∈ I(ΣEF), a tuple t is a certain answer for a generic query Q over G w.r.t.

MapG_EF if t is an element of Q(σG) for every σG s.t. σEF s.t. MapG_EF(σG, σEF).

Definition 4.6: (Canonical queries). Let QN be a generic query over schema Σ2

with target T ; QN may be a component, an intersection, or any other query over

Σ2. Let MapΣ1_Σ2 be a mapping over schemas Σ1 and Σ2. We say that Q is a

canonical query for generic query QN over schema Σ1 and mapping MapΣ1_Σ2 if

(1) the body of Q contains exactly one relation and (2) ∀ σΣ1∈ I(Σ1), ∀ σΣ2 ∈

I(Σ2) such that MapΣ1_Σ2(σΣ1, σΣ2), Q(σΣ1) computes the certain answers to

QN(σΣ2). □

Example 4.5: Assume the intersection defining Undergrad in Example 4.2. If

MergedUndergrad is the name of a relation in the mediated schema, and

querying MergedUndergrad using the query Q yields all of the certain answers

for Undergrad, then Q is a canonical query for Undergrad. □

We only want to allow relations in the input to be represented by the same relation in the

mediated schema if they are related through the mapping. To define this formally we rely on the

concept of connected relations in Definition 4.7. In Definition 4.8 we define a partial order on

schemas to allow us to compare two schemas:

Definition 4.7: (Connected relations). Two relations r1 and r2 are connected in

a set of generic queries M if

• r1 ∈ ΣQ and r2 ∈ ΣQ for some generic query Q ∈ M over ΣQ, or

• r1, r3 ∈ ΣQ1 and r2, r4 ∈ ΣQ2 for some generic queries Q1, Q2 ∈ M

and r3 and r4 are connected. □

68

Example 4.6: Suppose we had the intersection for Undergrad in Example 4.2

and the following component for UWStudent:

UWStudent(FirstName,LastName,Major) :- UWUgrad(FirstName,LastName,major)

UWStudent(FirstName,LastName,Major) :- UWgrad(FirstName,LastName, major)

UWGrad is connected to UBCUgrad because UWGrad appears with UWUgrad in

the component UWStudent and UWUgrad appears with UBCUgrad in the

intersection Undergrad. □

Definition 4.8: (Partial order of schemas). We define a partial order << over

schemas as follows: Given two schemas Σ1 and Σ2, we define that Σ1 << Σ2 if

the relations of Σ1 are a subset of the relations in Σ2 and for each relation r1 ∈

Σ1 and r2 ∈ Σ2 s.t. ns1 = ns2, attributess1 ⊆ attributess2. (Buneman et al. 1992) □

Given these definitions, we define the mediated schema creation problem as follows:

Definition 4.9: (Mediated schema creation problem). Given E, F, INT and

COMP, where INT is a set of intersections over E and F and COMP is a set of

components over E and F, produce G, MapG_E, and MapG_F satisfying Mediated

Schema Criteria (MSCs) 1-5 (below) where G is a schema, MapG_E is a mapping

over G and E, and MapG_F is a mapping over G and F. □

To help us define MSC 1-5, we define a mapping MapG_EF that represents the union of MapG_E

and MapG_F. Let schema EF = E ∪ F. Recall that a state σEF ∈ I(EF) is a pair (σE, σF), where σE ∈

I(E), σF ∈ I(F). We define MapG_EF = {(σG, (σE, σF)) ∈ I(G) × (I(E) ×I(F)) | (σG, σE) ∈ MapG_E and (σG,

σF) ∈ MapG_F}; in some sense, MapG_EF represents the union of MapG_E and MapG_F. We are now

ready to define the Mediated Schema Criteria (MSCs) as follows. We first define each one

briefly and then examine each one in more detail:

MSC 1: Completeness: G is complete. That is, there are total, injective, functional

mappings from I(E) to I(G) and from I(F) to I(G).

MSC 2: Intersection accessibility: For every intersection QN in INT, there exists a

canonical query for QN over G and MapG_EF.

69

MSC 3: Component accessibility: For every component QC in COMP not subsumed by

any intersection in INT, there exists a canonical query for QC over G and

MapG_EF.

MSC 4: Connectivity required: For every generic query Q:I(ΣQ) I(T) over EF where

the relations in Q = EF' ⊆ EF and |EF' | > 1, if there is a canonical query for Q

over G and MapG_EF then every pair of relations in ΣQ is connected in MapE_F.

MSC 5: Minimality: G is a minimal schema that satisfies MSCs 1-4. That is, there

exists no G' satisfying MSCs 1-4 such that

1. G' << G or |G' | < G (i.e., G' contains fewer relations than G)

2. ∀ relations g ∈ G ∃/ sets of attributes p1 ⊆ attributesg, p2 ⊆

attributesg s.t. p1 ∩ p2 = ∅ and ∀ σG ∈ I(G) πp1(πg(σG)) ⊆

πp2(πg(σG))

We now describe each MSC in more detail. We begin the discussion of each MSC by

providing its label and then quoting the full text of the MSC.

MSC 1: Completeness: “That is, there are total, injective, functional mappings from I(E) to

I(G) and from I(F) to I(G).” Information capacity is a metric describing when information can be

preserved in applications that span multiple schemas (Hull 1986). Miller, Ioannidis, and

Ramakrishnan (Miller et al. 1993) show that data integration requires (1) the ability to query the

source schemas E and F from the mediated schema G and (2) the ability to view through G all

tuples stored under E and F. They show that these goals in turn require that G dominates EF –

that there exists an information capacity preserving mapping from EF to G. An information

capacity preserving mapping M: I(EF) I(G) must be total, injective, and functional. Since E and

F are disjoint schemas, there is a total, injective function from E ∪ F into G if MapE_G and MapF_G

are total, injective functions. Hence completeness is equivalent to ensuring that the information

capacity required by data integration – G dominates EF – is preserved. The notion of

completeness in creating a merged or mediated schema is common, not just for information

capacity but in other generic algorithms such as the specification by Buneman, Davidson, and

Kosky (Buneman et al. 1992).

70

MSC 2: Intersection accessibility: “For every intersection QN in INT, there exists a

canonical query for QN over G and MapG_EF. MSC 2 ensures that overlapping information can be

accessed uniformly.” For example, in Example 4.1, we would define an intersection of

Travelocity and Expedia that includes airfare information. In this case, MSC2 would require

that there is a canonical query able to provide information about airfares, regardless of whether

they come from Travelocity or Expedia.

MSC 3: Component accessibility: “For every component QC in COMP not subsumed by any

intersection in INT, there exists a canonical query for QC over G and MapG_EF.” MSC 3 ensures

that additional non-overlapping information described by a component is expressed in a single

relation. For example, in representing a common concept of "student" in the mediated schema

when the source schemas only consist of relations for "grad student" and "undergrad student",

the user may wish to include the office number of the graduate students in the student

representation, even though there is no direct correlation between the grad and undergrad

students and undergrad students do not have office numbers. A component corresponds to the

notion of being a semantically necessary relationship (Rosenthal et al. 1994) – a concept that the

user would like to have easy access to, but does not necessarily alter the information content of

the schema. Because intersections and components may overlap, they may be defined in the

same relation in G. Since an intersection is required to return information from all relevant

sources, if there is an intersection that subsumes a component, the component may not be able

to be retrieved separately from the intersection. Hence MSC 3 applies only to components that

are not subsumed by an intersection.

MSC 4: Connectivity required: “For every generic query Q:I(ΣQ) I(T) over ΣQ ⊆ EF

where |ΣQ | > 1, if there is a canonical query Q′ for Q over ΣQ′ ⊆G and MapG_EF then every pair of

relations in ΣQ′ is connected in MapE_F.” MSCs 2 and 3 ensure that concepts defined in MapE_F are

not broken apart in G. By contrast, MSC 4 ensures that attributes in E and F should be

represented by the same relation of G only if the input requires it. MSC 4 ensures this by

requiring that the relations in EF be connected, which allows relations in related components or

intersections to be included in the same relation in G. To determine what concepts in EF are

being related to one another in G, we see what queries over EF we can answer by using a single

relation in G – a canonical query.

71

The condition works as follows. We want to allow easy querying in G to each relation in EF,

particularly since MSC 1 requires completeness. Therefore we restrict our consideration of what

queries over EF should not be easily accessible in G to those queries that are over more than one

relation in EF. The intuition for the rest of the statement is that there is a canonical query for a

generic query Q only if Q is either a projection of or contained in an intersection or component,

i.e., there is a reason for them to be related in G. MSC 4 specifies this intuition more generically

and succinctly without referring to either projections or containment of queries by relying on the

definition of connected relations (Definition 4.7).

MSC 5: Minimality: “G is a minimal schema that satisfies MSCs 1-4. That is, there exists

no G' satisfying MSCs 1-4 such that (1) G' << G or |G' | < G (i.e., G' contains fewer relations than

G), and (2) ∀ relations g ∈ G ∃/ sets of attributes p1 ⊆ attributesg, p2 ⊆ attributesg s.t. p1 ∩ p2 = ∅

and ∀ σG ∈ I(G) πp1(πg(σG)) ⊆ πp2(πg(σG)). ” We begin by considering the first requirement. In

addition to requiring that there be no schema G' << G satisfying the MSCs, we require that there

is no schema G' satisfying the MSCs with fewer relations than G because we wish to ensure that

concepts are split into as few relations as possible. The partial order (<<) alone does not

guarantee this. The notion that a mediated schema must not include extraneous information is

also common in mediated schema creation algorithms such as those surveyed in (Batini et al.

1986) and the generic merged schema creation algorithm of (Buneman et al. 1992). The second

bullet ensures that no relation in E or F is represented in two different ways in the same relation

in G.

4.3 Creating a Relational Mediated from Conjunctive Mappings
Section 4.2 gives correctness criteria for creating a mediated schema in data integration with

respect to an arbitrary query language that satisfies the definition of a generic query (Definition

4.1). We now consider the more specific case of conjunctive mappings. We refine the case to

conjunctive mappings to allow a thorough analysis of what the semantics of a particular type of

mappings means for both the mediated schema and the mappings from the mediated schema to

the source schemas. Section 4.3.1 defines conjunctive mappings. Section 4.3.2 refines the MSCs

for conjunctive mappings. Section 4.3.3 defines G, MapG_E and MapG_F that satisfy the

72

requirements in Section 4.3.2, and Section 4.3.4 proves that the requirements are indeed

satisfied.

4.3.1 Conjunctive Mappings
We assume there are two input schemas, E ={e1, …, en} and F ={f1, …, fm}, and MapE_F, a

mapping that relates E and F. MapE_F is a conjunctive mapping if it consists of a set of

conjunctive queries (Definition 2.2). We consider conjunctive queries that contain only

variables; i.e., the queries can contain no constants and hence no selection predicates.

In many scenarios, such as transforming data from a source schema to a target schema, the

mapping MapE_F would be used to constrain the set of states that can be valid simultaneously in

E and F.

Example 4.7: Assume we are given two input schemas E and F, and MapE_F was

used to populate E with tuples from F. MapE_F might be:

e1(x,y) :- f1(x,y)

e1(x,y) :- f2(x,y)

In this case, MapE_F is an exact mapping; if there exists a tuple f1(1,2) or f2(1,2),

there must exist a tuple e1(1,2), and there are no other tuples in e1. This

mapping constrains the valid states of E with respect to the states of F. □

GAV and LAV mappings are examples of mappings types that adhere to the open world

assumption (Definition 2.6) on the instances of the schemas they relate; a tuple in the mediated

schema state must appear in a tuple or set of tuples in one or more local sources. However,

when creating the mediated schema for data integration, a direct mapping between E and F is

inappropriate since the states of E and F are not required to be the same or even overlapping.

Thus, the role of MapE_F between a pair of source schemas is not to constrain the states of either

E or F. Rather, MapE_F describes how E and F are related to a helper schema, D :

Definition 4.10: (Helper schema). Given two schemas E and F, D is a helper

schema for MapE_F if MapE_F constrains the states of E and F with respect to the

states of D . □

73

4.3.1.1 Syntax of Conjunctive Mappings
A conjunctive mapping is a set of conjunctive queries restricted as follows. We require that

each conjunctive query Q ∈ MapE_F in a conjunctive mapping MapE_F is over exactly one of E or

F. We refer to each Q ∈ MapE_F as a mapping statement.

We make some additional restrictions for ease of exposition. These three rules are not

required in order for the mapping to be conjunctive, nor do they affect the expressive power of

the queries allowed. The goal of the rules is to make it easier to name the attributes of the

relations in G. Any set of conjunctive queries can be made to satisfy the restrictions simply by

renaming variables. The restrictions are as follows:

1. If an IDB appears more than once in a mapping, then for each variable position of the

IDB, the same variable name must be used in all appearances. Hence, definitions q5(x,y)

:- e1(x,y), and q5(z,y) :- f2(x,y) cannot be in the same mapping since the variable in the

first position of q5 is named x in the first definition and z in the second. This restriction

is made so that it is clear what the corresponding attribute should be named in G.

2. An existential variable name may appear in at most one mapping statement for a given

IDB name. For example, q15(x) :- e1(x,y) and q15(x) :- f1(x,y) cannot exist in the same

mapping since y is existential in both. This restriction is made so that it is clear what the

corresponding attributes should be named in G.

3. Each relation name appears in at most one of E, F, and the IDB names of MapE_F. This

can be accomplished by doing a predicate re-name if necessary.

There are two additional restrictions that make mappings less powerful than the full range of

conjunctive queries, but that we use to simplify the problem:

1. A relation can appear at most once within a mapping. For example, q17(x) :- e1(x,y) and

q18(w) :- e1(w,u) cannot appear in the same mapping because they both map e1.

Similarly q19(x) :- e1(x,y), e1(y,z) cannot appear in a mapping because e1 is again

mapped twice.

74

2. An EDB must not repeat variables. For instance q7(x) :- e1(x,x) cannot be in a mapping

because x appears twice in e1.

To refer to the IDBs in a mapping we define the concept formally in Definition 4.11:

Definition 4.11: (IDBs in a mapping). We define IDB(MapE_F) = {idb | ∃ ms ∈

MapE_F s.t. IDB(ms) = idb} □

4.3.1.2 Semantics of Conjunctive Mappings
MapE_F defines the valid states of the helper schema, D. Specifically, we consider the schema

D to be created by reifying the IDBs of MapE_F into relations. We define the tuples of D as a

function of the tuples in E and F, as follows.

Let D be the schema consisting of one relation for each IDB j ∈ IDB(MapE_F). That is, for

each IDB j ∈ IDB(MapE_F), there exists a relation r ∈ D s.t.

1. nr = nj

2. attributesr = Vars(j)

By definition of conjunctive mapping, each mapping statement in MapE_F consists of EDBs

from exactly one of E or F. Thus, we can partition MapE_F into two sub-mappings: MapE_D and

MapF_D, where MapE_D consists of all mapping statements that contain EDBs from E, and MapF_D

consists of all mapping statements that contain EDBs from F. So MapE_D ∪ MapF_D = MapE_F.

Given states σE ∈ I(E) and σF ∈ I(F), we define σD = MapE_D(σE) ∪ MapF_D(σF). That is, the

union of the queries in MapE_F applied to σE and σF yield the tuples in σD.

4.3.2 Refining the MSCs to the Conjunctive Mapping Case
The mediated schema creation problem requires components and intersections as input.

Since these are not explicitly defined in a conjunctive mapping MapE_F, as defined in Section

4.3.1.1, we must determine how to tease intersections and components from conjunctive

mapping MapE_F.

The intersections are easy to determine: each IDB name induces an intersection which is

comprised of all the statements with that IDB name; Example 4.8 declares an intersection on the

first attributes of e1 and f1.

75

Example 4.8:

q2(x) :- e1(x,y)

q2(x) :- f1(x,z) □

The mapping in Example 4.8 is just one of many possible between these two relations. Example

4.9 shows another possibility:

Example 4.9:

q2(x,y) :- e1(x,y)

q2(x,y) :- f1(x,y) □

Example 4.9 declares an intersection on both the first and second attributes of e1 and f1. Note

that because we have artificially restricted the conjunctive queries allowed in MapE_F the

variable y is now used for the second variable in both appearances of q2, though this could be

easily achieved through a variable renaming.

Because we need to ensure canonical queries for intersections, we must return to the notion

of a canonical query. However, now that we have specified MapE_F to be a conjunctive mapping,

we can be more specific in the conjunctive statement of the MSCs. To simplify what follows,

Definition 4.12 defines a canonical query for an IDB:

Definition 4.12: (Canonical query for an IDB). Given IDB i in IDB(MapE_F), let

MSidb = {msj ∈ MapE_F | IDB(msj) = idb}. If there exists a query Q over G such

that Q is a canonical query for MSidb w.r.t. and MapG_EF, then we say that Q is a

canonical query for idb. □

The components are slightly more difficult to determine because conjunctive queries must be

safe; the variables that appear in the head can only include attributes that are in all of the

statements with that IDB name. For example, in the definition of q2 in Example 4.8, we cannot

express that y should be present in a component by having it appear in the head of the first

mapping statement, because it would then make the second mapping statement unsafe.

76

However, because we assume that the mediated schema is complete and we are not “breaking

apart” relations from EF in G, we know that there exists some way to access the values of the

existential variables in Example 4.8 via a canonical query, so there is no problem in accessing

the component e1(x,y).

Now let us extend Example 4.8 slightly. Suppose E includes the relation e2(y,z) and we want

the input to the mediated schema creation problem to include a component that includes the join

of e1 and e2 which says that their attributes appear in one relation of the mediated schema.

Suppose we also want to relate the tuples in the join of e1 and e2 to the tuples in f1. We would

want to create the mapping in Example 4.10:

Example 4.10:

q17(x,y,z) :- e1(x,y), e2(y,z)

q17(x,z) :- f1(x,z) □

However, this mapping gives q17 both an arity of two and an arity of three, which is counter

to the definition of conjunctive queries. Instead we are forced to make the mapping as in

Example 4.11 and simply require that all of the attributes of each mapping statement appear in

the mediated schema in a single relation.

Example 4.11:

q3(x,z) :- e1(x,y), e2(y,z)

q3(x,z) :- f1(x,z) □

In contrast to the example with the existential y value in Example 4.8, in Example 4.11, we

are not assured to have all the values for e1(x,y), e2(y,z) accessible via a canonical query.

Therefore we require that there be a canonical query for each projection-free component:

Definition 4.13: (Projection-free components). For each mapping statement ms

let q equal IDB(ms). We say that the projection-free component of ms, denoted

pfms, is the query q(Vars(ms)) :- body(ms), where Vars(ms) and body(ms) are the

variables and body of ms, respectively. □

77

Notice that pfms is identical to ms except that all variables of pfms are distinguished. In

addition, as shown in Section 4.4.2, the assumption that each mapping statement defines

projection-free components allows G to contain fewer relations than it would otherwise. We

discuss alternate semantics where we assume that mapping statements do not define projection-

free components in Section 4.4.2.

Given the definitions of inputs, we can now refine the MSCs for the conjunctive mapping

case as follows:

CreateMediatedSchema(E, F, MapE_F) G, MapG_EF is said to satisfy the Conjunctive

Mediated Schema Criteria (CMSCs) if:

CMSC 1: Conjunctive completeness: G is complete. There are total, injective, functional

mappings from E to G and from F to G.

CMSC 2: Conjunctive intersection accessibility: For each IDB idb in IDB(MapE_F), let

MSidb = {msj ∈ MapE_F | IDB(msj) = idb}. Then there exists a query Q over G and

MapG_EF such that Q is a canonical query for MSidb.

CMSC 3: Conjunctive component accessibility: For every mapping statement ms in

MapE_F, let Q = q(Vars(ms)) :- body(ms)). If ms has an existential variable, then

there exists a canonical query for Q over G and MapG_EF.

CMSC 4: Conjunctive connectivity required: every query Q:I(ΣQ) I(T) over ΣQ ⊆ EF

where |ΣQ | > 1, if there is a canonical query Q′ for Q over ΣQ′ ⊆G and MapG_EF

then for every pair of relations r1, r2 ∈ EF' there exist mapping statements ms1

∈ MapE_F and ms2 ∈ MapE_F such that IDB(ms1) = IDB(ms2), r1 ∈ body(ms1),

and r2 ∈ body(ms2).

CMSC 5: Conjunctive minimality: G is a minimal schema that satisfies CMSCs 1-4.

That is, there exists no G' satisfying CMSCs 1-4 such that

1. G' << G or |G' | < G (i.e., G' contains fewer relations than G)

2. ∀ relations g ∈ G ∃/ sets of attributes p1 ⊆ attributesg, p2 ⊆

attributesg s.t. p1 ∩ p2 = ∅ and ∀ σG ∈ I(G) πp1(πg(σG)) ⊆

πp2(πg(σG)).

78

4.3.3 Definitions of G, MapG_E, and MapG_F
A solution to the mediated schema creation problem consists of a mediated schema G and

mappings MapG_E, and MapG_F that together satisfy CMSC 1-5. In this section, we define such a

G, MapG_E, and MapG_F. In Section 4.3.4 we prove that they do indeed satisfy CMSC 1-5.

4.3.3.1 Definition of G

The CMSCs essentially say that there are two sets of relations that must exist in G: (1) relations

required to answer canonical queries (i.e., CMSCs 2 and 3) and (2) relations required to ensure

completeness (i.e., CMSC 1). CMSC 5 requires that G contain the minimum number of

relations. In essence, CMSC 5 works in opposition to the other CMSCs; it is trying to decrease

the number of relations in G while the others are trying to add relations to G. We can determine

the number of relations in G by analyzing which relations are required and how the number of

relations can be minimized. Because some of the relations created by CMSCs 2 and 3 may be

able to resolve some of CMSC 1’s completeness requirements, we begin by considering CMSCs

2 and 3.

Let GIDB ⊆ G be a set of relations needed to satisfy CMSCs 2 and 3. From the definition of

canonical queries (Definition 4.6), we know CMSCs 2 and 3 can be satisfied by creating GIDB

such that every mapping statement and every IDB has its own relation in GIDB. In order to satisfy

CMSC 5, however, we must see if a smaller number of relations will suffice. The only way that

we can combine two relations, g1 and g2, required by CMSC 2 or 3 is to satisfy CMSC 4; g1 and

g2 must be used in mapping statements for the same IDB. Since the input restrictions allow each

relation in EF to appear in only one mapping statement, each relation in EF may be used in the

definition of only one IDB. Similarly, by definition each mapping statement is used in defining

exactly one IDB. Hence to satisfy CMSC 2 GIDB must contain at least one relation per IDB in

IDB(MapE_F).

To minimize GIDB, if it is possible to answer the queries required by CMSC 3 using the

relations required by CMSC 2 (which we show is possible in Section 4.3.3.2), then to satisfy

CMSC 5 (conjunctive minimality) there must be no additional relations created to satisfy

CMSC 3. Therefore GIDB must contain exactly one relation per IDB in IDB(MapE_F) and no other

relations. In addition, to satisfy CMSC 3 (Conjunctive component accessibility) each relation

79

corresponding to an IDB idb in IDB(MapE_F) must also contain enough information to answer the

canonical query on the projection-free component of the mapping statements defining idb.

Now we turn to the attributes of the relations in GIDB. Let MSq = {msj ∈ MapE_F | IDB(msj) =

q} and let Vars(MSq) = Vars(q) ∪ (
i
∪ existential(msi)) where msi ∈ MSq. In order to allow

canonical queries over both the intersections and components, we require that a relation gidb ∈

GIDB retains an attribute for each variable used in the mapping statement used to create it.

Formally, ∀ relations gIDB ∈ GIDB if n(gIDB) = q, where q ∈ IDB(MapE_F) we require that

attributesgIDB = Vars(MSq).

We are now ready to consider which relations in GIDB can also be used to ensure CMSC 1

(Conjunctive completeness). The answer has to be considered for each relation g ∈ GIDB and

hinges on the shape of the mapping statements used to create g. While this relies on MapEF_G as

defined in Section 4.3.3.2, Example 4.12 gives an intuition for which relations in E and F the

relations in GIDB can ensure completeness, and which relations in E and F must appear separately

in G :

Example 4.12: Consider the following mapping:

q1(w) :- e1(w)

q1(w) :- f1(w,u)

q2(x) :- e2(x,y)

q2(x) :- f2(x,z), f3(x,v)

Assume that e1, e2, f1, f2 and f3 are the only relations in E and F. By the remarks

above, GIDB contains q1(w,u) and q2(x,y,z,v). Can the relations q1 and q2 be used

to ensure the completeness of e1, e2, f1, f2, and f3? Consider relation q1. It

defines the intersection (q1(w) :- e1(w)) ∪ (q1(w) :- f1(w,u)). Since q1 retrieves

values of w from both e1 and f1, it is impossible to retrieve only the w values of

e1 from the relation in GIDB that corresponds to q1. Hence for completeness with

respect to e1, e1 must be retained separately in G. f1 is a little different since u is

existential. In Section 4.3.3.2 we show how to write a query over q1 to retrieve

80

exactly the values needed in f1; in essence the query requires a value for both w

and u; so only values from f1 are retained. Hence a relation corresponding to f1

does not have to appear separately in G to maintain CMSC 1 (Completeness)

since f1 has an existential variable.

Examining q2 we see by an argument similar to that for f1 above it may

possible to ask a query that returns the value of all tuples in e2. However,

relations corresponding to f2 and f3 must appear separately in G since the

canonical query for the component defined by q2(x) :- f2(x,z), f3(x,v) only

guarantees that tuples of f2 and f3 that have the same first value will be

accessible. So these tuples cannot be retrieved separately from relation in GIDB

that corresponds to q2. We formalize this notion of relations in EF whose

completeness can be guaranteed through the relations in GIDB in Definition 4.14

– mapping-included relations. □

Definition 4.14: (mapping-included relations). For relation r ∈ EF, if there

exists a mapping statement ms ∈ MapE_F s.t. ms contains an existential variable

and body(ms) = r, then r is mapping-included in MapE_F. □

In the definitions below, which explain the output of CreateMediatedSchema, we are going

to explicitly document the output. We define a correspondence relation between the inputs and

outputs of CreateMediatedSchema as follows:

Definition 4.15: (ξ). We define the correspondence relation ξ to ⊆ {EF ∪

IDB(MapE_F)} × G. That is, ξ(o,g) means that o is either a relation name in EF or

an IDB name in MapE_F. The intuition is that g is produced as output partially

from o as input. □

Putting it all together we arrive at the following definition of well-formed mediated schema,

which, as we show in Section 4.3.4, satisfies the CMSCs.

81

Definition 4.16: (Well-formed Mediated Schema). Given relational schemas E

and F and mapping MapE_F, a mediated schema G created by

CreateMediatedSchema(E, F, MapE_F) is well-formed if:

1. ∀ relations e ∈ E s.t. e is not mapping-included, ∃ g ∈ G s.t. ne = ng,

attributese = attributesg, and ξ(e,g). Similarly for all f ∈ F.

2. ∀ IDB names q ∈ IDB(MapE_F), ∃ g ∈ G s.t. q = ng, attributesg = Vars(MSq),

and ξ(q,g).

3. G contains no additional relations. □

Example 4.13:

E = {e1(a,b), e2(c,d)}

F = {f1(e,f)}

MapE_F = {

q1(x) :- e1(x,y)

q1(x) :- f1(x,z)

}

Vars(MSq1) = {x, y, z}. Since f1 is mapping-included (z is existential and f1

appears alone in the body of its mapping statement) f1 is not included in G, and

G = {e1(a,b), e2(c,d), q1(x,y,z)} □

4.3.3.2 Properties and Definition of MapG_E and MapG_F

We now must define MapG_E and MapG_F so that they retain enough information to create all

of the canonical queries required in the CMSCs and satisfy the remaining CMSCs. We begin by

considering CMSC1, the only CMSC that places a restriction on MapG_E and MapG_F other than

the canonical queries. CMSC 1 requires a total, injective, functional mapping from E to G and F

to G. Since E and F are disjoint schemas there is a total, injective function from E ∪ F into G if

MapE_G and MapF_G are total, injective functions. None of the other CMSCs place any restrictions

on MapE_G or MapF_G, so we turn to creating the canonical queries.

82

We express MapG_E and MapG_F as a subset of GLAV mappings (Friedman et al. 1999), as

follows. We relate G and E through an intermediate schema, C, which represents the coverage of

each mediated schema relation available from a particular source. Each mapping statement ms

s.t. body(ms) is over EF creates two views in MapG_EF. The first view, lvms, is called a local view

definition for ms. It is a conjunctive query from G to the intermediate schema C, and is included

in the set of local view definitions for G, LVG. The second view, gvms, is called a global view

definition for ms. gvms is a function from E to C, and is included in the global view definitions

for G, GVG. Note that the views in MapG_EF are sound but not complete; we illustrate why in

Example 4.15 after we formally define LVG and GVG.

How can we translate queries using MapG_EF? We give the intuition here, and we show

formally why this is so in Theorem 4.2 after formally defining LVG and GVG. Our primary goal

in showing the query rewriting scheme is to ensure that G and MapG_EF satisfy the CMSCs. To

show that, we must ensure that canonical queries for all intersections and projection-free

components exist. As shown later by Lemma 4.5 and Lemma 4.6, the canonical queries required

are conjunctive queries, so we consider only how to answer conjunctive queries. We answer a

query Q over G by first using the local view definitions LVG and then using the global view

definitions, GVG. Recall from Section 2.4 that a LAV view definition is a sound but incomplete

view from the mediated schema to the source schemas, and answering queries using views can

be used to rewrite a query from the mediated schema to source schemas in LAV. Hence we can

use answering queries using views to rewrite a query Q over G into a query Q' over the

intermediate schema C 5.

The global view definitions in GVG are much like view definitions in GAV. Hence, query

unfolding (Definition 2.5) can rewrite Q' over C into a query Q'' over EF. Putting this together

with the rewriting step from the local view definitions, to rewrite queries over G into queries

5 Because the queries in LVG are significantly less expressive than conjunctive queries and

the only queries that we are rewriting over are LVG conjunctive queries, a simpler specialized

algorithm could be created. However answering queries using views is guaranteed to be sound

and complete in finding certain answers (Definition 2.7) since MapG_EF is sound but not complete

and LVG and the queries over it are only conjunctive queries.

83

over EF answering queries using views is first applied to the local views and then view

unfolding is applied to the global views. Now that we have an intuition for MapG_EF, we are

ready to define it formally. Recall that Definition 4.16 (well-formed mediated schema)

guarantees that for each mapping statement ms with IDB name q, there exists some relation rq ∈

G with name q and attributes = Vars(MSq).

Definition 4.17: (Well-formed Mediated Schema Mapping). Let MapG_EF be a

mediated schema mapping created by CreateMediatedSchema(E, F, MapE_F),

where E and F are relational schemas and MapE_F is a conjunctive mapping

between E and F adhering to the requirements in Section 4.3.1.1. MapG_EF is said

to be well-formed if it consists of two sets of view definitions, LVG and GVG

where LVG provides a mapping from G to an intermediate schema C and GVG

provides a mapping from EF to C, s.t.:

1. ∀ relations g ∈ G s.t. ξ(e,g) for some e ∈ EF, let qj be a fresh IDB

name.

lvg = qj(attributesg) :- g(attributesg)

gvg = qj(attributesg) :- e(attributese)
6

lvg ∈LVG

gvg ∈ GVG

2. ∀ mapping statements ms ∈MapG_EF with IDB name q, let rq ∈ G be a

relation with name q and ξ(q,rq). Let qj be a fresh IDB name (i.e., qj is

an IDB name that appears in no other mapping statements in MapE_F or

in any other local view definitions or global view definitions in

MapG_EF).

6 The relations g and e in the definition of lvg and gvg respectively are the same, from the

definition of a well-formed mediated schema Definition 4.16. Similarly, attributesg = attributese.

84

lvms = qj(Vars(ms)) :- rq

gvms = qj(Vars(ms)) :- body(ms)

lvms ∈LVG

gvms ∈ GVG

3. LVG and GVG contain no views other than those required above.

Note that the cases here are the same cases as in the definition of the well-

formed mediated schema (Definition 4.16); i.e., the first bullet here creates the

mapping statements for the relations created in the first bullet, etc. □

Definition 4.18: (ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF).

The conjunctive mediated schema creation problem takes as input schemas E

and F, and conjunctive mapping MapE_F, and produces a schema G and mapping

MapG_EF that satisfy Definition 4.16 and Definition 4.17 respectively. □

An example of how to create LVG and GVG and then rewrite a query is shown in Example

4.14.

Example 4.14: Recall that in both LVG and GVG the left hand sides of the

mappings consist of fresh IDB names – the sole point of the names is to match

the concepts in LVG and GVG. As well, in the right hand side of GVG the EDB

names are the names of relations in the source schemas. In the right hand side

of LVG the EDB names are the names of relations in the mediated schema,

which by construction of G are either the same as the names of the relations in E

and F or the IDBs in IDB(MapE_F). Assume the schemas and mappings from

Example 4.13. By Definition 4.17 LVG and GVG are as follows. Note that

because relation names in G also appear both as relation names in E and F and

in IDB names in MapE_F, we prepend each relation name with the schema to

which it belongs.

LVG = {

q2(x,y) :- G.q1(x,y,z) // step 1 of Definition 4.17 for first m.s. in MapE_F

85

q3(x,z) :- G.q1(x,y,z) // step 1 of Definition 4.17 for second m.s. in MapE_F

q4(a,b) :- G.e1(a,b) // step 2 of Definition 4.17 for the first relation in E

q5(c,d) :- G.e2(c,d) // step 2 of Definition 4.17 for the second relation in E

q6(e,f) :- G.f1(e,f) // step 2 of Definition 4.17 for the sole relation in F

}

GVG = {

q2(x,y) :- E.e1(x,y) // step 1 of Definition 4.17 for first m.s. in MapE_F

q3(x,z) :- F.f1(x,z) // step 1 of Definition 4.17 for second m.s. in MapE_F

q4(a,b) :- E.e1(a,b) // step 2 of Definition 4.17 for the first relation in E

q5(c,d) :- E.e2(c,d) // step 2 of Definition 4.17 for the second relation in E

q6(e,f) :- F.f1(e,f) // step 2 of Definition 4.17 for the sole relation in F

}

Suppose that given these mappings and relations the query Q = qnew(r) :-

q1(r,s,t) was asked. The process to answer the query would be as follows:

1. Answering queries using views would be used over the view definitions

in LVG to find a maximally-contained rewriting for qnew expressed over

the intermediate schema. In this case, Q' = qnew'(r) :- q2(r,u) ∪

qnew'(r) :- q3(r,v).

2. The view definitions in GVG expanded (see Definition 2.5) to rewrite Q'

into a query Q'' over EF. Q'' = qnew''(r) :- e1(r,u) ∪ qnew''(r) :- f1(r,v).□

Example 4.15: In point 1 of Definition 4.17 it only makes sense to search for a

maximally-contained rewriting if MapG_EF is sound but not complete (e.g., the

view definitions provide descriptions of what tuples they produce, but not every

tuple that satisfies that description is produced by the view). In this example we

show why MapG_EF is sound but not complete. Consider the following mapping:

86

q21(x,y) :- e1(x,y)

q21(x,y) :- f1(x,y)

and assume that e1(a,b) and f1(c,d) are the only relations in E and F. By

Definition 4.16 G = {q21(x,y), e1(a,b), f1(c,d)}. By Definition 4.17 LVG and GVG

are as follows. Note that because relation names in G also appear both as

relation names in E and F and as IDB names in MapE_F, we prepend each

relation name with the schema to which it belongs.

LVG = {

q22(x,y) :- G.q21(x,y)

q23(x,y) :- G.q21(x,y)

q24(a,b) :- G.e1(a,b)

q25(c,d) :- G.f1(c,d)

}

GVG = {

q22(x,y) :- E.e1(x,y)

q23(x,y) :- F.f1(x,y)

q24(a,b) :- E.e1(a,b)

q25(c,d) :- F.f1(c,d)

}

q22 and q23 clearly illustrate why the views in MapG_EF are not complete. If E

contains the tuple e1(<1,2>), then clearly the G should contain the tuple

g21(<1,2>). However, rewriting q21 using only f1 should not yield f1(<1,2>).

Therefore q25 – and the views in MapG_EF in general – cannot be complete. □

We’re now ready to show that the rewriting procedure explained informally above correctly

rewrites queries over G into queries over EF. To do so we rely on Theorem 4.2 from (Abiteboul

et al. 1998) which we renumber here for simplicity:

87

Theorem 4.1: For view definition V ⊆ CQ (the set of conjunctive queries), Q ∈

Datalog (the set of all Datalog queries), and query plan P that is maximally-

contained in Q with respect to V, P computes exactly the certain answers of Q

under the open world assumption for each view instance σV ∈ I(V)

Proof: This is Theorem 4.2 of (Abiteboul et al. 1998); we refer you to their

proof. □

Theorem 4.2 provides a formal description of an algorithm for rewriting queries over G into

queries over EF.

Theorem 4.2: Given input schemas E, F, and mapping MapE_F between them, if

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, let query Q'' over

EF be created by (1) creating a maximally-contained rewriting Q' over the

intermediate schema C using LVG and (2) expanding Q' using GVG to form query

Q'' over EF. Then ∀ instances σE ∈ I(EF), and σG ∈ I(G) s.t. MapG_EF(σG,σEF),

Q''(σEF) finds exactly the certain answers of Q(σG).

Proof: As demonstrated in Example 4.15, LVG adheres to the open world

assumption: it is sound but not complete, and LVG ⊆ CQ. Hence by Theorem

4.1, Q' computes exactly the certain answers of Q in C.

From the definition of a view, we know that rewriting Q' by unfolding the

definitions in GVG will create a query over EF that will retrieve exactly all

tuples that match that view definition. Therefore Q''(σEF) finds exactly the

certain answers of Q(σG). □

4.3.4 Proof that G and MapG_EF Satisfy the CMSCs
Given that we have now defined a well-formed mediated schema (Definition 4.16) and well-

formed mediated schema mapping (Definition 4.17), we must show that if G and MapG_EF satisfy

these definitions, they satisfy the CMSCs as stated in Theorem 4.3.

88

Theorem 4.3: Given input schemas E, F, and mapping MapE_F between them, if

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and

MapG_EF satisfy the CMSCs. □

We prove Theorem 4.3 by proving that well-formed mediated schemas and mappings adhere

to each of the CMSCs in Section 4.3.4.1 through Section 4.3.4.5 in Lemma 4.1 through Lemma

4.8 respectively.

4.3.4.1 CMSC 1: Conjunctive Completeness
Recall that CMSC 1 is “G is complete. There are total, injective, functional mappings from E

to G and from F to G.” In order to ensure this, we create CertainG, a subset of G which contains

only those tuples that are mapped to G from EF:

Definition 4.19: (CertainG, MapEF_CertainG). Given input schemas E, F, and

mapping MapE_F between them, let ConjunctiveMediatedSchemaCreation(E, F,

MapEF) G, MapG_EF.

• Define CertainG = G.7

• Define MapEF_CertainG as follows: ∀ σEF ∈ I(EF), ∀ σcertainG ∈ I(CertainG)

MapEF_CertainG(σEF, σCertainG) if ∀ relations r ∈ CertainG, πr(σG) = Q''(σEF),

where query Q'' is defined as follows:

i. Query Q = q(attributesr) :-r(attributesr) where q is some fresh

IDB name.

ii. Query Q' is a maximally-contained rewriting over the

intermediate schema C using LVG.

iii. Query Q'' is the result of expanding Q' using GVG to form a

query over EF.

• There are no other tuples in σCertainG. □

7 Recall that this denotes that the schemas are equal, not the instances.

89

We are now ready to show that CMSC 1 holds if CreateMediatedSchema(E, F, MapE_F) G,

MapG_EF:

Lemma 4.1: Given input schemas E, F, and mapping MapE_F between them, if

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and

MapG_EF satisfy CMSC 1.

Proof Sketch: We show: (1) Lemma 4.3: MapEF_CertainG is functional and total

and (2) Lemma 4.4: MapEF_CertainG is injective. Together these show that

MapEF_CertainG is a total, injective, functional mapping from E to CertainG and

from F to CertainG. Together Lemma 4.3 and Lemma 4.4 imply that G and

MapG_EF satisfy CMSC 1. □

To prove Lemma 4.3, we require that the certain answers to a query are unique, which we

prove in Lemma 4.2:

Lemma 4.2: Let V be a view definition over a schema S, I be an instance of the

view V and Q a query over S. The set of all certain answers to Q is unique.

Proof: A tuple t is a certain answer to Q under the open world assumption if t is

an element of Q(D) for each database D with I ⊆ V(D) (Definition 2.7). Since the

set of all D with I ⊆ V(D) is uniquely defined and Q is a function, the result

follows immediately. □

Lemma 4.3: Given input schemas E, F, and mapping MapE_F between them,

suppose ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF. Let

CertainG and MapEF_CertainG be as in Definition 4.19. Then ∀ σEF ∈ I(EF) ∃ ! state

σCertainG ∈ I(CertainG) such that MapEF_CertainG(σEF, σCertainG). That is, MapEF_CertainG is

a total function.

Proof: For some relation r ∈ CertainG let Q be as in Definition 4.19(i). By

Lemma 4.2, the set of certain answers for Q(σCetrainG) is unique. By Theorem 4.2,

90

Q''(σEF) computes the certain answers for Q(σCertainG). By Definition 4.19, for

each relation r ∈ CertainG, πr(σCertainG) = Q''(σEF). Therefore σcertainG is unique. □

Lemma 4.4: Given input schemas E, F, and mapping MapE_F between them,

suppose ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF. Let

CertainG and MapEF_CertainG be as in Definition 4.19. Then MapEF_CertainG is

injective. That is, ∀ σEF1, σEF2, ∃/ σCertainG s.t. MapEF_CertainG(σEF1, σCertainG) and

MapEF_CertainG(σEF2, σCertainG).

Proof: Since σEF1 ≠ σEF2, there must be some relation r ∈ EF s.t. πr(σEF1) ≠

πr(σEF2). There are two cases: either (1) r is not mapping-included (Definition

4.14) or (2) r is mapping-included.

(1) Assume r is not mapping-included. Then since G is a well-formed

mediated schema ∃ ! relation g ∈ G s.t. ξ(r,g) and nameg = namer and attributesg

= attributesr (Definition 4.16 bullet 1). By definition of CertainG (Definition

4.19), CertainG = G (i.e., the schemas are equal). Hence ∃ ! relation certaing ∈

CertainG s.t. certaing = g. Let qfresh be a fresh IDB name. Let Q =

qfresh(attributescertaing) :- certaing.8

Since MapG_EF is well-formed, LVG is a set of conjunctive queries adhering

to the open world assumption (from the definition of GVG and LVG (Definition

4.17)). By construction, Q is conjunctive query. Thus, from Theorem 4.1 there

is a maximally-contained rewriting Q' over the intermediate schema C using

LVG that finds all certain answers for Q. Let Q'' be the result of expanding Q'

using GVG to form a query over EF. From the definition of a view and the

definition of Q', Q''(σEF) contains all certain answers of Q(σCertainG).

From the definition of GVG and LVG (Definition 4.17 bullet 1) there exists

exactly one view Vg ∈ LVG that can be used to rewrite Q, and the rewriting is

qfresh(attributescertaing) :- Vg. Since GVG is well-formed, there exists one view

8 For succinctness, in what follows we occasionally abbreviate r(attributesr) by r.

91

Vidb ∈ GVG s.t. IDB(Vidb) = IDB(Vg), and the body of Vidb contains exactly r.

Hence Q'' = qfresh(attributescertaing) :- r. Therefore, if MapEF_CertainG(σEF1,

σCertainG), then πr(σCertainG) = πr(σEF1), and if MapEF_CertainG(σEF2, σCertainG), then

πr(σCertainG) = πr(σEF2). Since σEF1 ≠ σEF2, if r is not mapping-included, ∃/ σCertainG

s.t. MapEF_CertainG(σEF1, σCertainG) and MapEF_CertainG(σEF2, σCertainG).

(2) Now assume that r is mapping-included. Since G is a well-formed

mediated schema ∃ ! relation g ∈ GIDB s.t. ξ(r,g), nameg = namer and attributesg

⊇ attributesr (Definition 4.16 bullet 2). By definition of CertainG (Definition

4.19), CertainG = G (i.e., the schemas are equal). Hence ∃ ! relation certaing ∈

CertainG s.t. certaing = g. Let qfresh be a fresh IDB name. Let Q =

qfresh(attributescertaing) :- certaing. Let Q = qfresh(attributesr) :- certaing.

Since MapG_EF is well-formed, LVG is a set of conjunctive queries adhering

to the open world assumption (from the definition of GVG and LVG (Definition

4.17)). By construction, Q is conjunctive query. Thus, from Theorem 4.1 there

is a maximally-contained rewriting Q' over the intermediate schema C using

LVG that finds all certain answers for Q. Let Q'' be the result of expanding Q'

using GVG to form a query over EF. From the definition of a view and the

definition of Q', Q''(σEF) contains all certain answers of Q(σCertainG).

Since MapG_EF is well-formed, from the definition of GVG and LVG

(Definition 4.17 bullet 2) there exists exactly one view, Vg ∈ LVG that can be

used to rewrite Q, and the rewriting is qfresh(attributesr) :- Vg. Since GVG is

well-formed, there exists one view Vidb ∈ GVG s.t. IDB(Vidb) = IDB(Vg), and the

body of Vidb contains exactly r. Hence Q'' = qfresh(attributesr) :- r. Therefore, if

MapEF_CertainG(σEF1, σCertainG), πr(σCertainG) = πr(σEF1), and if MapEF_CertainG(σEF2,

σCertainG), then πr(σCertainG) = πr(σEF2). Since σEF1 ≠ σEF2, if r is mapping-included, ∃/

σCertainG s.t. MapEF_CertainG(σEF1, σCertainG) and MapEF_CertainG(σEF2, σCertainG).

92

Since two states of EF map to different states of CertainG if r is or is not

mapping-included, which are the only two cases, two states of EF always map

to different states of CertainG, and MapEF_CertainG is injective. □

Lemma 4.3 and Lemma 4.4 prove Lemma 4.1, that MapEF_G is total, injective, and functional.

4.3.4.2 CMSC 2: Conjunctive Intersection Accessibility
Recall that CMSC 2 is “For each IDB idb in IDB(MapE_F), let MSidb = {msj ∈ MapE_F |

IDB(msj) = idb}. Then there exists a query Q over G and MapG_EF such that Q is a canonical query

for MSidb.”

Lemma 4.5: Given input schemas E, F, and mapping MapE_F between them, if

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and

MapG_EF satisfy CMSC 2 where the required canonical query is a conjunctive

query.

Proof Sketch: We prove Lemma 4.5 by construction of the canonical queries

required. For each IDB idb in IDB(MapE_F), let MSidb = {msj ∈ MapE_F | IDB(msj)

= idb}. We construct a query QEF over EF s.t. QEF = MSidb. We need a canonical

query for QEF. So we construct a conjunctive query QG over one relation in G

and show that rewriting QG using MapG_EF produces a query QG′ over EF that

returns the certain answers to QEF. Therefore QG is a canonical query for QEF.

We show an example of creating QG, QG'', QEF, and QEF' in Example 4.16.

Proof: By Definition 4.16 of G ∀ IDBs idb ∈ IDB(MapE_F), ∃ relation g ∈ G s.t.

the name of idb is ng.

Let q be a fresh IDB name

Let QEF be the query q(Vars(idb)) :- idb

Let QEF′ be the expansion of QEF using MapE_F.
9

Let QG be the query q(Vars(idb)) :- g

Let QG′′ be the rewriting of QG using MapG_EF.

9 See Definition 2.5 for the definition of expansion.

93

Let MSIDB = {msidb | IDB(msidb) = idb}

We now show that QEF′ QG′′ and QG′′ QEF′.

By Theorem 4.2, ∀ σEF ∈ I(EF), ∀ σG ∈ I(G), s.t. MapG_EF(σEF, σG), rewriting

QG(σG) to be over EF yields QG′′, where QG''(σEF) finds exactly the certain answers

of QG(σG). By Theorem 4.2 obtaining QG′′ requires first answering QG using the

local views, LVG. QG only asks for elements in the head of idb. Since MapG_EF is a

well-formed mediated schema mapping (Definition 4.17), ∀ ms ∈ MSIDB, LVG

will contain one view Vms = qfresh(Vars(ms)) :- g where qfresh is an IDB name

used nowhere else in LVG. Since each mapping statement must be safe,

Distinguished(ms) ⊆ Vars(ms). LVG and QG are both conjunctive queries, LVG

uses the open world assumption, and Map G_EF is a well-formed mediated

schema mapping (Definition 4.17), therefore answering queries using views can

be used to find a maximally-contained rewriting QG' =
idb IDBms MS∈
∪ q(Vars(idb))

:- qfreshmsidb(Vars(msidb)).

By Theorem 4.2, QG′ is then expanded into a query QG'' using GVG. From the

definition of GVG, expanding each conjunctive query cqi ∈ QG' yields

q(Vars(idb)) :- Body(msi), and QG'' =
i
∪ cqi.

By the definition of expansion of a view (Definition 2.5), QEF' =
idb IDBms MS∈
∪

q(Vars(idb)) :- Body(msidb).

Hence, QG′′ and QEF′ are equivalent. Since QG is conjunctive and defined

over a single relation of EF, QG is a conjunctive, canonical query for idb as

defined in Definition 4.12. □

Example 4.16: The queries constructed in Lemma 4.5 for the schemas and

mappings of Example 4.13 as follows:

94

QG = q(x) :- q1(x)

QG′′ = q(x) :- e1(x,y) ∪ q(x) :- f1(x,z)

QEF = q(x) :- q1(x,y,z)

QEF′ = q(x) :- e1(x,y) ∪ q(x) :- f1(x,z) □

4.3.4.3 CMSC 3: Conjunctive component accessibility

Recall CMSC 3 is “For every mapping statement ms in MapE_F, let Q = q(Vars(ms)) :- body).

If there are any existential variables in ms, then there exists a canonical query for Q over G and

MapG_EF.”

Lemma 4.6: Given input schemas E, F, and mapping MapE_F between them, if

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and

MapG_EF satisfy CMSC 3 using only conjunctive queries for canonical queries.

Proof sketch: We prove Lemma 4.6 by construction of the canonical queries

required. For each mapping statement ms we construct a query QEF s.t. QEF = ms.

We need a canonical query for QEF. So we construct a conjunctive query QG

which is over one relation in G and show that rewriting QG using MapG_EF

produces a query QG′′ over EF that is equivalent to QEF. Therefore QG is a

conjunctive, canonical query for QEF. We show an example of creating QG, QG′′,

and QEF in Example 4.17.

Proof: By definition of G and MapG_EF, ∀ mapping statements ms ∈ MapE_F s.t.

there is no intersection that subsumes ms, ∃ relation g ∈ G s.t. IDB(ms) = ng.

Let q be a fresh IDB name.

Let QEF be the query q(Vars(ms)) :- body(ms)

Let QG be the query q(Vars(ms)) :- g

Let QG′′ be the rewriting of QG using MapG_EF

We now show that QEF QG′′ and QG′′ QEF.

By Theorem 4.2, ∀ σEF ∈ I(EF), ∀ σG ∈ I(G), s.t. MapG_EF(σEF, σG), rewriting

QG(σG) to be over EF yields QG′′, where QG''(σEF) finds exactly the certain answers

95

of QG(σG). By Theorem 4.2 obtaining QG′′ requires first answering QG using the

local views, LVG. Since MapG_EF is a well-formed mediated schema mapping

(Definition 4.17), LVG will contain exactly one local view Vms =

qfresh(Vars(ms)) :- g where qfresh is an IDB name used nowhere else in LVG.

Since MapG_EF is a well-formed mediated schema mapping (Definition 4.17),Vms

is the only way of accessing the attributes corresponding to existential variables

in ms required by QG. LVG and QG are both conjunctive queries, LVG uses the

open world assumption, and Map G_EF is a well-formed mediated schema

mapping (Definition 4.17). Therefore, answering queries using views can be

used to find a maximally-contained rewriting QG' = q(Vars(ms)) :-

qfresh(Vars(ms)).

By Theorem 4.2, QG′ is then expanded into a query QG'' using GVG. From the

definition of GVG, expanding QG' yields QG'' = q(Vars(ms)) :- Body(ms). This is

exactly the definition of QEF.

Hence, QG′′ and QEF are equivalent. Since QG is conjunctive and defined over

a single relation of EF, QG is a conjunctive, canonical query for ms as defined in

Definition 4.12. □

Example 4.17: Assume the schemas and mappings from Example 4.13.

QEF = q(x,y) :- e1(x,y)

QG = q(x,y) :- q1(x,y,z)

QG′′ = q(x,y) :- e1(x,y) □

4.3.4.4 CMSC 4: Conjunctive Connectivity Required
Recall CMSC 4 is “For every query Q:I(ΣQ) I(T) over ΣQ ⊆ EF where |ΣQ | > 1, if there is a

canonical query Q′ for Q over ΣQ′ ⊆G and MapG_EF then for every pair of relations r1, r2 ∈ EF'

there exists some mapping statements ms1 ∈ MapE_F and ms2 ∈ MapE_F such that IDB(ms1) =

IDB(ms2), r1 ∈ body(ms1), and r2 ∈ body(ms2).”

96

Lemma 4.7: Given input schemas E, F, and mapping MapE_F between them, if

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and

MapG_EF satisfy CMSC 4.

Proof: A query over G can only be rewritten into a query over EF as explained

in Theorem 4.2. Hence, since a canonical query must be over only one relation

in G, it is enough to show that any query over a single relation in G satisfies the

conditions in CMSC 4. Consider query Qg over some relation g ∈ G. By

Theorem 4.1 and the definition of rewriting queries using views, we know local

view definition lvi ∈ LVG can only be used to rewrite Qg to produce query Qg' if

the body of lvi contains g. By Definition 4.17 (well-formed mediated schema

mapping) we know that given two local views lvi and lvj, the bodies of lvi and lvj

will only contain the same relation name, g, if ξ(r, msi), ξ(r, msj) where msi and

msj are the mapping statements used to create lvi and lvj. By the definition of

well-formed mediated schema mappings (Definition 4.17) we know that this

requires that msi and msj have the same IDB name.

By Theorem 4.2 we know that to produce a query Qg'' over EF, query Qg'

must be expanded using the global view definitions in GVG. By Definition 4.16

(well-formed mediated schema) we know that the only global view definitions

that can be used to expand lvi and lvj must have bodies equal to the bodies of

msi and msj. Hence any query Q written over a single relation g ∈ G will satisfy

the requirements in CMSC 4. □

4.3.4.5 CMSC 5: Minimality
Recall CMSC 5 is “G is a minimal schema that satisfies CMSCs 1-4. That is, there exists no

G' satisfying CMSCs 1-4 such that (1) G' << G or |G' | < G (i.e., G' contains fewer relations than

G). and (2) ∀ relations g ∈ G ∃/ sets of attributes p1 ⊆ attributesg, p2 ⊆ attributesg s.t. p1 ∩ p2 = ∅

and ∀ σG ∈ I(G) πp1(πg(σG)) ⊆ πp2(πg(σG)).”

97

Lemma 4.8: Given input schemas E, F, and mapping MapE_F between them, if

ConjunctiveMediatedSchemaCreation(E,F,MapEF) G, MapG_EF, then G and

MapG_EF satisfy CMSC 5.

Proof: By definition of well-formed mediated schema (Definition 4.16), G =

GIDB ∪ GEF where GIDB = {gIDB ∈ G | ∃ idb ∈ IDB(MapE_F) and ξ(idb,gIDB)} and GEF

= {gef ∈ G | ∃ ! ef ∈ EF s.t. ξ(ef, gef) and ef is not mapping-included in MapE_F}.

We show that GIDB and GEF are minimal, including why relations from the other

set cannot be used to minimize them further.

GIDB: In order to satisfy CMSC 2 we must have a relation g ∈ G for each idb ∈

IDB(MapE_F) s.t. ξ(idb, g). By CMSC 4 we cannot combine relations in GIDB

because they are not connected (Definition 4.7). In order to allow canonical

queries for idb and each projection-free mapping statement pfms where IDB(ms)

= idb (CMSC 2 and CMSC 3), attributesg must equalVars(MSidb)10, which is

exactly as defined in Definition 4.16. Hence GIDB is minimal given CMSC 1-4.

GEF: ∀ relations gef ∈ GEF, by construction of GEF ∃ ! ef ∈ EF s.t. ξ(ef, gef).

By the definition of MapE_F it is either the case that (1) ∃ mapping statement ms

∈ MapE_F s.t. ef ∈ body(ms) or (2) ∃/ ms ∈ MapE_F s.t. ef ∈ body(ms). Since these

two cases span the entire space of possibilities, considering them both proves

that GEF is minimal. We consider these cases separately.

Case (1), ∃ mapping statement ms ∈ MapE_F s.t. ef ∈ body(ms). From the

definition of a well-formed mediated schema (Definition 4.16) and GIDB, ∃!

relation gidb ∈ GIDB s.t. ∃ mapping statement ms where ef ∈ Body(ms). Let

IDB(ms) = idb. In order to satisfy CMSCs 2 and 3, there needs to be a canonical

query over gidb for idb. Hence any attribute a ∈ attributesg corresponding to a

variable in the head of ms must be represented such that any query over G

retrieves the values from all mapping statements msidb ∈ MSidb s.t. IDB(MSidb) =

10 Recall that MSidb = the union of all mapping statements ms such that IDB(ms) = idb.

98

idb. Hence those attributes cannot be used to satisfy CMSC 1: Completeness. In

order to satisfy the second clause in CMSC 5, no attribute of a relation in EF

can be represented in a relation in G in two different fashions. Therefore gidb

cannot have extra attributes to satisfy CMSC 1, and there must exist some

relation gef1 ∈ G s.t. gef1 ≠ gidb. The minimal relation that can ensure

completeness for ef is if namegef1 = nameef and attributesgef1 = attributesef which

is exactly what gef is from the definition of a well-formed mediated schema

(Definition 4.16 bullet 2).

Case (2): ∃/ ms ∈ MapE_F s.t. ef ∈ body(ms). In this case there are no

relations ef1 ∈ EF s.t. ef is connected to ef1 (Definition 4.7). Thus by CMSC 4,

∀ ef1 ∈ EF s.t. ef ≠ ef, there can be no relations g ∈ G s.t. ξ(ef,g) and ξ(ef1,g).

Hence there must exist some separate relation gef1 ∈ G s.t. ξ(ef, gef1). The

minimal relation that can ensure completeness for ef is if gef1 = ef, which is

exactly what gef is from the definition of a well-formed mediated schema

(Definition 4.16 bullet 2).

Putting together the two cases for GEF, GEF is minimal given CMSC 1-4.

Since GIDB is also minimal given CMSC 1-4, G is minimal given CMSC 1-4. □

4.4 Alternate Definitions of G
While we have described in depth a well-formed mediated schema (Definition 4.16), there

may be other possible criteria that users may desire to create a mediated schema. Our goal in

creating the well-formed mediated schema was to make it as general as possible, so adapting to

these alternate definitions is quite easy. In this section we discuss other desired criteria.

4.4.1 Relaxing the Mediated Schema Criteria
In this section we consider relaxing the generic Mediated Schema Criteria. Section 4.4.1.1

considers relaxing MSC 1 (Completeness). We do not consider relaxing MSCs 2 or 3, because

the intersections and components expressed in the generic case identify relations that are

defined to be relevant to the person creating the mapping. Similarly, we do not consider

relaxing MSC 4. Section 4.4.1.2 considers relaxing MSC 5 (Minimality).

99

4.4.1.1 Relaxing MSC 1: Completeness
If MSC 1 is relaxed, then there is no need to include relations in G to satisfy completeness.

Example 4.18: Assume E = {e1(a,b), e3(c,d)}, F = {f1(e,f)} and MapE_F is:

q1(x) :- e1(x,y), e3(x,t)

q1(x) :- f1(x,z) □

Consider Example 4.18. If the well-formed mediated schema definition (Definition 4.16) is

used, G contains relations q1(x,y,z,t), e1(a,b), e3(c,d). The semantics of the well-formed mediated

schema is that MapE_F is being used to express how overlapping information is accessed in the

mediated schema, but all tuples should be represented somehow in the mediated schema.

Because only relations that are mapping-included are excluded, all instances from E and F are

reachable from the mediated schema.

However, the mediated schema creator may wish to use MapE_F to express exactly which

tuples are accessible in the mediated schema. In Example 4.18 this implies that the mediated

schema contains only the relation q1(x,y,z,t). Changing G is simple; bullet 1 of Definition 4.16 is

ignored. Changing MapG_EF to satisfy this new definition is also simple; the mapping statements

created in the second bullet of Definition 4.17 are simply excluded.

4.4.1.2 Relaxing MSC 5: Minimality
One could argue that rather than having just the relations needed for G to be complete, G

should include all relations in E and F. In Example 4.18 this implies that the mediated schema

has relations q1(x,y,z,t), e1(a,b), e3(c,d), and f1(e,f). This semantics is needed if each relation in E

and F corresponds to a different potentially-interesting set of instances that is not recoverable

without all relations. After modifying G to include all relations in EF, MapG_EF does not need to

be changed at all.

4.4.2 Modifying the Interpretation of Conjunctive Mappings
One could make the case that a conjunctive mapping should not include all projection-free

components (Definition 4.13). We consider here G', a mediated schema that does not contain all

100

projection-free components. Given a mapping statement ms ∈ MapE_F and a relation g ∈ G', s.t.

ξ(ms,g), it would be unnecessary for g to contain the attributes corresponding to existential

variables in MapE_F for non-mapping-included relations in ms. However, in this interpretation of

conjunctive mappings, g would still be required to retain the attributes of mapping-included

relations.

Example 4.19. Assume the schemas and mappings in Example 4.13. Recall

that f1 is not represented separately in G because f1 is mapping-included – it is

already included in G due to the relations created as a result of MapE_F. Ignoring

MSC 5 (Minimality), whereas G contains q1(x,y,z), our initial attempt at

creating G' might be {e1(a,b), e2(c,d), q1(x), f1(e,f)}. Because all values of f1 are

not represented in G' since q1(x,y,z), is not included in G', we cannot use q1 to

provide completeness for f1, so we now must include f1 in G' as a separate

relation. However, when we consider MSC 5, regardless of the fact that we no

longer consider MapE_F to define projection-free components, q1 must be able to

represent all values of f1, or G' is not a minimal schema. Hence G' = {e1(a,b),

e2(c,d), q1(x,z)}. □

Hence, even though G' does not contain any relations for projection-free components, in the

case of mapping-included relations G' is the same as G. Otherwise, the attributes for projection-

free components are not included and Definition 4.17 is changed so that the EDBs in LVG only

include the attributes that actually occur in G'.

It is worth noting that combining the change in G' with either of the two changes in Section

4.4.1 can allow a significant simplification of MapG'_EF : if none of the relations in G that

correspond to IDB names in MapG'_EF include attributes corresponding to existential variables in

the mapping statements used to create them, MapG'_EF can be a simple GAV mapping. We

expound further on the reasons for this in Section 4.6.

101

4.5 Extensions

4.5.1 Merging More Than Two Local Sources
In this chapter we have considered creating a mediated schema for two source schemas.

However, most mediated schemas are created over more than two input schemas. There are two

main choices for extending this work to merging more than two source schemas: (1) the source

schemas can be merged all at once or (2) the schemas can be merged pair-wise. Some examples

are shown in Batini, Lenzerini and Navathe (Batini et al. 1986).

If the schemas are merged all at once, extending the definitions of a well-formed mediated

schema (Definition 4.16) and mapping (Definition 4.17) is simple; replace every occurrence of

EF in the definitions by all of the schemas over which the mediated schema is being created.

Merging the schemas pair-wise allows for greater flexibility. However, it is more

complicated as show in Example 4.20:

Example 4.20. To pair-wise merge schemas E, F, and H, begin by merging E

and F to form a new mediated schema M. M can now be merged with another

schema H to form a new schema N. We begin by merging E and F using the

following mappings

m1(x,y) :- e1(x,y,z)

m1(x,y) :- f1(w,x,y)

This would result, as shown before, in the mediated schema relation m1(w, x, y,

z) in schema M. IDB m1 could be used in the definition of a mapping statement,

n1, that describes M’s intersection with H:

n1(w,x,y) :- m1(w,x,y,z)

n1(w,x,y) :- h1(v,w,x,y)

to form the final mediated schema relation n1(v, w, x, y, z). □

Rewriting queries in this situation becomes more difficult since the definition essentially

requires composing GLAV mappings. For example, rewriting a query over N to a query over E

in Example 4.20 would require first rewriting a query over the GLAV mapping MapN_MH and

102

then composing that result with a query rewritten over the GLAV mapping MapM_EF. Composing

GLAV mappings in general is very complicated and beyond the scope of this thesis. Recent

results on this topic can be found in (Madhavan et al. 2003) and (Fagin et al. 2004).

Depending on the characteristics desired and the mappings provided, pair-wise merging of

three or more schemas can be done either by providing a mapping between the intermediate

schemas, such as MapM_G above, or by creating mappings to whichever source is logically

closest and then composing the mappings. E.g., in Example 4.20 instead of having the input be

a direct mapping MapM_H, relating M and H, the input could be a mapping MapE_H. Merging M and

H requires a mapping MapM_H, which could be formed by taking the composition of MapE_H and

MapE_M. This pair-wise method of mediated schema creation is likely to extend better to

situations where the sources involved are more fluid, such as peer data management (Aberer et

al. 2002; Arenas et al. 2003; Bernstein et al. 2002; Halevy et al. 2003; Ooi et al. 2003).

4.5.2 Expanding Conjunctive Mappings to Consider More Complicated
Queries

4.5.2.1 Allowing Relations to be in Multiple Mapping Statements
We now consider expanding our mappings to allow the same relations to be present in more

than one mapping statement. Suppose, for example, we had a mapping:

q1(x,y,z) :- e1(x,y), e2(y,z)

q1(x,y,z) :- f1(x,y,z)

q2(y,z,u) :- e2(y,z),e3(z,u)

q2(y,z,u) :- f2(y,z,u)

Note that e2 appears in the definition of both q1 and q2. What should the mediated schema be?

One choice is that each IDB represents a separate relation of interest and that the correct

semantics is to have both q1 and q2 as relations in the mediated schema.

Another choice is to assume that equality in the mapping is transitive; e.g., the mapping

specifies both that querying tuples of e2 should cause tuples of f1 to be queried and that querying

tuples of e2 should cause tuples of f2 to be queried. However, since conjunctive queries do not

disambiguate between the two choices, we do not consider them.

103

4.5.3 Limitations of Conjunctive Mappings
Thus far we have been concentrating on the ambiguities of conjunctive mappings: that is,

where the full extent of conjunctive mappings cannot be used because the semantics of the

problem is not rich enough to know what the merged result should be. On the flip side, the use

of conjunctive queries is overly restricts the relationships that can be expressed between

elements in E and F. There are a large number of things that cannot be expressed, even when we

restrict ourselves only to the domain of relational schemas:

• Relationships that express anything other than equality between attributes. For example,

SchemaSQL (Lakshmanan et al. 1996) allows attributes of one relation to be equated

with data values in another. Conjunctive queries are not rich enough to handle this kind

of a mapping.

• Conjunctive mappings are incapable of expressing foreign keys or other such

constraints. While it is true that we have artificially restricted our definition of relational

schemas to exclude such constraints, this was partially done because the conjunctive

mappings did not lead to considering them.

• In addition, an orthogonal issue is whether or not to include a separate attribute

expressing the lineage of the tuple. For example, using the inputs in Example 4.18, we

could express the lineage of q1 by having the mediated schema contain q1(x,y,z,t,n)

where n is the name of the relation that the tuple originates from.

4.6 Global-As-View and Local-As-View
We chose to use GLAV rather than either GAV or LAV mappings since neither is adequate

to express the relationships required between the mediated schema and the source schemas. In

this section we explore when the conjunctive mappings become complex enough that GAV and

LAV are not rich enough in Sections 4.6.1and 4.6.2 respectively.

104

4.6.1 Global-As-View (GAV)
In Global-As-View (GAV) each mediated relation is defined as a set of views over the

database sources (for a recent survey of GAV approaches see (Lenzerini 2002)). So, for

example, g1 might be defined as:

g1(x, y) :- e1(x, y)

g1(x, y) :- f2 (x, z), f3(z, y)

To get all of the tuples for g1 it is necessary to take the join of f2 and f3 and union those

results with the tuples in e1. GAV breaks down as a possible mapping language for our case

when there are existential variables in any of the mapping statements.

For example, take the mapping:

q19(x) :- e1(x, z)

q19(x) :- f1(x, y)

The mapping states that the concept of x is common but e1 contains additional information

about some attribute z and f1 contains additional information about some attribute y.

According to the definition of G in Section 4.3.3.1 the corresponding mediated schema

relation in G for q19 should be q19(x, y, z). A GAV definition must provide a value for each

attribute in the mediated schema relation it is defining, such as one for q19. However, there is no

conjunctive query that can define all of the attributes for q19 since the mapping indicates that the

result should be the union of the tuples, not the intersection or join. Hence GAV cannot provide

a valid view definition for this situation. While we could extend the language of GAV to be

ILOG (Hull et al. 1990) instead of Datalog, GLAV mappings work as well.

4.6.2 Local-As-View (LAV)
In LAV each source relation is defined as a conjunctive view over the mediated schema. As

an example, a source relation, e1, may be defined as a join over two mediated schema relations,

g1 and g2, as follows: e1(x) :- g1(x, z), g2(z, y). A full algorithm for how to answer queries in

LAV is given in Chapter 3. Here we provide a brief synopsis to understand what is relevant for

the purposes of this section.

105

LAV may not contain enough sources to give an equivalent answer to the user’s query. For

example, given only the mapping above (e1(x) :- g1(x, z), g2(z, y)) it is not possible to find a

source to give all of these answers for the query q8(x, y) :- g1(x, y) ; the mapping gives us only

g1 joined with g2, e.g., g1(x, z), g2(z, y). Hence in LAV queries are answered through a

maximally-contained rewriting; that is, a rewriting that gives all possible sound answers for the

query using the sources provided but the reformulated query is not guaranteed to be equivalent

to the query over the mediated schema.

As an additional consideration, data integration often operates with the open world

assumption (Definition 2.6): That is, each data source is assumed to be sound but incomplete. In

the example above, this means that e1 contains only valid tuples in g1 join g2, but it may not

contain all such tuples.

It can be shown that the maximally-contained rewriting of a conjunctive query, Q, over

conjunctive views, V, using the open world assumption can be expressed as a set of conjunctive

queries over the view. As an example, using e1 as defined above and the additional sources

e2(x, y) :- g3(x, y)

f3(x, y) :- g3(x, y)

a query q9(a, b) :- g1(a, b), g3(a, c) can be rewritten:

q9′(a, b) :- e1(a), e2(a, c)

q9′(a, b) :- e1(a), f3(a, c)

Note that (1) even though e2 and f3 have the same definition both must appear in the maximally-

contained rewriting since under the open world assumption they may contain different tuples

and (2) the rewriting is not equivalent to q9.

LAV breaks down in the context of conjunctive mappings between source schemas when the

mapping statements consist of more than one subgoal. An example of this is:

q13(x, y, z) :- e4(x, z), e5(z, y)

q13(x, y, z) :- f4(x, y, z)

The desired result again mimics the Datalog; answers to queries over q13 should consider

tuples from the join of e4 and e5 with the union of tuples from f4.

106

Classic LAV cannot map this relationship completely. In LAV each source relation must be

described as a query over the mediated schema. Hence some of the details of this relationship

could be lost by declaring the mapping to be:

e4(x, z) :- q13(x, y, z)

e5(z, y) :- q13(x, y, z)

f4(x, y, z) :- q13(x, y, z)

However, while this would allow e4 and e5 to answer some queries, it would not allow

combining them in order to answer queries about the entire mediated schema relationship. For

example, they could not answer the query qm13(x, y, z) :- q13(x, y, z).

While one can disagree over the meaning of having two mapping statements for the same

IDB predicate (union vs. join) here the mapping clearly states that the result should be the join.

4.7 Conclusions
In this chapter we described a set of criteria for creating a relational mediated schema based

on concepts from the literature and traditional metrics such as information capacity. We then

showed how to translate these criteria to a conjunctive mapping and alternative semantics that

may be desired.

The problem of merging two schemas is not limited to the creation of a relational mediated

schema. In Chapter 5 we describe how this problem can be treated more generically, both across

data models and across applications. In Chapter 6 we revisit the solution presented here and

show how to encode it in the generic solution presented in Chapter 5.

107

Chapter 5

Generic Merge

5.1 Introduction
In Chapter 4 we discussed how to create a mediated schema based on a mapping comprised

of queries. However, this is not the only situation in which two schemas must be combined in

order to create a third schema. The problem of merging schemas lies at the core of many meta-

data applications, such as view integration, mediated schema creation for data integration, and

ontology merging. In each case, two given schemas need to be combined into one. In this

chapter, we consider this merging problem for more than just relational schemas; we consider

the merging of models. A model is a formal description of a complex application artifact, such

as a database schema, an application interface, a UML model, an ontology, or a message format.

Because there are many different kinds of models and applications, this problem has been

tackled independently in specific domains many times. This chapter provides a generic

framework that can be used to merge models in all these contexts.

Combining two models requires first determining how the two models are related and then

merging the models based on those relationships. These relationships may take the form of the

conjunctive mappings in Chapter 4, or they may be given in some other format. Finding

relationships between schemas is called schema matching; it is a major topic of ongoing

research and is not covered in this thesis; see (Rahm et al. 2001) for a recent survey and (He et

al. 2003), (Kang et al. 2003) and (Dhamankar et al. 2004) for examples of work since then.

Rather, this chapter focuses on combining the models after the relationships between schemas

are established. We encapsulate the problem in an operator, Merge, which takes as input two

models, A and B, and a mapping MapA_B between them that embodies the given inter-schema

relationships. It returns a third model that is the “duplicate-free union” of A and B with respect

to MapA_B – A and B have been unioned together, but duplicates have been removed. This is not

as simple as set union because the models have structure, so the semantics of “duplicates” and

108

duplicate removal may be complex. In addition, the result of the union can manifest constraint

violations, called conflicts, that Merge must repair.

An example of the problems addressed by Merge can be seen in Figure 5.1. It shows two

representations of Actor, each of which could be a class, concept, table, etc. Models A and B are

to be merged. MapA_B is the mapping between the two; relationships relating the models are

shown by dashed lines. In this case, it seems clear that Merge is meant to collapse A.Actor and

B.Actor into a single element, and similarly for Bio. Clearly, A.ActID should be merged with

B.ActorID, but what should the resulting element be called? What about the actor’s name?

Should the merged model represent the actor’s name as one element (ActorName), two elements

(FirstName and LastName), three elements (ActorName with FirstName and LastName as

children), or some other way?

These cases of differing representations between input models are called conflicts. For the

most part, conflict resolution is independent of the representation of A and B. Yet most work on

merging schemas is data-model-specific, revisiting the same problems for ER variations

(Spaccapietra et al. 1994), XML (Beeri et al. 1999), data warehouses (Calvanese et al. 1998),

semi-structured data (Bergamaschi et al. 1999), and relational and object-oriented databases

(Buneman et al. 1992). These works, like ours, consider merging only the models, not the

instances of the models. Some models, such as ontologies and ER diagrams, have no instance

data, and merging the models is a necessary precursor to merging those models with instance

data.

Actor

First
Name

ActID Last
Name

Bio

Actor

Actor
ID

Actor
Name Bio

Model A Model BMapA_B

Figure 5.1: Examples of models to be merged

The similarities among these solutions offer an opportunity for abstraction. One important

step in this direction was an algorithm for schema merging and conflict resolution of models by

Buneman, Davidson, and Kosky (hereafter BDK) (Buneman et al. 1992). Given a set of pair-

109

wise correspondences between two models that have Is-a and Has-a relationships, BDK give a

formal definition of merge and show how to resolve a certain kind of conflict to produce a

unique result. We use their theoretical algorithm as a base, and expand the range of correspon-

dences, model representations, conflict categories, and applications, yielding a robust and

practical solution.

The main contribution of this chapter is the design of a practical generic merge operator. It

includes the following specific contributions:

• Generic requirements for merge that every design should satisfy. These requirements

differ from the ones in Chapter 4 by (1) being for any application in which merge is

used, not just creating a mediated schema for data integration (2) being for any data

model, not just relational and (3) using a more general mapping language.

• The use of an input mapping that is a first-class model, enabling us to express richer

correspondences than previous approaches.

• A characterization of when Merge can be automatic.

• A taxonomy of the conflicts that can occur and a definition of conflict resolution

strategies using the mapping’s richer correspondences.

• Experimental evaluation showing that our approach scales to a large real world

application.

• An analysis that shows our approach subsumes previous merge work.

Merge is one of the operators proposed in (Bernstein 2003) as part of Model Management, a

framework that consists of operators for manipulating models and mappings. Other Model

Management operators include: Match, which returns a mapping between two given models;

Apply, which applies a given function to all the elements of a model; and Diff, which, given two

models and a mapping, returns a model consisting of all items in the first model that are not in

the second model (Bernstein 2003). In our analysis of previous work, we sometimes refer to

other Model Management operators to show that our approach subsumes the previous work.

The chapter is structured as follows: Section 5.2 gives a precise definition of Merge. Section

5.3 describes our categorization of conflicts that arise from combining two models. Section 5.4

110

describes how to resolve conflicts in Merge, often automatically. Section 5.5 defines our merge

algorithm. Section 5.6 discusses the associativity and commutativity of Merge. Section 5.7

discusses alternate merge definitions and how to simulate one of them using Merge and other

Model Management operators. Section 5.8 evaluates Merge experimentally by merging two

large anatomy databases and conceptually by showing how our approach subsumes previous

work. Section 5.9 is the conclusion.

5.2 Problem Definition

5.2.1 Representation of Models
Defining a representation for models requires (at least) three meta-levels. Using

conventional meta-data terminology, we can have: a model, such as the database schema for a

billing application; a meta-model, which consists of the type definitions for the objects of

models, such as a meta-model that says a relational database schema consists of table

definitions, column definitions, etc.; and a meta-meta-model, which is the representation

language in which models and meta-models are expressed, for example a generic meta-meta-

model may say that a schema could consist of objects, where an object could be a table, XML

element, or a class definition.

The goal of our merge operator, Merge, is to merge two models based on a mapping between

them. For now, we discuss Merge using a small meta-meta-model (which we extend in Section

5.4.1). It consists of the following:

1. Elements with semi-structured properties (i.e., for an element X, there may exist 0, 1, or

many p properties). Elements are the first class objects in a model. Three properties are

required: Name, ID, and History. Name is self-explanatory. ID is the element’s unique

identifier, used only by the Model Management system. History describes the last

operator that acted on the element.

111

2. Binary, directed, kinded11 relationships with cardinality constraints. A relationship is a

connection between two elements. We enumerate relationship kinds in Section 5.4.1.

Relationships can be either explicitly present in the model or implied according to the

meta-meta-model’s rules. Such a rule might say that “a is a b” and “b is a c” implies

that “a is a c.” Relationship cardinalities are omitted from the figures for ease of

exposition.

These models are much more general than the relational models we have been using before

now. In Chapter 6 we show how to encode relational schemas in this representation. Figure 5.1

shows an example model in this small meta-meta-model; elements are shown as nodes, the

value of the Name property is the node’s label, mapping relationships are edges with

arrowheads, and sub-element relationships are diamond-headed edges.

5.2.2 Merge Inputs
The inputs to Merge are the following:

1. Two models: A and B.

2. A mapping, MapA_B, which is a model that defines how A and B are related.

3. An optional designation that one of A or B is the preferred model. When Merge faces a

choice that is not specified in the mapping, it chooses the option from the preferred

model, if there is one.

4. Optional overrides for default Merge behavior (explained further below).

The input mapping is more expressive than just simple equalities; it is a first-class model

consisting of elements and relationships. Some of its elements are mapping elements. A

mapping element is like any other element except it also is the origin of a mapping relationship,

M(x, y), which specifies that the origin element, x, represents the destination element, y. So a

11 We use the word “kinded” to denote that the relationships are of different named kinds.

We use “kinded” rather than “typed” to avoid confusion with the fact that there is a kind of

relationship called “Type-of”.

112

given mapping element, x, represents all elements y such that M(x, y). All elements of MapA_B in

Figure 5.1 are mapping elements. In MapA_B in Figure 5.3 AllBios is not a mapping element.

There are two kinds of mapping relationships: equality and similarity. An equality mapping

relationship Me asserts that for all y1, y2 ∈ Y such that Me(x, y1) and Me(x, y2), y1=y2. All

elements represented by the same equality mapping relationship are said to correspond to one

another. A similarity mapping relationship Ms asserts that the set of all y ∈ Y such that Ms(x, y)

are related through a complex expression that is not interpreted by Merge. This expression is the

value of x’s Expression property, which is a property of all mapping elements that are the origin

of mapping similarity relationships. Equality mapping relationships are represented by double-

dashed-lines (=); similarity mapping relationships are represented by double-wavy-lines (≈).

Figure 5.2 shows a mapping that mostly consists of mapping equality relationships but also has

mapping similarity relationships originating from element m2.

Whereas the conjunctive mappings we used in Chapter 4 have instance-level semantics,

these mappings are meant to be more generic, and thus they are uninterpreted. In Chapter 6 we

show how to encode conjunctive mappings in this representation.

Note that in (Pottinger et al. 2003) instead of having mapping equality relationships and

mapping similarity relationships, we distinguished between equality vs. similarity of elements x

∈ MapE_F and y ∈ E or F by (1) a relationship M(x, y) indicating that there was a mapping

relationship that originated at x and ended at y and (2) the “how related” property of x denoting

whether the elements are related by equality or similarity.

Actor

First
NameActID Last

NameBio

Actor

Actor
ID

Actor
Name Bio

Model A Model BMapA_B'

m1

m2 m3 m4

m5 m6

Figure 5.2: A mapping using both equality mapping relationships (the double-dashed-
lines) and similarity mapping relationships (the double-wavy lines)

113

Given this rich mapping structure, complex relationships can be defined between elements in

A and B, not just simple correspondences. For example, the mapping in Figure 5.3 (which is

between the same models in Figure 5.1) shows that the FirstName and LastName of model B

should be sub-elements of the ActorName element of model A; this is expressed by element m4,

which represents ActorName in A and contains elements m5 and m6 which represent FirstName

and LastName respectively in B.

Actor

First
NameActID Last

NameBio

Actor

Actor
ID

Actor
Name Bio

Model A Model BMapA_B

m1

m3 m4

m5 m6

All
Bios

m7
Name=
“Official”

m8
Name=

“Unofficial”

Figure 5.3: A more complicated mapping between the models in Figure 5.1

A mapping can also contain non-mapping elements that do not represent elements in either A

or B but help describe how elements in A and B are related, such as AllBios in Figure 5.3. The

mapping MapA_B in Figure 5.3 indicates that A.Bio should be renamed “Official,” B.Bio should be

renamed “Unofficial,” and both are contained in a new element, AllBios, that appears only in

MapA_B.

A mapping can express similarity between elements in A and B. For example, if A.Bio is a

French translation of B.Bio and this needs to be reflected explicitly in the merged model, they

could be connected by similarity mapping relationship to a mapping element with an

Expression property “A.Bio = English2French(B.Bio)” not shown in Figure 5.3.

Prior algorithms, whose mappings are not first-class models, cannot express these relation-

ships. Often, they require user intervention during Merge to incorporate relationships that are

more complicated than simply equating two elements. Merge can encode simple

correspondences in a mapping, so it can function even if a first-class mapping is unavailable.

114

5.2.3 Merge Semantics
The output of Merge is a model that retains all non-duplicated information in A, B, and

MapA_B; it collapses information that MapA_B declares redundant. If we consider the mapping to

be a third model, this definition corresponds to the least-upper-bound defined in BDK

(Buneman et al. 1992), “a schema that presents all the information of the schemas being

merged, but no additional information.” We require Merge to be generic in the sense that it does

not require its inputs or outputs to satisfy any given meta-model. We consider another merge

definition in Section 5.7. In Chapter 6, we show how Merge compares with the conjunctive

mediated schema creation in Chapter 4.

We now define the semantics of Merge more precisely. The function “Merge(A, MapA_B, B)

 G” merges two models A and B based on a mapping MapA_B, which describes how A and B

are related, producing a new model G that satisfies the following Generic Merge Requirements

(GMRs). 12

1. Element preservation: Each element in the input has a corresponding element in G.

Formally: each element e ∈ A ∪ B ∪ MapA_B corresponds to exactly one element e′ ∈

G. We define this correspondence as χ(e, e′); informally χ(e, e′) represents that e′, is

derived in part from e.

2. Equality preservation: Input elements are mapped to the same element in G if and

only if they are equal in the mapping, where equality in the mapping is transitive.

Formally: two elements s, t ∈ A ∪ B are said to be equal in MapA_B if there is an

element v ∈ A ∪ B and an equality mapping element x such that Me(x, s) and Me(x, v),

where either v = t or v is equal to t in MapA_B. If two elements s, t ∈ A ∪ B are equal in

MapA_B, then there exists a unique element e ∈ G such that χ(s, e) and χ(t, e). If s and t

are not equal in MapA_B, then there is no such e, so s and t correspond to different

elements in G.

12 Whereas the Mediated Schema Criteria in Chapter 4 were interpreted with respect to the

semantics that they are used in, the GMRs are left uninterpreted so that they are more generic.

115

3. Relationship preservation: Each input relationship is explicitly in or implied by G.

Formally: for each relationship R(s, t) ∈ A ∪ B ∪ MapA_B where s, t ∈ A ∪ B ∪ MapA_B

and R is not a mapping relationship Me(s, t) or Ms(s, t) with s ∈ MapA_B, if χ(s, s′) and

χ(t, t′), then either s′ = t′, R(s′, t′) ∈ G, or R(s′, t′) is implied in G.

4. Similarity preservation: Elements that are declared to be similar (but not equal) to one

another in MapA_B retain their separate identity in G and are related to each other by

some relationship. More formally, for each pair of elements s, t ∈ A ∪ B, where s and t

are the destination of similarity mapping relationships originating at a mapping element,

x, in MapA_B and s and t are not equal, there exist elements e, s′, t′ ∈ G and a meta-

model specific non-mapping relationship R such that χ(s, s′), χ(t, t′), R(e, s′), R(e, t′),

χ(x, e), and e includes an expression relating s and t.

5. Meta-meta-model constraint satisfaction: G satisfies all constraints of the meta-meta-

model. G may include elements and relationships in addition to those specified above

that help it satisfy these constraints. Note that we do not require G to conform to any

meta-model.

6. Extraneous item prohibition: Other than the elements and relationships specified

above, no additional elements or relationships exist in G.

7. Property preservation: For each element e ∈ G, e has property p if and only if ∃ t ∈ A

∪ B ∪ MapA_B s.t. χ(t, e) and t has property p.

8. Value preference: The value, v, of a property p, for an element e is denoted p(e) = v.

For each e ∈ G, p(e) is chosen from mapping elements corresponding to e if possible,

else from the preferred model if possible, else from any element that corresponds to e.

More formally:

• T = {t | χ(t, e)}

• J ={j ∈ (T ∩ MapA_B) | p(j) is defined}

• K ={k ∈ (T ∩ the preferred model) | p(k) is defined}

• N ={n ∈ T | p(n) is defined}

o If J ≠ ∅ then p(e) = p(j) for some j ∈ J

116

o Else if K ≠ ∅, then p(e) = p(k) for some k ∈ K

o Else p(e) = p(n) for some n ∈ N

GMR 8 illustrates our overall conflict resolution strategy: give preference first to the option

specified in the mapping (i.e., the explicit user input), then to the preferred model, else choose a

value from one of the input elements. The ID and History properties are determined differently

as discussed in Section 5.5.

For example, the result of merging the models in Figure 5.3 is shown in Figure 5.4. Note that

the relationships Actor-FirstName and Actor-LastName in model B and the Actor-Bio

relationships in both models are implied by transitivity in Figure 5.4, so GMR 3 is satisfied.

ActorID AllBios ActorName

LastNameFirstName

Actor

UnofficialOfficial

Figure 5.4: The result of performing the merge in Figure 5.3

The GMRs are not always satisfiable. For example, if there are constraints on the cardinality

of relationships that are incident to an element, then there may be no way to preserve all

relationships. Depending on the relationships and meta-meta-model constraints, there may be an

automatic resolution, manual resolution or no possible resolution that satisfies the GMRs. In

Section 5.4 we present conflict resolutions for a set of common constraints and discuss when

such resolution can be automatic. We also specify default resolution strategies for each category

of constraint and note when resolution can be made to satisfy the GMRs outlined above.

5.3 Conflict Resolution
Determining the merged model requires resolving conflicts in the input. We categorize

conflicts based on the meta-level at which they occur:

• Representation conflicts (Section 5.3.1) are caused by conflicting representations of

the same real world concept – a conflict at the model level. For example, one

representation conflict is that in Figure 5.1 model A represents Name by one element,

117

ActorName, while model B represents it by two elements, FirstName and LastName.

Resolving these conflicts requires manual user intervention. Such conflict resolution is

necessary for many uses of mappings – not just Merge. Hence we isolate it from Merge

by requiring it to be captured in the input mapping.

• Meta-model conflicts (Section 5.3.2) are caused by the constraints in the meta-model

(e.g., SQL DDL). For example, suppose that in Figure 5.3 Actor is a SQL table in model

A, an XML database in model B, and a SQL table in the merged model. If the mapping

in Figure 5.3 is used, there will be a meta-model conflict in the merge result because

SQL DDL has no concept of sub-column. This does not violate any principle about the

generic merged outcome. Rather, it is meta-model-specific. Enforcing such constraints

is inherently non-generic, so we resolve them using a separate operator after Merge.

• Fundamental conflicts (Section 5.3.3) are caused by constraints in the meta-meta-

model. These conflicts must be resolved to ensure that the merge result conforms to the

meta-meta-model. For example, if a model had an element with two types, this would

be a conflict in many meta-models, not just in one. Unlike representation conflicts,

fundamental conflicts must be resolved by Merge since subsequent operators count on

the fact that the Merge result is a well-formed model.

5.3.1 Representation Conflicts
A representation conflict arises when two models describe the same concept in different

ways. For example, in Figure 5.1 model A represents Name by one element, ActorName, while

model B represents it by two elements, FirstName and LastName. After merging the two

models, should Name be represented by one, two or three elements? The decision is application

dependent.

Merge resolves representation conflicts using the input mapping. Having a mapping that is a

model allows us to specify that elements in models A and B are either:

• The same, by being the destination of equality mapping relationships that originate at

the same mapping element. Merge can collapse these elements into one element that

includes all relationships incident to the elements in the conflicting representations.

118

• Related by relationships and elements in our meta-meta-model. E.g., we can model

FirstName and LastName in A as sub-elements of ActorName in B by the mapping

shown in Figure 5.3.

• Related in some more complex fashion that we cannot represent using our meta-meta-

model’s relationship kinds. E.g., we can represent that ActorName equals the

concatenation of FirstName and LastName by a mapping element that has similarity

mapping relationships incident to all three and an Expression property describing the

concatenation. Resolution can be done by a later operator that understands the

semantics of Expression.

The mapping can also specify property values. For example, in Figure 5.3 MapA_B specifies

that the elements contained by AllBios should be named Official and Unofficial.

Solving representation conflicts has been a focus of the ontology merging literature (Noy et

al. 1999; Noy et al. 2000) and of database schema merging (Batini et al. 1986; Spaccapietra et

al. 1994).

5.3.2 Meta-model Conflicts
A meta-model conflict occurs when the merge result violates a meta-model-specific (e.g.,

SQL DDL) constraint. For example, suppose that in Figure 5.3 Actor is a SQL table in model A,

an XML database in model B, and a SQL table in the merged model. If the mapping in Figure

5.3 is used, there will be a meta-model conflict in the merge result because SQL DDL has no

concept of sub-column. This does not violate any principle about the generic merged outcome.

Rather, it is meta-model-specific. Traditionally, merge results are required to conform to a given

meta-model during the merge. However, since Merge is meta-model independent, we do not

resolve this category of conflict in Merge. Instead, we break out coercion as a separate step, so

that Merge remains generic and the coercion step can be used independently of Merge. We

therefore introduce an operator, EnforceContraints, that coerces a model to obey a set of

constraints. This operator is necessarily meta-model specific. However, it may be possible to

implement it in a generic way, driven by a declarative specification of each meta-model’s

constraints. EnforceContraints would enforce other constraints, such as integrity constraints, as

well. Preliminary work suggests that some of the work created for the purpose of translating

119

between data models can be leveraged in order to create this operator. In particular some of the

work by Atzeni and Torlone in viewing meta-models as consisting of different patterns and

changing a schema from one meta-model to another (Atzeni et al. 1996) seems promising, as

does some of the similar work in M(DM) (Barsalou et al. 1992).

5.3.3 Fundamental Conflicts
The third and final category of conflict is called a fundamental conflict. It occurs above the

meta-model level at the meta-meta-model level, the representation to which all models must

adhere. A fundamental conflict occurs when the result of Merge would not be a model due to

violations of the meta-meta-model. This is unacceptable because later operators would be

unable to manipulate it.

One possible meta-meta-model constraint is that an element has at most one type. We call

this the one-type restriction. Given this constraint, an element with two types manifests a

fundamental conflict. For example in the model fragments in Figure 5.5(a) ZipCode has two

types: Integer and String. In the merge result in Figure 5.5(b), the two ZipCode elements are col-

lapsed into one element. But the type elements remain separate, so ZipCode is the origin of two

type relationships.

ZipCode ZipCode

Integer String

m1 ZipCode

Integer String

(a) (b)

Figure 5.5: A merge that violates the one-type restriction

Since Merge must return a well-formed instance of the meta-meta-model, it must resolve

fundamental conflicts. Resolution rules for some fundamental conflicts have been proposed,

such as (Buneman et al. 1992) for the one-type restriction. We have identified other kinds of

fundamental conflicts and resolution rules for them which we describe in Section 5.4 and

incorporate into our generic Merge.

120

Alternate merge semantics might ignore GMR 1 (Element preservation) and resolve

fundamental conflicts by requiring the mapping to include preferences to resolve the conflict.

For example, the mapping in Figure 5.5 could specify that the type of ZipCode is String, and

Merge should ignore the conflicting information that ZipCode is of type Integer. In general we

do not recommend this strategy because it loses information (e.g., that ZipCode is of type

Integer). However, since Merge allows users to specify alternate resolutions, as discussed in

Section 5.4, this strategy can be easily incorporated by specifying it as the resolution strategy

for one-type conflicts.

The choice of meta-meta-model, particularly the constraints on the relationships, is therefore

integrally related to Merge. However, since we are skeptical that there is a meta-meta-model

capable of solving all meta-data management problems, we chose the following approach: We

define the properties of Merge using very few assumptions about the meta-meta-model  only

that it consists of elements and relationships. We then define fundamental conflict resolution for

a meta-meta-model that includes many of the popular semantic modeling constructs. Finally we

describe other typical meta-meta-model conflicts and provide conflict resolution strategies for

them.

5.4 Resolving Fundamental Conflicts
The meta-meta-models we consider are refinements of the one described in Section 5.2.1.

Section 5.4.1 describes Vanilla, an extended entity-relationship-style meta-meta-model that

includes many popular semantic modeling constructs. Section 5.4.2 describes our merging

strategy, both for Vanilla and for relationship constraints that may be used in other meta-meta-

models.

5.4.1 The Vanilla Meta-Meta-Model
Elements are first class objects with semi-structured properties (i.e., for an element X, there

may exist 0, 1, or many p properties). Name, ID, and History are the only required properties.

These are properties of the element viewed as an instance, not as a template for instances. For

example, suppose an element e represents a class definition, such as Person. Viewing e as an

instance, it has a Name property whose value is “Person,” and might have properties

121

CreatedBy, LastModifiedBy, Comments, and IsInstantiable. To enable instances of Person to

have a property called Name (thereby viewing e as a template for an instance), we create a

relationship from e to another element, a, where Name(a) = “Name.”

Relationships are binary, directed, kinded, and have an optional cardinality constraint. They

are also ordered, as in XML, but the order can be ignored in meta-models that do not use it. A

relationship kind is one of "Associates", "Contains", "Has-a", "Is-a", and "Type-of" (described

below). Reflexive relationships are disallowed. We assume that between any two elements there

is at most one relationship of a given kind and cardinality pairing.

Bob

Alice

 Column

Table

 Column

Key

 Student

Person

 Column

Street

(a)

Associates

(b)

Contains

(c)

Has-a

(d)

Is-a

(e)

Type-of

Figure 5.6: Different relationship kinds in Vanilla

There are cases where the previous restriction is inconvenient. For example, one might want

two kinds of Has-a relationships between "Movie" and "Person", namely "director" and "actor".

This can be handled either by specializing Person into two sub-elements, or by reifying the

director and actor Has-a relationships (i.e., turn the relationships into objects), which is the

choice used in Vanilla. We disallow multiple named relationships of the same cardinality and

kind between two elements because it leads to a need for correspondences between named

relationships of different models. E.g., if the director and actor relationships are called

"réalisatuer" and "acteur" in another model, we need a relationship between director and

réalisatuer and between actor and acteur. These correspondences would complicate the meta-

meta-model. The same expressiveness is gained by reifying relationships, thereby avoiding this

complexity. Merge does not treat these reified relationships specially; since the GMRs require

all elements and relationships to appear in the merged model, they will appear in the merged

model as well.

122

A relationship R(x, y) between elements x and y may be a mapping similarity or equality

relationship, Me(x, y) or Ms(x, y), described earlier, or one of the following:

• Associates - A(x, y) means x is associated with y. This is the weakest relationship that

can be expressed. It has no constraints or special semantics. Figure 5(a) says that Alice

is Associated with Bob.

• Contains - C(x, y) means container x contains containee y. Intuitively, a containee

cannot exist on its own; it is a part of its container element. Operationally, this means

that if all of the containers of an element, y, are deleted, then y must be deleted.

Contains is a transitive relationship and must be acyclic. If C(x, y) and x is in a model

M, then y is in M as well. Figure 5.6(b) says that Table Contains Column.

• Has-a - H(x, y) means x has a sub-component y (sometimes called “weak aggregation”).

Has-a is weaker than Contains in that it does not propagate delete and can be cyclic.

Figure 5.6(c) says that Key Has-a Column.

• Is-a - I(x, y) means x is a specialization of y. Like Contains, Is-a is transitive, acyclic,

and implies model membership. Figure 5.6(d) says that Student Is-a Person.

• Type-of - T(x, y) means x is of type y. Each element can be the origin of at most one

Type-of relationship (the one-type restriction described in Section 5.3.3). Figure 5.6(e)

says that the Type-of Street is Column.

Vanilla has the following cross-kind-relationship implications that imply relationships based

on explicit ones:

• If T(q, r) and I(r, s) then T(q, s)

• If I(p, q) and H(q, r) then H(p, r)

• If I(p, q) and C(q, r) then C(p, r)

• If C(p, q) and I(q, r) then C(p, r)

• If H(p, q) and I(q, r) then H(p, r)

A model L is a triple (EL, Root(L), ReL) where EL is the set of elements in L, Root(L) ∈ EL is

the root of L, and ReL is the set of relationships in L. Given a set of elements E and relationships

Re (which may include mapping relationships), membership in L is determined by applying the

123

following rules to Root(L) ∈ E, adding existing model elements and relationships until a fix

point is reached (i.e., until applying each rule results in no new relationships):

• I(x, y), x ∈ EL y ∈ EL; if an element x is in the model, then its generalization y is in

the model

• C(x, y), x ∈ EL y ∈ EL; if a container x is in the model, then its containee y is in the

model

• T(x, y), x ∈ EL y ∈ EL; if an element x is in the model, then its type y is in the model

• R(x, y), x ∈ EL, y ∈ EL R(x, y) ∈ ReL

• Me(x, y), x ∈ EL Me(x, y) ∈ ReL

• Ms(x, y), x ∈ EL Ms(x, y) ∈ ReL

Since a mapping is a model its elements must be connected by relationships indicating

model containment (Contains, Is-a, or Type-of). However, since these relationships obfuscate

the mapping, we often omit them from figures when they do not affect Merge’s behavior.

In what follows, when we say relationships are “implied”, we mean “implied by transitivity

and cross-kind-relationship implication.”

We define two models to be equivalent if they are identical after all implied relationships are

added to each of them until fixpoint is reached (i.e., applying each rule results in no new

relationships).

A minimal covering of a model is an equivalent model that has no edge that is implied by the

union of the others. A model can have more than one minimal covering. For example, the model

in Figure 5.7(a) is a minimal covering of the model in Figure 5.7(b).

To ensure that the merge result G is a model, we require that Root(MapA_B) is a mapping

element with Me(Root(MapA_B), Root(A)) and Me(Root(MapA_B), Root(B)), and that Root(MapA_B)

is the origin of no other mapping relationships.

124

Movie

Comedy

Slapstick

Movie

Comedy

Slapstick

(a) Model M (b) Model N

Figure 5.7: Model M is a minimal covering of model N

5.4.2 Meta-Meta-Model Relationship Characteristics and Conflict
Resolution

This section explores resolution of fundamental conflicts in Merge with respect to both

Vanilla and other meta-meta-models: what features lead to an automatic Merge, when manual

intervention is required, and default resolutions. The resolution strategies proposed here are

incorporated in the Merge algorithm in Section 5.5. Since the default resolution may be

inadequate due to application specific requirements, Merge allows the user to either (1) specify

an alternative function to apply for each conflict resolution category or (2) resolve the conflict

manually.

Vanilla has only two fundamental constraints (i.e., that can lead to fundamental conflicts):

(1), the Is-a and Contains relationships must be acyclic and (2) the one-type restriction. These

fundamental conflicts can be resolved fully automatically in Vanilla.

5.4.2.1 Relationship-Element Cardinality Constraints
Many meta-meta-models restrict some kinds of relationships to a maximum or minimum

number of occurrences incident to a given element. For example, the one-type restriction says

that no element can be the origin of more than one Type-of relationship. Such restrictions can

specify minima and/or maxima on origins or destinations of a relationship of a given kind.

Cardinality Constraints in Vanilla - Merge resolves one-type conflicts using a customization of

the BDK algorithm (Buneman et al. 1992) for Vanilla; a discussion of the change can be found

in Appendix C. Recall Figure 5.5 where the merged ZipCode element has both Integer and

125

String types. The BDK resolution creates a new type that inherits from both Integer and String

and replaces the two Type-of relationships from ZipCode by one Type-of relationship to the

new type, as shown in Figure 5.8. Note that both of the original relationships (ZipCode is of

type Integer and String) are implied.

ZipCode
Integer String

NewType

Figure 5.8: Resolving the one-type conflict of Figure 5.5

This creates a new element, NewType in Figure 5.8, whose Name, ID, and History properties

must be determined. The ID property is assigned an unused ID value, and Name is set to be the

names of the elements it inherits from, delineated by a slash; e.g., NewType in Figure 5.8 is

named “Integer/String.” The History property records why the element came into existence, in

this case, that Merge created it from the elements Integer and String. As with any other conflict

resolution, this behavior can be overridden.

This approach to resolving one-type conflicts is an example of a more general approach,

which is the one we use as a default: to resolve a conflict, alter explicit relationships so that they

are still implied and the GMRs are still satisfied. Thus, the more implication rules in the meta-

meta-model, the easier conflict resolution is.

Requiring that G, the output of Merge, is a model is a form of a minimum element-

relationship cardinality; by Vanilla’s definition, a model G satisfies model membership if all

elements of G are reachable from G’s root by following containment relationships: Is-a,

Contains, and Type-of. Hence, each element must be the origin or destination of at least one

such relationship (depending on the relationship containment semantics). Ignoring conflict reso-

lution, we know that G satisfies this constraint:

• χ(Root(A), Root(G)), χ(Root(B), Root(G)), χ(Root(MapA_B), Root(G)) from the input and

GMR 2 (Equality preservation).

126

• Root(G) is not the destination of any relationships (and hence is a candidate to be root)

because of GMR 6 (Extraneous item prohibition) and because it only corresponds to

Root(A), Root(B), and Root(MapA_B) which likewise are roots.

• Each element g ∈ G can be determined to be a member of the model with root Root(G):

Each element e such that χ(e, g) must be a member of A, B, or MapA_B. Assume without

loss of generality that e ∈ A. Then there must be a path P of elements and relationships

from Root(A) to e that determines that e is in A. By GMR 1 (Element preservation) and

GMR 3 (Relationship preservation), a corresponding path P′ must exist in G, and hence

g is a member of the model with root Root(G).

Hence, conflict resolution notwithstanding, G is guaranteed to satisfy model membership.

After conflict resolution for Vanilla, G still satisfies model membership; the BDK solution to

the one-type restriction only adds relationships and elements that satisfy model containment. As

shown in Section 5.4.2.2, the acyclic resolution only collapses a cycle, which cannot disturb the

model membership of the remaining element.

Cardinality Constraints in General - There are two kinds of relationship-element cardinality

constraints: for some n: (1) at least n relationships of a given kind must exist (minimality

constraints) and (2) at most n relationships of a given kind may exist (maximality constraints).

Since Merge (excluding conflict resolution) preserves all relationships specified in the input,

the merged model is guaranteed to preserve minimality constraints. For example, one potential

minimality constraint is that each element must be the origin of one Type-of relationship. If this

were the case, then each of the input models, A, B, and MapA_B would have to obey the

constraint. Hence each element in A, B, and MapA_B would be the origin of at least one Type-of

relationship. Since Merge preserves the relationships incident to each element, each element in

G is also the origin of at least one Type-of relationship. Conflict resolution may break this

property, so conflict resolution strategies must consider these kinds of constraints.

More care is required for a maximality constraint, such as the one-type restriction. If it

occurs in a meta-meta-model, the generic merge attempts resolution by removing redundant

relationships. Next, the default Merge resolution will look for a cross-kind implication rule that

can resolve the conflict (i.e., apply the default resolution strategy). If no such rule exists, then

we know of no way to resolve the conflict while still adhering to the GMRs. To continue using

127

the one-type restriction as an example, first we calculate a minimal covering of the merged

model and see if it still has a one-type restriction conflict. If so, then we apply a cross-kind

implication rule (if T(q, r) and I(r, s) then T(q, s)) which allows us to resolve the conflict and still

satisfy the GMRs.

5.4.2.2 Acyclicity
Many meta-meta-models require some relationship kinds to be acyclic. In Vanilla, Is-a and

Contains must be acyclic. In this section, we first consider acyclic constraints in Vanilla and

then acyclicity constraints in general.

Acyclicity in Vanilla - Merging the example in Figure 5.9 (a) would result in Figure 5.9 (b)

which has a cycle between elements a and b. Since Is-a is transitive, a cycle of Is-a relationships

implies equality of all of the elements in the cycle. Thus Merge’s default solution is to collapse

the cycle into a single element. As with all conflicts, users can override with a function or

manual resolution. To satisfy GMR 7 (Property preservation), the resulting merged element

contains the union of all properties from the combined elements. GMR 8 (Value preference)

dictates the value of the merged element’s properties.

a

b

b

a

a

b

(a) (b)

Figure 5.9: Merging the models in (a) causes the cycle in (b)

Acyclicity Constraints in General - If the constrained relationship kind is not transitive,

collapsing the cycle would not retain the desired semantics in general (although it does work for

cycles of length two). The default resolution is to see if any cross-kind-relationship implications

allow all relationships to exist implicitly without violating the acyclicity constraint. If so, the

conflict can be resolved automatically. Without such a relationship implication it is impossible

to merge the two models while retaining all of the relationships; either some default resolution

strategy must be applied that does not retain all relationships, or human intervention is required.

128

5.4.2.3 Other Relationship Conflicts
The following are conflicts that may occur in meta-meta-models other than Vanilla:

• Certain relationship kinds many not be allowed to span meta-levels or Is-a-levels. For

example, an Is-a hierarchy may not cross meta-levels, or a Type-of relationship may not

cross Is-a levels.

• If a meta-meta-model allows only one relationship of a given kind between a pair of

elements, the cardinality of the relationship must be resolved if there is a conflict. For

example, in Figure 5.10 what should be the cardinality of the Contains relationship

between Actor and ActID? 1:n? m:1? m:n? One could argue that it should be m:n

because this is the most general, however this may not be the desired semantics. Any

resolution of this conflict is going to lose information and therefore will not satisfy

GMR 3 (Relationship preservation), so no generic resolution can satisfy the GMRs.

Actor

ActID

Actor

ActID =

=

1:n m:1

Figure 5.10: Merging multiple cardinalities

• If only one set of specializations of an element may be declared disjoint, merging two

orthogonal such sets requires conflict resolution, e.g., if actors are specialized as

living/dead in one model and male/female in another.

5.5 The Merge Algorithm
This section describes an algorithm for Merge that satisfies the GMRs; an implementation of

this algorithm is discussed in Section 5.8.1.

Definition 5.1: (Merge).

1. Initialize the merge result G to ∅.

2. Elements: Induce an equivalence relation by grouping the elements of A,

B, and MapA_B. Initially each element is in its own group. Then:

129

a. If a relationship Me(d, e) exists between an element e ∈ (A ∪ B)

and a mapping element d ∈ MapA_B, then combine the groups

containing d and e.

b. After iterating (a) to a fix point, create a new element in G for each

group.

3. Element Properties: Let e be a merged element in G corresponding to a

group I. The value v of property p of e, p(e) = v, is defined as follows:

a. The properties of e are the union of the properties of the elements

of I. Merge determines the values of properties of e other than

History and ID as follows:

J = {j ∈ (I ∩ MapA_B) | p(j) is defined}

K = {k ∈ (I ∩ the preferred model) | p(k) is defined}

N = {n ∈ I | p(n) is defined}

i. If J ≠ ∅, then p(e) = p(j) for some j ∈ J

ii. Else if K ≠ ∅, then p(e) = p(k) for some k ∈ K

iii. Else p(e) = p(n) for some n ∈ N

By definition of N, some value for each property of e must exist. In

(i) – (iii) if more than one value is possible, then one is chosen

arbitrarily.

b. Property ID(e) is set to an unused ID value. Property History(e)

describes the last action on e. It contains the operator used (in this

case, Merge) and the ID of each element in I. This implicitly

connects the Merge result to the input models and mapping without

the existence of an explicit mapping between them.

130

4. Relationships: For every two elements e′ and f′ in G that correspond to

distinct groups E and F, where E and F do not contain elements that are the

origin of similarity mapping relationships, if there exists e ∈ E and f ∈ f

such that R(e, f) is of kind t and has cardinality c, then create a (single)

relationship R(e′, f′) of kind t and cardinality c. Reflexive mapping

relationships (i.e., mapping relationships between elements that have been

collapsed) are excluded since they no longer serve a purpose. For example,

without this exception, after the Merge in Figure 5.3 is performed, the

mapping relationship between elements ActorName and m4 would be

represented by a reflexive mapping relationship with both relationship ends

on ActorName. However, this relationship is redundant, so we eliminate it

from G.

a. Replace each similarity mapping relationship, Ms, whose origin is

m by a Has-a relationship whose origin is e and whose destination

is the element of G that corresponds to Ms’s destination’s group.

For example, if the two Bio elements in Figure 5.1 were connected

by similarity mapping relationships instead of equality mapping

relationships, the result would be as in Figure 5.11.

b. Relationships originating from an element are ordered as follows:

i. First those corresponding to relationships in MapA_B,

ii. Then those corresponding to relationships in the preferred

model but not in MapA_B,

iii. Then all other relationships. Within each of the above

categories, relationships appear in the order they appear in

the input. Finally, Merge removes implied relationships

from G until a minimal covering remains.

5. Fundamental conflict resolution: After steps (1) – (4) above, G is a

duplicate-free union of A, B, and MapA_B, but it may have fundamental

131

conflicts (i.e., it may not satisfy meta-meta-model constraints). For each

fundamental conflict, if a special resolution strategy has been defined, then

apply it. If not, apply the default resolution strategy described in Section

5.4.2 □

Actor

Actor
ID Name

Sim

Bio Bio

Actor

Figure 5.11: Results of Merge on Figure 5.1 if the Bio elements were connected by
similarity mapping relationships

Resolving one conflict may interfere with another, or even create another. This does not

occur in Vanilla; resolving a one-type conflict does create two Is-a relationships, but they

cannot be cyclic since their origin is new and thus cannot be the destination of another Is-a rela-

tionship. However, if interference between conflict resolution steps is a concern in another

meta-meta-model, then Merge can apply a priority scheme based on an ordered list of conflict

resolutions. The conflict resolutions are then applied until reaching fixpoint. Since resolving

one-type conflicts cannot create cycles in Vanilla, conflict resolution in Vanilla is guaranteed to

terminate. However, conflict resolution rules in other meta-meta-models must be examined to

avoid infinite loops.

The algorithm described above satisfies the GMRs in Section 5.2.3. We can see this as

follows:

• Step 1 (Initialization) initializes G to the empty set.

• Step 2 (Elements) enforces GMR 1 (Element preservation). It also enforces the first

direction of GMR 2 (Equality preservation); elements equated by MapA_B are equated in

G. No other work is performed in step 2.

132

• Step 3 (Element properties) performs exactly the work in GMR 7 (Property

preservation) and GMR 8 (Value preference) with the exceptions of the refinements in

steps 3b and 3c for the ID and History properties. No other work is performed in step 3.

• In step 4 (Relationships), step 4a enforces GMR 3 (Relationship preservation) and step

4b enforces that a relationship exists between elements mapped as similar, as required

in GMR 4 (Similarity preservation). Step 4d removes only relationships that are

considered redundant by the meta-meta-model. Step 4c (relationship ordering) is the

only step not explicitly covered by a GMR, and it does not interfere with any other

GMRs.

• Step 5 (Fundamental conflict resolution) enforces GMR 5 (Meta-meta-model constraint

satisfaction) and performs no other work.

If special resolution strategies in step 5 do nothing to violate any GMR or equate any

elements not already equated, GMRs 2 (Equality preservation), 4 (Similarity preservation) and 6

(Extraneous item prohibition) are satisfied, and all GMRs are satisfied. Other than special

properties (ID and History) and the ordering of relationships, no additional work is performed

beyond what is needed to satisfy the GMRs.

5.6 Algebraic Properties of Merge
Since meta-data operations seldom occur in isolation, the properties of sequences of merges

must be examined, namely associativity and commutativity. Section 5.6.1 examines the

commutativity of Merge. Section 5.6.2 examines the associativity of Merge. Section 5.6.3

discusses commutativity and associativity when the order of merges affects the choice of

mappings that are used to drive each merge. For ease of exposition we only consider cases

where the outcome is uniquely specified by the inputs (e.g., exactly one correct choice of value

exists for each property). To fully explore these properties we rely on the definition of two other

Model Management operators: Match and Compose. Describing them in detail is beyond the

scope of this thesis. The Match used here is simple since it is based on only the ID and History

properties of elements; any Match algorithm (e.g., (Madhavan et al. 2001)) should be able to

create the required mappings. We describe a basic Compose operator in Appendix D.

133

5.6.1 Commutativity
We say that Merge is commutative if, for any pair of models M and N and any mapping

MapM_N between them, Merge(M, MapM_N, N) = Merge(N, MapM_N, M) = G. We assume that (1)

the same model is the preferred model in each Merge and (2) if there are unspecified choices to

be made (e.g., choosing a property value from among several possibilities, each of which is

allowed by Merge) the same choice is made in both Merges. We begin by showing that

commutativity holds for Merge as specified by the GMRs and then show that it holds for the

Merge algorithm specified in Section 5.5.

The commutativity of Merge as specified by the GMRs in Section 5.2.3 follows directly

from their definition, since they are symmetric: Rules 1-4 and 6-7 are inherently symmetric.

Rule 8 (Value preference) is symmetric as long as the preferred model is the same in both

Merges and unspecified choices are the same in both Merges, as stipulated in (2) above. Rule 5

is the resolution of fundamental conflicts. In Vanilla this is symmetric since collapsing all

cycles and resolving one type violations using the BDK algorithm are both symmetric13. Hence

in Vanilla the GMRs are symmetric and thus commutative. However, Merge in other meta-

meta-models may not be commutative, depending on their conflicts resolution rules.

The algorithm specification in Section 5.5 is commutative as well; again we show this from

the algorithm’s symmetry. Steps 1 (Initialize) and 2 (Elements) are symmetric. Steps 3 (Element

properties) and 4 (Relationships) are symmetric as long as the preferred model is the same in

both merges and arbitrary choices are the same, as stipulated in (2) above. Step 5 (Fundamental

conflict resolution) is symmetric if the conflict resolutions are symmetric. As argued above, this

holds for conflict resolution in Vanilla, and hence the Merge algorithm is symmetric and thus

commutative in Vanilla.

5.6.2 Associativity
We say that two models are isomorphic if there is a 1:1 onto correspondence between their

elements, and they have the same relationships and properties (but the values of their properties

13 Appendix C gives the details of our modifications to the BDK algorithm.

134

and the ordering of their relationships may differ). Merge is associative if, for any three models

M, N, and O, and any two mappings MapM_N (between M and N) and MapN_O (between N and O),

R is isomorphic to S where:
P = Merge(M, MapM_N, N)

Q = Merge(N, MapN_O, O)

MapP_N = Match(P, N)

MapN_Q = Match(N, Q)

R = Merge(P, Compose(MapP_N, MapN_O), O)

S = Merge(M, Compose(MapM_N, MapN_Q), Q)

Match(P, N) and Match(N, Q) are meant to compute χ as defined in the GMRs by matching

the IDs of N with the IDs in the History property of P and Q respectively. N, P, Q, Match(P, N),

and Match(N, Q) are shown in Figure 5.12.

MapM_N MapN_OM

QP

N O

MapP_N MapN_Q

Figure 5.12: Showing associativity requires intermediate mappings

The Compose operator takes a mapping between models A and B and a mapping between

models B and C and returns the composed mapping between A and C. Consider

Compose(MapP_N, MapN_O). Intuitively it must transfer each mapping relationship of MapN_O

having a destination in N to a relationship having a destination in P. Since MapP_N maps each

element in N to exactly one element in P, any Compose operator will provide this functionality

(such as the one described in Appendix D). Compose(MapM_N, MapN_Q) operates similarly.

A morphism is a set of directed morphism relationships from elements of one model to

elements of another. To show that the two final merged models R and S are isomorphic, we

define a morphism φ(R S) and show that (i) φ is 1:1 and onto, (ii) R(x, y) ∈ RR if and only if

R(φ(x), φ(y)) ∈ RS, and (iii) x has property p if and only if φ(x) has property p. We initially

consider the result of Merge ignoring the fundamental conflict resolution. We phrase the

argument in terms of the GMRs. We do not repeat the argument for the algorithm, for the

following reason: The end of Section 5.5 shows that the algorithm maintains all of the GMRs

135

and that the only additional work done by the merge algorithm beyond the GMRs is (1) to order

the relationships and (2) set the value of the ID property. The latter two additions do not affect

the isomorphism, so we do not repeat the associativity argument for the algorithm.

We create φ as follows. First we create the morphisms shown as arrows in Figure 5.13 by

using Match and Compose the same way they were used to create R and S. We refer to the

morphisms in Figure 5.13 that start at R as MorphR and the morphisms that end at S as MorphS.

Next we create five morphisms from R to S by composing MorphR with MorphS. φ is the

duplicate-free union of the five morphisms from the previous step.

MapM_N MapN_OM

SR

N O

Figure 5.13: Initial morphisms created to show associativity

We want to show that φ is an isomorphism from R to S; this will show that R and S are

isomorphic to one another and hence that Merge is associative. We first show that φ is onto (i.e.,

for all y ∈ S, there exists x ∈ R such that φ(x) = y):

1. Let T be the set of elements in M, MapM_N, N, MapN_O, and O.

2. From GMRs 1 (Element preservation) and 2 (Equality preservation) and the definitions of

Match and Compose, we know that each element in T is the destination of exactly one

morphism relationship in MorphR. I.e., each element in M, MapM_N, N, MapN_O, and O

corresponds to exactly one element in the merged model. From GMR 6 (Extraneous item

prohibition) and the definitions of Match and Compose we know that each element in R is

the origin of at least one morphism relationship to T. I.e., each element in R must

correspond to some element in M, MapM_N, N, MapN_O, or O. Recall that we are not

considering conflict resolution, so there will be no elements introduced due to GMR 5

(Meta-meta-model constraint satisfaction).

136

3. Similarly each element of T is the origin of exactly one morphism relationship in MorphS

and each element in S is the destination of at least one MorphS morphism relationship from

T.

4. Hence from steps 2 and 3 and the definitions of Match and Compose, φ is onto.

Next we show that φ is 1:1(i.e., for all x1, x2 ∈ R, φ(x1) = φ(x2) x1 = x2).

5. From the definition of φ, the only way for φ to not be 1:1 is if:

a. Some element r ∈ R is the origin of more than one morphism relationship in MorphR or

b. Some element s ∈ S is the destination of more than one morphism relationship in

MorphS.

6. If statement 5a is true, then from GMR 2 (Equality preservation) and the definitions of

Match and Compose, r must be the result of merging some elements from T that were equal

in some mapping. Similarly, if statement 5b is true, then from GMR 2 (Equality

preservation) and the definitions of Match and Compose, s must be the result of merging

some elements from T that were equal in some mapping. We now must show that the

equating of the elements is associative and hence for element r in step 5a, each morphism

relationship in φ that begins with r will end at the same element in S, thus providing a

duplicate morphism relationship and not one that contradicts that φ is 1:1.

7. The equating of elements is associative; this follows directly from the grouping strategy in

Merge step 2 (Element properties).

a. If elements are not equated by a mapping, then they will not be merged into the same

object.

b. Hence the only interesting case is when elements from three different models are

mapped to one another; take the example of elements r ∈ M, t ∈ N, v ∈ O as shown in

Figure 5.14. Given the mapping elements m1 and m3, r, t, and v are merged into one

element, regardless of which order the models are combined. If, however, both

relationships implied similarity, then all three elements will exist. If one relationship

implied similarity (say r similar to t) and the other equality (say t equals v), then the

137

resulting elements are the same regardless of order; elements representing r and t are

combined, and two elements representing t and v still exist separately.

8. Hence the equating of the elements is associative and φ is 1:1.

Now that we have shown that φ is 1:1, we have one step in showing φ is an isomorphism

from R to S. Next we must show that R(x, y) ∈ RR if and only if R(φ(x), φ(y)) ∈RS. That is, a

relationship exists in R if and only if a corresponding relationship exists in S. GMR 3

(Relationship preservation) guarantees that each relationship R input to Merge has a

corresponding relationship R′ in the merged model unless R’s origin and destinations have been

collapsed into a single element. Similarly the Match and Compose definitions preserve the

elements, and a relationship R(x, y) ∈ RR if and only if R(φ(x), φ(y)) ∈ RS

The last step to show that φ is an isomorphism is to show that each element r ∈ R has

property p if and only if φ(r) has property p. GMR 7 (Property preservation) implies that each

element in the merged model has a property p if and only if some input element that it

corresponds to has property p. From the argument showing that φ is 1:1, we know that the

equating of elements is associative, and hence r ∈ R has property p if and only if φ(r) has

property p. Hence φ is an isomorphism from R to S and Merge is associative.

Merge is not associative with respect to the values of properties. Their value is determined as

explained in GMR 8 (Value preference). After a sequence of Merges, the final value of a

property may depend on the order in which the Merges are executed. This occurs because the

value assigned by the last Merge in the sequence can overwrite the values of any Merges that

preceded it. For example, in Figure 5.14 the mapping element m1 in MapM_N specifies the value

a for property Bio. In addition, the Merge definition specifies that O is the preferred model for

the merge of N and O. If the sequence of operators is:
Merge(M, MapM_N, N) P

Merge(P, Compose(Match(P, N), MapN_O), O) R

Then in model P the Bio property as a result of merging r and t will have the Bio value a

since it is specified in m1. In the second Merge, model O will be the preferred model, and the

value of the Bio property of the resulting element will be c.

138

r
Bio = a

v
Bio = c

t
Bio = b

Model M MapM_N Model OModel N MapN_O

m1
Bio = a m3

Preferred Model = Model O

Figure 5.14: A series of mappings and models

However, if the sequence of operators is:
Merge(N, MapN_O, O) Q

Merge(M, Compose(MapM_N, Match(N, Q)), Q) S

Then the Bio property of the element that corresponds to t and v will have the value c since

model O is the preferred model. Since the value of Bio in mapping element m1 is a, the final

result will have a as the value of Bio instead of c as in the first example.

Unless Merge can express a total preference between models – which is impractical – it will

not be associative with respect to the final values of properties.

Hence, ignoring conflict resolution, Merge is associative. Since all of the fundamental

conflict resolution in Vanilla is associative, Merge is associative for Vanilla as well (see

(Buneman et al. 1992) for references on the associativity of the BDK).

5.6.3 Mapping-independent Commutativity and Associativity
We say that Merge is mapping-independent commutative (respectively associative) if it is

commutative (respectively associative) even when the order of Merge operations affects the

choice of mapping that is used in each Merge. For example, consider the models and mappings

in Figure 5.15. In (a), MapM_N is the only mapping that equates elements s and u. When MapM_N

is used, as in (b), elements s and u are combined. However, when MapM_N is not used, as in (c),

s and u remain as separate elements.

139

r

w

v

u

t

s

Model M MapM_N Model OModel N MapN_O

MapMO

m1

m2

m3

m4
(a)

r/t/v

ws/u

Model P

r/t/v

ws

Model Q

u
(b) (c)

Figure 5.15: A series of merges (a) A set of models and mappings. (b) the result of merging
the models using MapM_N and MapN_O. (c) the results of merging the models using MapN_O
and MapM_O.

When is Merge guaranteed to be mapping-independent associative and commutative?

Ignoring meta-meta-model constraint satisfaction, given a set of models, S (e.g., {M, N, O} in

Figure 5.15), and two sets of mappings MappingsA (e.g., {MapM_N, MapN_O}) and MappingsB

(e.g., {MapN_O, MapM_O}) over S, in order for Merge to produce isomorphic results it must be

the case that:

• Elements r and v are equated to one another either directly or transitively in MappingsA

if and only if they are equated to one another directly or transitively in MappingsB; r can

be declared equal to t and t equal to v in one set of mappings and in another set of

mappings r can be declared equal to v and v equal to t.

• Elements r and v are declared to be “similar to” another element in MappingsA if and

only if they are declared to be “similar to” the same element in MappingsB.

• Additional elements and relationships are introduced in MappingsA if and only if

corresponding elements and relationships are introduced in MappingsB.

140

Informally, we know that these are the only requirements because:

• Merge is associative and commutative if the mappings are the same, as shown above.

• Mappings have three roles with respect to Merge; they can (1) declare elements to be

equal (2) declare elements to be similar or (3) add in additional elements and

relationships. We address each of these three roles below:

 Equality: Because equality is transitive, we only need to enforce that elements

that are equated in one set of mappings are also equated in the other.

 Similarity: MappingsA and MappingsB must both declare that the same

elements are similar if they are to be isomorphic to each other. However, since

similarity is not transitive, if similarity is used then there is an implicit

restriction on the sets of mappings; if MappingsA declares an element in model

S1 to be similar to an element in model S2, then MappingsB must contain a

mapping between S1 and S2 in order for the similarity relationship to be

expressed. We do not need to consider the more complicated case when one

mapping declares two elements to be similar through a mapping element, s, and

then another mapping element, t, declares s to be similar to some other element

because by our problem definition the set of mappings cannot map results of

previous Merges.

 Additional elements and relationships: Finally, because mappings can also

add elements and relationships, if MappingsA adds an element or a relationship,

then MappingsB must add a corresponding element or relationship as well.

However, as with similarity, there may be an implicit restriction on the set of

mappings; if MappingsA declares an element in model S1 to contain an element

in model S2, then MappingsB must contain a mapping between S1 and S2 in

order for the Contains relationship to be expressed. Again, because the set of

mappings cannot map results of previous merges, we need not consider more

complicated cases.

141

5.7 Alternate Merge Definitions
Many alternate merge definitions can be implemented using our Merge operator in

combination with other Model Management operators. In this section we consider three-way

merge, a common merging problem that occurs in file versioning and computer supported

collaborative work (Balasubramaniam et al. 1998). Given a model and two different modified

versions of it, the goal is to merge the modified versions into one model.

5.7.1 Merge Only Elements Specifically Mentioned in the Mapping
Some applications want to merge only elements specifically mentioned in the mapping. One

such example is Subject Oriented Programming (Ossher et al. 1996), which uses Merge to

combine classes. After classes are combined, some variables should not be merged because they

are private. This formulation of Merge can be implemented by:

DeepCopy(MapA_B) MapA_B′, A′, B′

Apply(A′, a function to delete elements not mapped by MapA_B′)

Apply(B′, a function to delete elements not mapped by MapA_B′)

Merge(A′, MapA_B′, B′) G

where DeepCopy is a variant of the Copy operator that copies the mapping as well as the

models that it connects (Bernstein et al. 2000).

5.7.2 Three-Way Merge
Three-way merge is a common merging problem that occurs in file versioning and computer

supported collaborative work (Balasubramaniam et al. 1998). Given a model and two different

modified versions of it, the goal is to merge the modified versions into one model.

Model OModel A
a

db

Model B
a

cb

d

a

cb d

Figure 5.16: A three-way merge assuming name equality. Model O is the common
ancestor of models A and B.

142

For example, consider Figure 5.16 where model O has been modified in two different ways

to create both models A and B. Suppose there are mappings between O and A and between O

and B based on element name equivalence. Notice that in A, element d has been moved to be a

child of element b, and in B the element c has been deleted.

There are several variations of three-way merge which arise due to different treatments of an

element that was modified in one model and deleted or modified in the other. One variation

assumes that elements deleted in one model but modified in the other should be included in the

merged model. More precisely it assumes that the merged model L should have the following

properties:

• If an element e was added in A or B, then e is in L.

• If an element e is present and unmodified in A, B, and O, then e is in L.

• If an element e was deleted in A or B and unmodified or deleted in the other, then e is

not in L.

• If an element e was deleted in A or B and modified in the other, then e is in L (because

by modifying e the model designer has shown that e is still of interest).

• If an element e was modified in A or B and unmodified in the other, then the modified

version of e is in L.

• If an element e was modified in both A and B, then conflict resolution is needed to

determine what is in L.

This 3-way merge can be implemented as follows. We determine equality for elements in A

and B based on the History property.

1. Create a mapping MapA_B between A and B such that:

a. If a ∈ A and b ∈ B are equal, a mapping element expressing equality between a

and b is added to MapA_B.

b. If an element e exists in each of O, A, and B, and a property of e has been

changed in exactly one of A or B, then MapA_B has the changed property value

in the mapping element corresponding to e.

143

2. Create model D such that if an element or relationship has been deleted in one of A or B

and is unmodified in the other, it is included in D.

3. G = Merge(A, MapA_B, B).

4. MapG_D = Match(G, D) – based on the History property

5. Return Diff(G, D, MapG_D).

This three-way merge definition does not handle a new element x created independently in

both A and B. To allow this, a new mapping could be created to relate A.x and B.x.

Creating the information contained in MapA_B and D can be done using a sequence of Model

Management operators. Appendix E shows this in detail.

Most algorithms for three-way merge have (1) a “preferred” model that breaks ties and (2) a

method for resolving conflicts such as when an element is deleted in one descendent model and

modified in the other. We support the former with Merge’s preferred model the latter by

applying the Model Management Apply operator.

5.8 Evaluation
Our evaluation has two main goals: Section 5.8.1 shows that Merge can be applied to a real

world application where it scales to large models and discovers relevant conflicts and Section

5.8.2 shows that our Merge definition subsumes previous work.

5.8.1 Applying Merge to Large Ontologies
We tested Merge on a large bioinformatics application to show that Merge scales to large

models and uncovers real conflicts caused by merging such large models. The problem is to

merge two models of human anatomy: the Foundational Model of Anatomy (FMA) (Rosse et al.

1998), which is designed to model anatomy in great detail, and the GALEN Common Reference

Model (Rector et al. 1994), which is designed to aid clinical applications. These are very large

models. As expressed in a variant of Vanilla, FMA contains 895,307 elements and 2,032,020

relationships, and GALEN contains 155,307 elements and 569,384 relationships; both of the

models were larger in the Vanilla variant than in their “native” format since many of their

144

relationships required reification. The two models have significant structural differences (e.g.,

some concepts expressed in FMA by three elements are expressed in GALEN by four

elements), so merging the two is challenging. Note that there is no additional instance

information for either model. Merge was implemented generically in approximately 7,500 lines

of C# with SQL Server as a permanent store.

A database researcher familiar with FMA, GALEN, and Model Management took 13 weeks

to import the models into a variant of Vanilla and create a mapping consisting of 6265

correspondences. The mapping is small relative to the model sizes since the models have

different goals and thus different contents. It contains only 1-to-1 correspondences, so we were

unable to test our hypothesis that having the mapping as a first class model enables more

accurate merging. Hence we concentrated on three other issues: (1) few changes to Vanilla and

Merge would be needed to merge the models, even though Merge was not tailored for this

domain, (2) Merge would function on models this large, and (3) the merged result would not be

simply read from the mapping (i.e., the conflicts that we anticipated would occur).

For the first issue, the researcher needed to add to Vanilla two relationship kinds: Contains-

t(x, y), which says that x can contain instances of y, and Has-t(x, y), which says that x can have

instances of y. Neither relationship kind led to new fundamental conflicts Also, the one-type

restriction was not relevant to the anatomists. The only change to Merge’s default behavior was

to list the two new relationship kinds and ignore the one-type restriction.

Merging these models took approximately 20 hours on a Pentium III 866 with 1 GB of

RAM. This is an acceptable amount of time since Merge would only be run occasionally in a

relatively long project (13 weeks in our case). The merge result before fundamental conflict

resolution had 1,045,411 elements and 2,590,969 relationships. 9,096 relationships were

duplicates, and 1,339 had origins and destinations that had been equated.

Since the input mapping only uses 1-to-1 correspondences, we would expect most elements

in the merged model to correspond to exactly two elements: one in FMA and one in GALEN.

However, 2344 merged elements correspond to exactly three elements in FMA and GALEN,

and 623 correspond to more than 3 elements. One merged element corresponds to 1215

elements of GALEN and FMA.

145

The anatomists verified that the specialization hierarchy should be acyclic, as it was in both

inputs. However, before conflict resolution the merge result contained 338 cycles in the

specialization hierarchy, most of length 2. One was of length 18.

The anatomists agreed that the result of the merge was useful both as a final result, assuming

that the input mapping was perfect, and as a tool for determining possible flaws in the input

mapping. Exploring the former is a largely manual process and is the subject of ongoing

medical informatics research (Mork et al. 2004).

5.8.2 Comparison to Previous Approaches
There has been considerable work on merge in other contexts and applications. An important

result of our work is that it subsumes previous literature on merge. In this section we show how

Merge, assisted by other Model Management operators, can implement previous approaches to

generic merging (Section 5.8.2.1), view integration (Section 5.8.2.2), and ontology merging

(Section 5.8.2.3) even though it is not tailored to their meta-models.

5.8.2.1 Generic Merging Algorithms
BDK provides the basis for our work: their algorithm creates the duplicate free union of two

models based on name equality of the models’ elements. Their meta-meta-model contains

elements with a name property and two relationship kinds, Is-A and Has-a, where Has-a must

obey the one-type restriction.

Essentially Merge encompasses all of the BDK work by taking the duplicate free union of

two models and then applying the one-type conflict resolution. Their work considers no other

meta-meta-model conflicts, and no other resolutions when their solution to the one-type conflict

is inappropriate. In addition, BDK cannot resolve representation conflicts because it lacks the

explicit mapping that allows it to do so. Further details of how Merge corresponds to the BDK

algorithm can be found in Appendix C.

Rondo (Melnik et al. 2003) is a Model Management system prototype that includes an

alternate Merge definition based entirely on equality mappings. Two elements can be declared

to be equal, and each 1-1 mapping relationship can specify a preference for one element over

another. Like our Merge and BDK’s, Rondo essentially creates the duplicate-free union of the

146

elements and relationships involved. Some conflicts require removing elements or relationships

from the merged model (e.g., if a SQL column is in two tables in a merge result, it must be

deleted from one of them). Just as our Merge resolves such meta-model conflicts later, Rondo

does such resolutions in a separate operator.

Our Merge is richer than Rondo’s in several respects:

1. It can resolve representation conflicts more precisely, since the input mapping structure

can relate elements in some fashion other than equivalence.

2. It can resolve conflicts that require the creation of additional elements and relationships

rather than pushing the work to a subsequent manual step.

3. By specifying that a choice is first taken from the mapping, then the preferred model,

and then any model, it allows for some preferences to be made once per Merge in

addition to those made at each mapping element

5.8.2.2 View Integration
View integration is the problem of combining multiple user views into a unified schema

(Batini et al. 1986). This problem has been studied in many contexts (Beeri et al. 1999;

Bergamaschi et al. 1999; Biskup et al. 1986; Calvanese et al. 1998; Larson et al. 1989; Shu et al.

1975; Song et al. 1996). View integration algorithms (1) ensure the merged model contains all

of the objects in the two original models, (2) reconcile representation conflicts in the views

(e.g., if a table in one view is matched with a column in another), and (3) require user input to

guide the merge. Batini, Lenzerini, and Navathe (Batini et al. 1986) also survey algorithms for

creating mediated schemas for data integration, which require the same processes as those for

view integration.

Spaccapietra and Parent have a well known algorithm (Spaccapietra et al. 1994) that consists

of a set of rules and a prescribed order in which to apply them. Their meta-meta-model, ERC+,

has three different object types: attributes, entities, and relations. An entity is an object that is of

interest on its own. An attribute describes data that is only of interest while the object it

characterizes exists. A relation describes how objects in the model interact. ERC+ has three

kinds of relationships: Is-a, Has-a, and May-be-a, which means that an object may be of that

type.

147

Vanilla can encode ERC+ by representing attributes, entities and relations as elements.

ERC+ Is-a relationships are encoded as Vanilla Is-a relationships. ERC+ Has-a relationships are

encoded as Vanilla Contains relationships (the semantics are the same). To encode in Vanilla

the May-be-a relationships originating at an element e, we create a new type t such that Type-

of(e, t) and for all f such that e May-be-a f, Is-a(f, t).

The Spaccapietra and Parent algorithm for merging models can be implemented using Model

Management by encoding their conflict resolution rules either directly into Merge or in

mappings.

Below, we summarize each of their rules and how it is covered by GMRs to merge two

ERC+ diagrams A and B to create a new diagram, G. Again we use χ(e, e′) to say that e ∈ A ∪

B corresponds to an element e′ ∈ G.

1. Objects integration – If a ∈ A, b ∈ B, a = b, and both a and b are not attributes, then add

one object g to G such that χ(a, g) and χ(b, g). Also, if a and b are of differing types,

then g should be an entity. This corresponds to GMR 1 (Element preservation) plus an

application of the EnforceConstraints operator to coerce the type of objects of uncertain

type into entities.

2. Links integration – If there exist relationships R(p, c) and R(p′, c′), where p, c ∈ A, p′,

c′ ∈ B, p = p′, c = c′, χ(p, g), χ(p′, g), χ(c, t), and χ(c′, t) (i.e., two parent-child pairs are

mapped to one another), where neither g nor t are attributes, then R(g, t) is added to G.

This is covered by GMR 3 (Relationship preservation).

3. Paths integration rule - Exclude implied relationships from the merged model. This is

covered by GMR 3 (Relationship preservation) and Merge algorithm step 4d

(Relationships: removing implied relationships). If the user indicates other (non-

implied) redundant relationships, they must be either removed outside Merge to avoid

violating GMR 3 (Relationship preservation) or expressed by an element representing

an integrity constraint in the mapping and hence in the merge result.

4. Integration of attributes of corresponding objects – If there exist relationships R(p, c)

and R(p′, c′) where p, c ∈ A, p′, c′ ∈ B, p = p′, c = c′, χ(p, g), χ(p′, g) (i.e., two parent-

148

child pairs are mapped to one another), and c and c′ are attributes, then add an attribute t

to G such that χ(c, t), χ(c′, t) and R(g, t). This is covered by GMRs 2 and 3 (Equality and

Relationship preservation).

5. Attributes with path integration – if for some attributes c ∈ A and c′ ∈ B, c = c′, there is

no relationship R such that R(p, c) and R(p′, c′) where p = p′ (i.e., c and c′ have

different parents), add an element g to G such that χ(c, g), χ(c′, g), and add all

relationships necessary to attach g to the merged model. If one of the relationship paths

is implied and the other is not, add only the non-implied path. This is covered by GMRs

1 and 3 (Element and Relationship preservation).

6. Add objects and links without correspondent – All objects and relationships that do not

correspond to anything else are added without a correspondent. This is covered by

GMR 1 (Element preservation) and 3 (Relationship preservation).

5.8.2.3 Ontology Merging
The merging of ontologies is another model merging scenario. An ontology is a domain

theory that specifies a domain-specific vocabulary of objects and a set of relationships that hold

among the items in the vocabulary (Fikes 1996). In general, an ontology can be viewed as a

graph of hierarchical objects that have specific attributes and constraints on those attributes and

objects. A frame-based ontology specifies a domain-specific vocabulary of objects and a set of

relationships among them; the objects may have properties and relationships with other objects.

The two relationships are Has-a and Is-a. Ontologies include constraints (called facets), but they

were ignored by all algorithms that we studied. We describe here PROMPT (Noy et al. 2000),

a.k.a. SMART (Noy et al. 1999), which combines ontology matching and merging.

PROMPT focuses on driving the match, since once the match has been found, their merge is

straightforward. As in Merge, their merging and matching begin by including all objects and

relationships from both models. As the match proceeds, objects that are matched to one another

are collapsed into a single object. Then PROMPT suggests that objects, properties, and relation-

ships that are related to the merged objects may match (e.g., if two objects each with a “color”

property have been merged, it suggests matching those “color” properties).

149

Like many merge algorithms, PROMPT includes the notion of a preferred model. It also has

two modes, override and merge. In override mode PROMPT chooses the option from the

preferred model, while in merge mode the user is prompted for input.

PROMPT tracks its state with two lists: Conflicts and ToDo. Conflicts lists the current

model’s conflicts with the meta-model. ToDo keeps track of suggested matches. A more

complete description of the PROMPT algorithm is shown in Appendix F.

Our algorithm allows us to provide as much merging support as PROMPT. In the merge of

two models, A and B, to create a new model G, PROMPT has the following merge functionality,

which we relate to our GMRs. We consider PROMPT’s match functionality to be outside

Merge’s scope.

1. Each set of objects O ∈ A ∪ B whose objects have been matched to each other

correspond to one object in G. This is covered by GMR 2 (Equality preservation).

2. Each object o ∈ A ∪ B that has not been matched to some other object corresponds to

its own object in G. This is covered by GMR 2 (Equality preservation).

3. An object g ∈ G consists of all of the properties of the objects in A or B that correspond

to it. This is covered by GMR 7 (Property preservation).

4. If a conflict exists on some property’s name or value, it is resolved either (1) by the

user, corresponding to the user input in Merge’s mapping or (2) by choosing from the

“preferred” model. This is covered by GMR 8 (Value preference).

Hence, given the input mapping, our algorithm provides a superset of PROMPT’s merge

functionality.

A similar tool is provided by the Chimæra system (McGuinness et al. 2000), part the

Ontolingua Server (Farquhar et al. 1996) from Stanford’s Knowledge Systems Laboratory.

However, their tool concentrates almost entirely on Match rather than the problem of Merge.

Specifically, their goal was to build a tool that “focuses the attention of the editor on particular

portions of the ontology that are semantically interconnected and in need of repair or further

merging.” After discovering parts of an ontology (model) that need further merging, their

algorithm operates much like the first step of ours; the two objects that have been equated are

150

now combined into one object and their properties and relationships with other objects must be

combined.

FCA (Stumme et al. 2001) from Stumme and Maedche at the Institute AIFB University of

Karlsruhe merges ontologies based on a lattice approach; they perform a match (in the terms of

Model Management) or an alignment (in the terms of Noy and Musen’s description of ontology

operations) automatically. They examine a slightly easier problem because in addition to not

considering facets (as is the case with SMART and Chimæra), they also do not consider slots.

The lattice describes both the structure of the merged document and which elements in the

ontology match according to the classes’ semantic content. The created lattice may contain both

nodes that are labeled with more than one class (indicating that merging may be required) and

nodes with no corresponding class in the original ontology (suggesting that the user may want

to insert a new class). The lattices are found automatically (Stumme et al. 2000), but the

merging is largely manual. A similar lattice approach is taken in comparing user viewpoints in

building a system in (Sabetzadeh et al. 2003).

5.8.2.4 Object-Oriented Programming Languages
There are two aspects of programming languages that can benefit from a merge operator:

multiple inheritance and paradigms where classes are combined to provide more information

about a topic, such as subject-oriented programming. In multiple inheritance, when a class C

inherits from more than one class, the resulting members of C are essentially the union of the

members of its parents. A conflict occurs if C inherits from classes A and B and both A and B

have a member x with different definitions. In this case, the classes are said to be incompatible

and an error is returned (Bracha et al. 1992). This corresponds in Model Management to the

user being unable to find an acceptable mapping.

Subject-oriented programming (Harrison et al. 1993; Ossher et al. 1992; Ossher et al. 1996)

is a programming paradigm that focuses on subjects rather than objects. A subject is a

description of a number of objects and operations from one point of view. To determine how the

subjects interact, their components are merged. A similar notion is aspect-oriented

programming (Kiczales et al. 1997).

151

The key to subject-oriented programming is that different users need different information

and functionality for the same subject. For example, a car rental agency requires very different

information than a department of motor vehicles; a car rental agency needs to know when the

car is rented, and a department of motor vehicles needs to know who licenses the car. Neither of

these is inherent in the notion of a car. Thus Ossher and Harrison introduce the notion of

subjects. A subject is “a collection of state and behavior specifications reflecting a particular

gestalt, a perception of the world at large, such as is seen by a particular application or tool”

(Harrison et al. 1993).

Each subject is composed of a number of the following types of objects:

• Classes: The classes that are defined or used by the subject. Classes contain both

member variables and member functions. Some member variables may be private to a

subject, that is they should not be merged if the subject is merged.

• Operations: The signatures (i.e., function name, parameters, and return type) of the

functions used by the subject.

• Mapping: A list of how to map the (operation, class) pairs to the functions that need to

be executed when a subject’s operations are called; more than one function may need to

be computed in order to provide one operation for a subject.

Figure 5.17 presents a series of subjects modeling cars and drivers and the composition of

those subjects from (Ossher et al. 1996). In the combined subject, CarRenting, the class of

Renter has been augmented by the variable “license” since Renter in the subject Renting

matched the class Driver in the subject DMV. Also, the mapping for the operation (Check,

Renter), which initially only called Renter.Check() now calls both Renter.Check() and

Driver.GoodDriver(); information on whether a renter is a good prospect can be gained from

both the information stored by the rental agency and in the information stored by the department

of motor vehicles.

152

Operation ReturnItem()
Operation Check()

(ReturnItem, Rental) Rental.ReturnItem()
(Check, Renter) Renter.Check()

Rental

Car

Renter

Driver

Car

period item renter

tagNumber model damage

creditCard

Operations

Mapping

Classes
Subject Renting

license

licensePlate model

Subject DMV
Operations

Mapping

Operation GoodDriver()

(GoodDriver, Driver) Driver.GoodDriver()

Rental

Car

Renter

period item renter

tagNumber model damage

creditCard

Classes

license

(ReturnItem, Rental) Rental.ReturnItem()
(Check, Renter) Renter.Check() AND
 Driver.GoodDriver()
(GoodDriver, Renter) Driver.GoodDriver()

Mapping

Operation ReturnItem()
Operation Check()
Operation GoodDriver()

Operations
Composed Subject CarRenting

Classes

Figure 5.17: Subjects being composed (Ossher et al. 1996). Only member variables are
shown in the class diagrams. The Renter class in the Renting subject is merged with the
Driver class in the DMV subject to form the Renter class in the composed subject
CarRenting. The return type of the operations is not shown.

Subjects are specified in a normal object-oriented programming language, such as C++, and

compiled to binaries. A compositor composes the subjects into the executables; thus the

compositor is most similar to merging in Model Management. Like all other forms of Merge

that we have explored, the compositor requires input to tell whether the objects are related to

one another.

Merging subjects requires merging classes, operations and mappings. We show below how

each can be encoded in Vanilla and how Model Management operators can provide the same

functionality as the compositor.

Classes, their member variables and member functions can all be encoded in Vanilla as

elements. Vanilla encodes that a class has certain member variables or functions by saying that

a Contains relationship exists from the class element to the member variable/function. For

example, we would model the Rental class from the Renting subject shown in Figure 5.17 in

153

Vanilla as shown in Figure 5.18. Since some variables are private to a subject (i.e., they should

not be merged if the subject is merged), we use the Merge variant in Section 5.7.1 (merge only

elements specifically mentioned in the mapping) to perform the merge.

Rental

renteritemperiod

Figure 5.18: Modeling in Vanilla the Rental class from the Renter subject in Figure 5.17

Merging operations and mappings is very similar to merging classes, but resolving conflicts

is different. Each operation is encoded in Vanilla as an element that has sub-elements that

specify (1) the parameters, and (2) the return type. Each mapping is encoded as an element that

has a sub-element for (1) the subject – class pairs to be executed when an operation is called,

and (2) the class and operation to which it belongs. Each of these sub-elements may be broken

into other sub-elements if necessary. In most merge algorithms, the conflicting information

results in taking the values of one of the elements and ignoring the other. Merging the mappings

and operations in subject-oriented programming requires the user to specify the appropriate

value, but it is quite often the combination of some, if not all, of the values of the properties.

Ossher and Harrison provide a number of different resolutions for this. This decision must be

specified by the match (since it requires user intervention to discover the appropriate resolution)

and hence would be encoded in the input mapping to Merge.

5.8.2.5 Computer Supported Collaborative Work
Both computer supported collaborative work (CSCW) (Berger et al. 1998; Berlage et al.

1993; Munson et al. 1994) and file merging (Balasubramaniam et al. 1998) generally involve

three-way merge as described in Section 5.7.2. In these contexts there is a common ancestor and

the two later models must be merged together based on the relationship between them and their

common ancestor. With the added information from the common ancestor, the initial matching

is much simpler, but the merging can be much more difficult.

154

The work in this area that is the most flexible and automatic is that by Munson and Dewan

(Munson et al. 1994). They propose a system that, depending on the parameters that are

specified, can be either manual, semi-automatic, or fully automatic. Users who choose a more

automatic system are likely to receive a merged result that does not correspond to exactly what

they want, but they will not have to manually guide the system. The model that they look at,

while applicable to files, considers the general case of objects by encapsulating the differences

in the object types. It is their automatic algorithm from which we take the correctness criteria

for three-way merge in Section 5.7.2.

5.9 Conclusions
In this chapter we defined the Merge operator for model merging, both generically and for a

specific meta-meta-model, Vanilla. We defined and classified the conflicts that arise in

combining two models and described when conflicts from different classes must be resolved.

For conflicts that must be resolved in Merge, we gave resolution strategies, both for Vanilla and

in general. We evaluated Merge by showing how Merge in Vanilla can be used to subsume

some previous merging algorithms and by testing Merge on two large real-world ontologies.

In the next chapter, Chapter 6, we show how the Merge result, when applied to models and

mappings that are templates for instances, has an appropriate interpretation on instances by

using Merge and other Model Management operators to implement the mediated schema

creation for conjunctive mappings as defined in Chapter 4. This will demonstrate the usefulness

of Merge in specific applications such as data integration.

155

Chapter 6

Using Merge to Create a Mediated Schema

6.1 Using Merge with Conjunctive Mappings
In Chapter 5 we described a generic merge algorithm, Merge (Definition 5.1), that could be

used to merge schemas in a number of different circumstances, such as data integration, data

warehousing, ontology merging, view integration, and so on. We showed that Merge could be

used with other Model Management operators to subsume other algorithms made specifically

for those domains. We now investigate how to encode conjunctive mediated schema creation

(Definition 4.18) with the generic Merge and other Model Management operators described in

Chapter 5. Showing how Merge can be used with such semantically rich mappings demonstrates

how Model Management can help build the entire application, rather than just the schema.

In order to use Merge (Definition 5.1) to perform conjunctive mediated schema creation

(Definition 4.18) the inputs to the conjunctive mediated schema creation, E, F, and MapE_F, must

be encoded into Vanilla (the representation that Merge uses), and then the results must be

exported back into the relational model. In this chapter we discuss the algorithms necessary to

complete that procedure. The remainder of this section shows how to encode relational schemas

and conjunctive mappings in the Vanilla meta-meta-model described in Section 5.4.1.

Section 6.2 describes the algorithms MergeConjunctiveMediatedSchemaCreation (Definition

6.10) and CreateMapG_EF (Definition 6.12) which produce a well-formed mediated schema

(Definition 4.16) and well-formed mediated schema mapping (Definition 4.17) respectively

using the Merge described in Definition 5.1. Section 6.3 proves that

MergeConjunctiveMediatedSchemaCreation (Definition 6.10) and CreateMapG_EF (Definition

6.12) create the output required in conjunctive mediated schema creation (Definition 4.18). In

Section 6.4 we discuss using richer mappings than conjunctive mappings. Section 6.5 considers

how to use Merge to perform some of the alternatives mentioned in both Section 4.4 and in

Section 6.1.2. Section 6.6 concludes. To make the difference between relational and Vanilla

objects immediately obvious, in the remainder of this thesis, we continue the usage in other

156

chapters and use Arial font to denote objects in Vanilla and Batang font to represent relational

objects.

6.1.1 Encoding Relational Schemas
The definition of the Vanilla meta-meta-model in Section 5.4.1 is by intent very general. In

order to encode the conjunctive mediated schema creation (Definition 4.18), we provide a

representation for relational models encoded in Vanilla.

A relational model encoded in Vanilla consists of a single root element which contains an

element for each relation. Each relation contains an element representing each of its attributes.

We encode a relational schema in Vanilla as shown in Figure 6.1.

Relation1

Attribute1 AttributeM

Schema
Name

...
RelationK

Attribute1 AttributeN...

Figure 6.1: How to encode relevant relational schema information in Vanilla

We define a function µ: R M to describe the correspondence between a relational schema R

and a Vanilla model M. In the Vanilla notation described in Section 5.4.1, a model M is a set of

elements and relationships between elements, and the root of M is denoted Root(M). Vanilla

consists of five different kinds of relationships in addition to the two kinds of mapping

relationships. Encoding a relational schema uses only one kind of relationship: Contains.

Contains is denoted by C(x, y), which means container x Contains containee y. Figure 5.6(b)

says that Table Contains Column. Each element in Vanilla consists of semi-structured

properties. In encoding a relational schema we only use the Name property where the name of

an element e is denoted by Name(e).We define how to encode a relational schema in Vanilla in

Definition 6.1.

Definition 6.1: (Vanilla encoding of a Relational Schema).

Relational schema R is encoded in a Vanilla model M as follows:

157

1. µ(R) = Root(M)

2. ∀ relations r ∈ R, ∃ ! element e ∈ M s. t. µ(r)= e and C(M, e) ∈ M14

3. ∀ attributes a ∈ r, ∃ ! element a ∈ M s.t.

a. µ(a) = a

b. C(r, a) ∈ M where µ(r)= r

4. Order(a) = Order(a)

5. If µ(x) = y, then name(y) = nR(x)

6. No other elements or relationships exist in M □

µ is one-to-one and total with respect to relational definitions. That is, for each relation or

attribute ar ∈ R there exists exactly one element e∈ M such that µ(ar) = e.

Definition 6.2: (Relational encoded Vanilla model). There are two restrictions

that a Vanilla model must obey to satisfy the relational meta-model (i.e., to be a

representation of a relational schema): (1) the model must have three layers of

elements: the schema name is the root, which Contains elements corresponding

to relations, and each element corresponding to an attribute is contained by

exactly one element corresponding to a relation and (2) the model must have no

other elements or relationships other than Has-a relationships. □

The Has-a relationships in Definition 6.2 correspond to constraints (e.g., foreign key

constraints); we do not explore these more fully in this chapter. We use an additional construct

not found in the description of Vanilla in Section 5.4.1: if C(x, y), then Order(y) = i defines that

y is the i’th child of x. In the relational meta-model representation in Vanilla, each element is

contained by at most one other element (e.g., each attribute is contained by a relation, and each

14 “∃ ! e” means “there exists a unique e.”

158

relation is contained by a database schema). Thus, in this case, since each element y is

guaranteed to be contained by at most one x, we do not need to represent x in the Order

notation. While database relations are considered to be unordered, we define an order on the

relations to ensure that the ordering of variables in MapG_EF is consistent.

Definition 6.3: (ImportRelationalSchema). ImportRelationalSchema(R, M) is a

Model Management operator that takes a relational schema R and creates a

Vanilla model M and function µ that satisfy Definition 6.1. □

6.1.2 Encoding Conjunctive Mappings
A conjunctive mapping is a set of Datalog formulas, as explained in Section 4.3.1. We do,

however, place an additional restriction on the input mapping:

Remark 6.1: Rather than being a full conjunctive mapping we only consider

those mappings where an IDB name appears in a mapping statement at most

twice in MapE_F, once in a mapping statement over E and once in a mapping

statement over F. Although this is more restrictive than a full conjunctive

mapping, it is as expressive a mapping as we can simulate using Merge and still

easily create the view definitions needed to translate queries over the mediated

schema into queries over the source schemas. In Section 6.4 we show why we

require this restriction. □

e3

b ca x y

q7 f1

g hd

f2

i

E FMapE_F

j

Figure 6.2: A Vanilla representation of a conjunctive mapping; all mapping relationships
shown are mapping equality relationships

159

q7

c iyx

G

Figure 6.3: Result of Merge of Figure 6.2

A Vanilla mapping is as explained in Chapter 5. The goal of this chapter is to encode a

conjunctive mapping in a Vanilla mapping. In Section 6.1.2.1 we discuss how to encode MapE_F

if the definition of G, MapG_E, and MapG_F are as in Section 4.3.3. To make this encoding easier to

follow, Definition 6.4 provides notation to describe a variable being mapped to an attribute:

Definition 6.4: (VM – Variable Mapping). For a given schema relation ri(ai,1,

…, ai,n), a variable xi,k maps attribute ai,k, denoted VM(xi,k, ai,k), if xi,k appears in

the kth position of ri. □

For example, if there exists a relation r1(a,b,c) and query q(x) :- r1(x,y,z), then VM(x,a),

VM(b,y), and VM(z,c).

6.1.2.1 Encoding Conjunctive Mappings in Generic Merge
To prepare for both the definition of well-formed relational mediated schemas and mediated

schema mappings in Section 4.3.3 and the alternatives in Section 4.4 we assume that retention

of an attribute or relation has been ascertained by some function Keep:

Definition 6.5: (Keep). For all x ∈ E ∪ F, Keep(x) = true if the concept x is

retained separately in G, otherwise Keep(x) = false. For the base case described

in Section 4.3.3, Keep(r) = false only for any relation r that is mapping-included

(Definition 4.14) and its attributes, attributesr. □

Other cases of Keep are in Definition 6.6 which defines how to encode a conjunctive

mapping in Vanilla.

160

While we define the encoding of conjunctive mappings such that most of the alternatives in

Section 4.4 can be encoded, we only consider the case of conjunctive mappings where each IDB

name is defined at most once over E and once over F. While we define this more formally in

Definition 6.6, we describe here a brief intuition of our encoding: we encode each IDB name idb

as an element s in MapE_F. Because each IDB can be defined only once over E and once over F,

given an IDB name and schema it is over (E or F), we can tell to which mapping statement a

mapping relationship corresponds. We create similarity mapping relationships from s to

elements representing relations in E and F that we wish to include separately in G. We create

mapping equality relationships from s to elements representing relations in E and F that we do

not want to include separately in G. Each of the variables that are either joined-on or

distinguished in defining idb are represented by elements d that are contained in s. We must

represent the joined-on variables in MapE_F to ensure that they are represented by the same

attribute in G and similarly we represent the distinguished variables in MapE_F to ensure that

attributes that are represented by the same position in an IDB are represented by the same

attribute in G. Again if we want to keep the relation separately in G, d is the origin of a mapping

similarity relationship and if we do not, d is the origin of a mapping equality relationship.

Because mapping equality relationships that are incident to relations will pull in the attributes of

relations that are not mapped, in order to show that the mediated schema is isomorphic to a

well-formed mediated schema, we do not have to include attributes that are not joined-on.

Because relations created by mapping similarity relationships will not pull in attributes of the

relations in E and F to which they correspond, we create a sub-element for all variables in a

mapping statement. We now formally describe this process by extending µ so that it also

encodes a mapping of the formulas of the semantic mapping into a Vanilla mapping.

Definition 6.6: (Vanilla Encoding of a Conjunctive Mapping). In Definition 6.1

µ is defined over E and F: (µ: E ∪ F E ∪ F). We extend µ s.t. µ: (E ∪ F ∪

MapE_F) (E ∪ F ∪ MapE_F), as follows:

161

1. MapE_F corresponds to the root of MapE_F. Formally: µ(MapE_F) =

Root(MapE_F)

2. The root of MapE_F is connected to the roots of E and F via equality

mapping relationships. Formally: Me(Root(MapE_F), Root(E)) ∈ MapE_F

and Me(Root(MapE_F), Root(F)) ∈ MapE_F where µ(E) = Root(E) and µ(F) =

Root(F).

3. Each IDB and its mapping statements correspond to exactly one

element in MapE_F. Formally: ∀ IDB names idb ∈ IDB(MapE_F), ∃ m ∈

MapE_F s.t.

a. ∀ s ∈ MapE_F, µ(s) = m iff IDB(s) = idb
15

b. name(m) = idb

4. Each mapping statement has its structure represented in MapE_F.

Formally: ∀ pairs <s, m>, s ∈ MapE_F, m ∈ MapE_F s.t. µ(s) = m

a. C(Root(MapE_F), m) ∈ MapE_F

b. For each relation r in body(s), where µ(r) = r,

if Keep(r) = true, then Me(m, r) else Ms(m, r)

c. ∀ variables v in s s.t. v ∈distinguished(s) or v ∈ Joined(s)

i. ∃ an element v ∈ MapE_F s.t. µ(v)= v and C(µ(s), v) ∈ MapE_F

ii. ∀ attributes a ∈ E ∪ F s.t. VM(v, a), ∃ an element a ∈ MapE_F

s.t.

1. µ(a) = a

15 Recall that by Remark 6.1 we restricted MapE_F so that there are at most two mapping

statements such that this is true, and at most one can be over E or over F.

162

2. If Keep(v) = true, then Me(v, a) else Ms(v, a)

3. Order(v) = Order(v)

d. ∀ variables v in s s.t. not [v ∈distinguished(s) or v ∈ Joined(s)] and

Keep(v)

i. ∃ an element v ∈ MapE_F s.t. µ(v)= v and C(µ(s), v) ∈ MapE_F

ii. For each attribute a ∈ E ∪ F s.t. VM(v, a), ∃ an element a ∈

MapE_F s.t.

4. µ(a)= a

5. Ms(v, a)

6. Order(v) = Order(v)

5. No other elements or relationships exist in MapE_F □

Example 6.1: If the schema E is:
e3(a,b,c)

and F is:
f1(d,g)

f2(h,i,j)

And MapE_F consists of the mapping statements:

q7(x,y) :- e3(x,y,w)

q7(x,y) :- f1(x,y), f2(y,z,x)

Then MapE_F is the mapping in Figure 6.2; the result of Merge is shown in

Figure 6.3. Recall that each IDB name can only be defined at most twice, once

over E and once over F, so there can be no additional mapping statements

defining q7. □

Note that the names of the existential variables that are not joined-on are not retained. This

could be easily expanded to adhere precisely to the requirement that a well-formed mediated

163

schema (Definition 4.16) retain the names of all variables used in the mapping, but for the sake

of brevity and a cleaner mapping, we leave it out.

Definition 6.7: (ImportConjunctiveMapping). ImportConjunctiveMapping

(MapE_F, MapE_F) is a Model Management operator that takes a conjunctive

mapping MapE_F and a function µ: E ∪ F E ∪ F and creates a Vanilla

mapping MapE_F and a function µ: R ∪ MapE_F M ∪ MapE_F that satisfy

Definition 6.6. □

Remark 6.2: The Vanilla encoding of a conjunctive mapping (Definition 6.6)

only creates MapE_F; it does not change E or F. This can be seen by inspection

of each bullet in Definition 6.6. □

6.1.3 Exporting to the Relational Model
To translate from the generic Model Management representation back to the relational

model, we essentially reverse the process in Definition 6.1. We define here a function γ: M R

which describes the correspondence between a Vanilla model M and a relational schema R. If

γ(x) = y, then name(x) = nR(y).We define the correct encoding in Definition 6.8.

Definition 6.8: (Decoding a Vanilla Model into a Relational Schema).

Let M be a Vanilla model that corresponds to a relational schema R as defined

in Definition 6.2.

1. γ(nR(R)) = Root(M)

2. ∀ non-leaf non-root elements e ∈ M, ∃ ! relation r ∈ R s.t. γ(e) = r.

3. ∀ leaf elements e ∈ M, ∀ p ∈ M where C(p, e) and γ(p) = r, ∃! attribute a ∈

Ar,R s.t.

a. γ(e) = a,

b. Order(e) = Order(a)

164

4. There are no other objects in G. □

Definition 6.9: (ExportRelationalSchema) ExportRelationalSchema(M, R) is a

Model Management operator that creates a Vanilla model M and a function. γ:

M R that satisfy Definition 6.8. Has-a relationships are ignored since they

correspond to constraints that we do not represent in the relational model. □

6.2 Using Syntactic Merge with Conjunctive Mappings
Conjunctive mediated schema creation (Definition 4.18) can be encoded in syntactic Merge

as described Definition 5.1. To do this the input mappings are transformed into Vanilla

mappings, Merge is performed, and the result is exported back to the relational model.

Formally:

Definition 6.10: (MergeConjunctiveMediatedSchemaCreation). Given two

relational schemas E and F and a conjunctive mapping MapE_F between them,

the algorithm MergeConjunctiveMediatedSchemaCreation operates as follows:

1. ImportRelationalSchema(E, E) (Definition 6.3)

2. ImportRelationalSchema(F, F) (Definition 6.3)

3. ImportConjunctiveMapping(MapE_F, MapE_F) (Definition 6.7)

4. Vanilla Merge(E, F, MapE_F) G (Definition 5.1)

5. ExportRelationalSchema(G, G) (Definition 6.9) □

165

E F

G

MapE_F

E FMapE_F

MapG_E MapG_F

G

µµ µ

Figure 6.4: Relationships between the various schemas and models in
MergeConjunctiveMediatedSchemaCreation. Everything inside the box is a Vanilla model.
Everything outside the box is a relational schema or conjunctive mapping. The edges are
labeled by the correspondence relations.

The relationships between these models can be seen in Figure 6.4. Step 5 requires that G

satisfies the relational meta-model. The merged model will obey the restrictions for a relational

encoded Vanilla model (Definition 6.1) because the mappings are conjunctive queries, because

of the way we have translated the queries into syntactic mappings, and because of the semantics

of Merge. The details are shown in Theorem 6.1:

Theorem 6.1: For G created by MergeConjunctiveMediatedSchemaCreation

(Definition 6.10), G obey the restrictions for a relational encoded Vanilla model

(Definition 6.1).

Proof: We break the proof down into three pieces as follows, one for each

bullet in Definition 6.1:

1. The model must have three layers of elements: the schema name is

the root, which Contains elements corresponding to relations, and

each element corresponding to an attribute is contained by exactly

166

one element corresponding to a relation. Due to the syntax of

conjunctive queries, MapE_F only maps relations to relations and only

maps attributes to attributes. Hence MapE_F only maps second-level

elements to second-level elements and third-level elements to third-

level elements. In addition the roots of the schemas map to one another.

Thus, the merged model will have three levels.

In a conjunctive mapping, relations are mapped along with their

attributes. From the definition of intersections (Definition 4.2) and

projection-free components (Definition 4.13) as used in the definition

of conjunctive mediated schema creation (Definition 4.18), attributes

will be mapped to one another only if their parent relations are also

mapped to one another. Hence from the definition of µ we know that

two elements corresponding to attributes will only be mapped to each

other if their parents (i.e., elements corresponding to relations) are

mapped to each other. Therefore each syntactic element in the merged

model that corresponds to a relational attribute will have only one

parent relation. In addition since the Merge definition requires that the

roots of the models map to one another, each relation will have only

one root which is the only parent of all second-level elements.

2. The model must have no other elements or relationships other than

Has-a relationships: E and F will have only contains relationships

because they are Vanilla encodings of relational schemas (Definition

6.1) – this can also be seen from the definition of

ImportRelationalSchema (Definition 6.3). By the definition of µ,

MapE_F will only have Contains relationships and mapping

relationships to elements in E and F. Merge produces a model that has

only the relationships in the input mapping, plus Has-a relationships

(used to record relationships denoted by Mapping Similarity

Relationships), minus mapping relationships from MapE_F to E and F

(Definition 5.1). Hence, the only relationships in G will be Contains

167

relationships or Has-a relationships. As described above, the Contains

relationships satisfy Definition 6.1, so the only remaining relationships

are Has-a relationships.

Hence G satisfies the relational data model. □

MergeConjunctiveMediatedSchemaCreation creates the mediated schema G, but we still lack

the GLAV mappings MapG_E and MapG_F. We now describe how to create MapG_E and MapG_F.

6.2.1 Creating MapG_E
Merge(E, F, MapE_F) G creates an implicit morphism from G to E in the History property.

For this rest of this section we concentrate on expanding this morphism into MapG_E; MapG_F can

be created mutatis mutandis16. We begin with some notation:

The relation χ: (E ∪ F ∪ MapE_F) G describes the relationship provided by the History

property: χ(x) = y IFF History(y) includes x; this is the same χ function defined in the GMRs as

in Section 5.2.3.

Definition 6.11: (Mappede). We define the ordered list Mappede to be the

elements in G corresponding to sub-elements of a given second-level element

(i.e., a relation) e in E or F. Formally, for each e ∈ X, X ∈ {E, F} s.t.

C(Root(X),e), let ordered list Mappede = {,<vi, aj> | ∃ aj ∈ X s.t. C(e, aj) and

χ(aj) = vj ∈ G, and Order(vj) = j 17}. □

Figure 6.5 is a pictorial representation of the elements and relationships used in this

definition.

16 “Mutatis mutandis” means repeating the same argument only the necessary changes have

been made by substituting in new terms.
17 The GMRs for Merge imply that every input element corresponds to exactly one output

element, so this is well defined.

168

e

ara1

Root(X)

...

vrv1 ...
G

Figure 6.5: Pictorial representation of relationships used in creating Mappede

In Definition 6.12, we show how to create MapE_F given MapE_F. For the algorithm below,

Figure 6.6 and Figure 6.7 show the variables used in Definition 6.12 in steps (2) and (3)

respectively. Steps (1) – (3) are illustrated in Example 6.2 - Example 6.4.

Root(E)

repre1 ...

Root(MapE_F)

d

g G

Gg(AG)

Figure 6.6: Variables used in creating mapping views for relations created as a result of
mapping equality relationships in Step (2) of Definition 6.12.

169

Root(E)

re1

Root(MapE_F)

d

g G

Gg(AG)

ae1

agahg

e

Figure 6.7: Variables used in creating mapping views for relations created as a result of
mapping similarity relationships in Step (3) of Definition 6.12.

Definition 6.12: (CreateMapG_EF). We show how to create MapG_E in the steps

below. MapG_F can be created by replacing each occurrence of the model E with

the model F and each occurrence of MapG_E with MapG_F. MapG_EF is the union of

MapG_E with MapG_F. Throughout this definition we will scope variables at each

step. However, to make following the definitions easier we provide here a list

of the commonly used variables and the reasoning for their names:

• g = the relation being created

• d = elements corresponding to relations created by MapE_F, named for

the helper schema in Definition 4.10.

• re = relations in E

• hg = elements corresponding to relations in G that are the destination of

Has-a relations

• ae = elements corresponding to attributes in E

• ag = elements corresponding to attributes in G

170

• ahg = elements corresponding to attributes in G that are the destination

of Has-a relationships in G.

Step (1) Create the views in MapG_E for relations in G not represented in

MapE_F: For each relation g ∈ G with attributes AG where γ(g)= g18

if ∃ no d ∈ MapE_F s.t. χ(d) = g where g ∈ G and ∃ re ∈ E s.t. χ(er)

= g then do the following:

Let q be a fresh IDB name

Add to GVG: q(AG) :- g(AG)

Add to LVG: q(AG) :- g(AG)

Step (2) Create the mapping views for relations in G created as a result

of mapping equality relationships in MapE_F. Formally: ∀

relations g ∈ G with attributes AG where γ(g) = g if ∃ d ∈ MapE_F

s.t. χ(d) = g where g ∈ G, then do the following.

Let RE be the ordered list of elements

[re1, …, rep | rej∈E, Me(d, rej), χ(rej)= g and ∀i (1 ≤ i < j)

Order(rei) < Order(rej)]

Let MappedRE = the concatenation of Mappedre1 through

Mappedrep, where only the first occurrence of each element is

included if there are duplicates.

Let q be a fresh IDB name

Add to LVG: q(MappedRE) :- g(AG)

Add to GVG:q(MappedRE):-re1(Mappedre1),…,rep(Mappedrep)

Step (3) Create the mapping views for relations in G created as a result

of mapping similarity relationships in MapE_F. Formally: ∀

relations g ∈ G with attributes AG where γ(g) = g, H(g, eg), χ(re) =

18 The definition of ExportRelationalSchema implies there must exist such a g.

171

eg, re ∈ E (i.e., re is the destination of a similarity mapping

relationship), and χ(d) = g where g ∈ G and d ∈ MapE_F.

Let RE be the ordered list of elements in E s.t. the corresponding

element in G is the destination of a Has-a relationship from g.

Formally: let RE be the ordered list of elements

[re1, …, rep | rej ∈ E, Ms(d,rei), and χ(d) = g ∀ i, 1≤ i< j

Order(rei) < Order(rej)]

Let ψg describe the mapping of the attributes. Formally: Let ψg =

{<ag, ae> | ag ∈ G, C(g, ag), H(ag, ahg), re ∈ E, C(re, ae),

χ(ae, ahg)}.

Let AMg(ae)19 = { ae | re ∈RE, C(re, ae), and if ψg (ag, ae) then

AMg(ae) = name(ag), else AMg(ae) = name(ae)}

Let ordered list VarsMapped = [agi | ψg(agi, aei) and ∀ j, 1 ≤ j < i

Order(aej) < Order(aei)].

∀ re ∈ RE

Let ordered list AEre = [aei | C(re, aei) and ∀ j, 1 ≤ j < i

Order(aej) < Order(aei)].

Let m = |AEre|

Let namere = name(re)

Let AMrelg(re) = namere(AMg(ae1), …, AMg(aem)).

Let q be a fresh IDB name

Add to LVG = q(VarsMapped) :- g(AG)

Add to GVG=q(VarsMapped):-AMrelg(re1),…,AMrelg(rep)

Similarly for MapG_F. □

We now provide an example of each step in Definition 6.12.

19 AM is short for attribute mapping

172

e1

a y x

q2 f1

zb

E FMapE_F

Figure 6.8: A mapping that allows the attributes not to be kept

Example 6.2: For step (1) in Definition 6.12, suppose we are merging the

schemas in Figure 6.8 and creating MapG_E:

g = e1

AG = [a,y]

Add to GVG: qfresh1(a,y) :- e1(a,y)

Add to LVG: qfresh1(a,y) :- e1(a,y). □

Example 6.3: For step 2 in Definition 6.12, assume Figure 6.2 and Figure 6.3

as input, and that we are creating MapG_F
20

g = q7 (from Figure 6.3)

AG = [x,y,c,i]

d = q7 (q7 in Figure 6.2)

RE = [f1, f2]

MappedRE = [x,y,i]

Mappedre1= [x,y]

Mappedre2 = [x,y,i]

we add to LVG:

qfresh2 (x,y,i) :- q7(x,y,c,i)

We add to GVG:

qfresh2(x,y,i) :- f1(x,y), f2(x,y,i). □

20 Because we have defined the variable names to be simple to understand w.r.t. defining

MapG_E, we use RE to refer to elements corresponding to relations in F.

173

Example 6.4: For step 3 in Definition 6.12, suppose that we are merging the

schemas in Figure 6.8 and creating MapG_E.

g = q2

AG = [x]

d = q2 (in MapE_F)

RE = [e1]

AEre1 = [a,y]

ψg(x, a)

VarsMapped = [x]

AMrelq(re1) =e1(x,y)

Add to LVG: qfresh4(x) :- q2(x)

Add to GVG: qfresh4(x) :- e1(x,y) □

Not all alternate semantics, such as those defined in Section 4.4 or alternate CMSCs, can be

described using only Import, Merge, and Export; we describe in Section 6.5 when difficulties are

encountered.

6.3 Correctness of MergeConjunctiveMediatedSchemaCreation
We now must prove that MergeConjunctiveMediatedSchemaCreation (Definition 6.10) and

CreateMapG_EF (Definition 6.12) correctly create G and MapG_EF, as specified in the correctness

criteria for a well-formed mediated schema (Definition 4.16) and well-formed mediated schema

mappings (Definition 4.17) in Section 4.3.3.2.

Theorem 6.2: Given relational schemas E and F and a conjunctive mapping

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) and

CreateMapG_EF (Definition 6.12) generate mediated schema G, and mapping

MapG_EF s.t. G and MapG_EF are well-formed. □

174

To prove Theorem 6.2 we break it into two lemmas, Lemma 6.1 which shows that G is well-

formed and Lemma 6.2 which shows that MapG_EF is well-formed:

Lemma 6.1: Given relational schemas E and F and a conjunctive mapping

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates

mediated schema G s.t. G is well-formed. □

Lemma 6.2: Given relational schemas E and F and a conjunctive mapping

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) and

CreateMapG_EF (Definition 6.12) generate mediated schema G, and mapping

MapG_EF s.t. MapG_EF is well-formed. □

We prove Lemma 6.1 in Section 6.3.1and Lemma 6.2 in Section 6.3.2. Together, Lemma 6.1

and Lemma 6.2 prove Theorem 6.2.

6.3.1 Proof Correctness of G
In this section we prove Lemma 6.1: G created by MergeConjunctiveMediated-

SchemaCreation (Definition 6.10) is a well-formed schema as required by Definition 4.16.

Recall that Definition 4.16 defines a mediated schema G to be well-formed if:

1. ∀ relations e ∈ E s.t. e is not mapping-included, ∃ g ∈ G s.t. ne = ng and attributese =

attributesg. Similarly for all f ∈ F.

2. ∀ IDB names q ∈ IDB(MapE_F), ∃ g ∈ G s.t. q = ng and attributesg = Vars(MSq)

3. G contains no additional relations.

We prove Lemma 6.1 by proving Lemma 6.3, Lemma 6.4, and Lemma 6.5, each of which

proves one of the bullets in Definition 4.16:

Lemma 6.3: Given relational schemas E and F and a conjunctive mapping

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates

mediated schema G, s.t. ∀ relations e ∈ E where e is not mapping-included, ∃ g

∈ G s.t. ne = ng and attributese = attributesg. Similarly for all relations f ∈ F. □

175

Lemma 6.4: Given relational schemas E and F and a conjunctive mapping

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates

mediated schema G, s.t. ∀ IDB names q ∈ IDB(MapE_F), ∃ g ∈ G s.t. q = ng and

attributesg = Vars(MSq). □

Lemma 6.5: Given relational schemas E and F and a conjunctive mapping

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates

mediated schema G, s.t. G contains only those relations needed to satisfy

Lemma 6.3 and Lemma 6.4. □

We prove Lemma 6.3 in 6.3.1.1, Lemma 6.4 in Section 6.3.1.2, and Lemma 6.5 in Section

6.3.1.3. To prove the above lemmas, we require Lemma 6.6, Lemma 6.7, Lemma 6.8, Lemma

6.9, Lemma 6.10, and Lemma 6.11:

Lemma 6.6: ∀ relations r ∈ EF, ∃! e ∈ EF s.t. µ(r,e). ∀ attributes a ∈

attributesr ∃! a1 ∈ EF s.t. µ(a,a1) and C(e,a1).

Proof: This follows directly from the definition of µ. □

Lemma 6.7: ∀ g ∈ G s.t. C(Root(G), g), ∃! relation r ∈ G s.t. γ(g, r). ∀

elements g1 s.t. C(g,g1), ∃! a ∈ attributesr s.t. γ(g1,a).

Proof: This follows directly from the definition of γ. □

Lemma 6.8: Each element ef ∈ EF is the destination of at most one mapping

relation in MapE_F. Therefore ∀ elements ef1, ef2 ∈ EF, χ(ef1,g) and χ(ef2,g) iff

∃ some d ∈ MapE_F s.t. Me(d,ef1), Me(d,ef2); by definition of Merge (Definition

5.1 bullet 2) i.e., there is no transitivity of equality in MapE_F.

176

Proof sketch: We have constrained conjunctive mappings to disallow

mappings that would contain transitivity of equality in MapE_F by disallowing

relations to appear in more than one mapping statement (Section 4.3.1.1)

Proof: From the definition of Merge (Definition 5.1) elements d1, d2 ∈ MapE_F,

d1 ≠ d2, will only correspond to the same element g ∈ G (i.e., χ(d1,g), χ(d2,g)) if

∃ e ∈ E or F s.t. Me(e, d3), Me(e,d4), and d3 ≠ d4.

By the definition of Vanilla encoding of a conjunctive mapping (Definition

6.6 bullet 2), the roots of E and F are only the destination of a mapping equality

relationship from the root of MapE_F.

Since a relation may appear in at most one mapping statement (Section

4.3.1.1), from the definition of Vanilla encoding of a conjunctive mapping

(Definition 6.6 bullet 4b), ∀ elements e1 s.t. µ(r,e1) where relation r ∈ EF, e1 is

the destination of at most one mapping relationship.

The argument for attributes is similar: A relation may appear in at most one

mapping statement (Section 4.3.1.1). From the definition of conjunctive queries

an attribute is only mapped if its relation is mapped. From the definition of

attributes of relations, each attribute only appears once in a relation. Therefore,

from the definition of Vanilla encoding of a conjunctive mapping (Definition

6.6 bullet 4.c and 4.d), ∀ elements e2 s.t. µ(a, e2) where attribute a ∈ attributesr2

for some relation r2 ∈ EF, e2 is the destination of at most one mapping

relationship. Therefore ∀ elements ef1, ef2 ∈ EF χ(ef1,g) and χ(ef2,g) iff ∃ some

d ∈ MapE_F s.t. Me(d,ef1), Me(d,ef2); i.e., there is no transitivity of equality in

MapE_F □

Lemma 6.9: In Merge(E, F, MapE_F) G (Definition 5.1) in

MergeConjunctiveMediatedSchemaCreation (Definition 6.10), no fundamental

177

conflict resolution is required, nor are there any implied relationships

removed.21

Proof: By ImportRelationalSchema (Definition 6.3), E and F will both have

three levels and obey the restrictions for a relational encoded Vanilla model

(Definition 6.1). By Definition 6.3 E and F will only have Contains

relationships. Due to the syntax of conjunctive queries, MapE_F only maps

relations to relations and attributes to attributes. Hence MapE_F only maps

second-level elements to second-level element and third-level elements to third-

level elements. More formally: by ImportConjunctiveMapping (Definition 6.7)

we know that MapE_F consists of three levels, and if C(Root(E), e), M(s,e)22

where ∃ relation r ∈ EF s.t. µ(r,e), then C(Root(MapE_F),s). Similarly, if

C(Root(E), e), C(e,e1), and M(d1,e1) where ∃ attribute a and relation r s.t. a ∈

attributesr and µ(a,e1) then ∃ s ∈ MapE_F s.t. C(Root(MapE_F),s), and C(s,d1).

The only fundamental conflict in Vanilla that uses Contains or Has-a

relationships is that the containment hierarchy must be acyclic (5.4.2.2).

Because the roots of E, F, and MapE_F are only mapped to each other, the

second-level elements are mapped only to second-level elements, and the third-

level elements are mapped only to third-level elements, there are no cycles in

the containment hierarchy. So no fundamental conflict resolution is required.

Since G can only consist of Has-a or Contains relationships, the only

relevant relationship implication rule (Section 5.4.1) is that containment is

transitive. However, because the roots of E, F, and MapE_F are only mapped to

each other, the second-level elements are mapped only to second-level

elements, and the third-level elements are mapped only to third-level elements,

21 Note that this proof and the beginning of the proof of Theorem 6.1 share many of the same

constructs.
22 Recall that M denotes either a Mapping Similarity Relationship or a Mapping Equality

Relationship.

178

there is no transitive containment in G. So no relationship implication rules are

used. Thus Lemma 6.9 holds. □

Lemma 6.10: ∀ relations g ∈ G s.t. G was created by an IDB idb, ng = idb.

Proof: From the definition of Vanilla encoding of a conjunctive mapping

(Definition 6.6) bullet 3, ∃! element e ∈ MapE_F s.t. µ(idb,e) and name(e) = idb.

Since e ∈ MapE_F and thus for χ(e,g) the value of the Name property of g is

taken from e, (Definition 5.1 bullet 3.a.i) there are no other elements in MapE_F

that will be equated with e (Lemma 6.8) that could override e’s values, and

there are no fundamental conflicts or implied constraints in the creation of G to

override e’s values (Lemma 6.9), from Merge (Definition 5.1) ∃! element g ∈

G s.t. name(g) = name(e). From the definition of ExportRelationalSchema

(Definition 6.9) ∃! relation g1 ∈ G s.t. ng1 = name(g). Hence Lemma 6.10 holds.□

Lemma 6.11: ∀ attributes ag ∈ G s.t. G was created by a variable v in IDB idb,

nag = name of v.

Proof: From the definition of Vanilla encoding of a conjunctive mapping

(Definition 6.6) bullet 4, ∃ ! element e ∈ MapE_F s.t. µ(v,e) and name(e) = v.

Since e ∈ MapE_F, and thus for χ(e,g) the value of the Name property of g is

taken from e, (Definition 5.1 bullet 3.a.i) there are no other elements in MapE_F

that will be equated with e (Lemma 6.8) that could override e’s values, and

there are no fundamental conflicts or implied constraints in the creation of G to

override e’s values (Lemma 6.9), from Merge (Definition 5.1) ∃! element g ∈

G s.t. name(g) = name(e). From the definition of ExportRelationalSchema

(Definition 6.9) ∃! attribute g1 ∈ G s.t. ng1 = name(g). Hence Lemma 6.10

holds. □

6.3.1.1 Proof that Non-Mapping-Included Relations are in G
We are now ready to prove Lemma 6.3: non-mapping-included relations are represented in G.

There are two different cases to consider (1) non-mapping-included relations that do not appear

179

in MapE_F (Lemma 6.12) and (2) non-mapping-included relations that appear in MapE_F (Lemma

6.13).

Lemma 6.12: ∀ relations e ∈ EF where e is not mapping-included and ∃/ ms ∈

MapE_F s.t. e ∈ body(ms), ∃ g ∈ G s.t. ne = ng and attributese = attributesg.

Proof sketch: Since e and its attributes are not mentioned in MapE_F, no

elements corresponding to them will be mapped in MapE_F. Since Merge

preserves all elements that are not mapped, and ExportRelationalSchema will

correctly create a relation for all elements corresponding to relations in G, e

will appear in G. In a bit more depth: the elements corresponding to neither e

nor any of e’s attributes appear as the destination of any mapping relationship

in MapE_F. From the definition of Merge, we know that if an element e1 appears

in E or F but not in MapE_F, an element identical to e1 appears in G, and if e1

and e2 appear in E or F and there exists a relationship C(e1,e2), if there are

separate elements e3 and e4 corresponding to e1 and e2 respectively, then C(e3,

e4) unless fundamental conflict resolution has occurred or C(e3, e4) is implied

by other relationships. Since there is no need for fundamental conflict

resolution in G and the relationship between e and its children is not implied by

any other relationship (Lemma 6.9), and there is no transitivity of equality in

MapE_F (Lemma 6.8), e and e’s attributes appear in G as children of G’s root.

By the definition of ExportRelationalSchema, a relation identical to e,

including all of e’s attributes appears in G.

Proof: Let r ∈ EF be a relation that is not mapping-included in MapE_F. By

ImportRelationalSchema (Definition 6.3), ∃! e ∈ EF s.t. µ(r,e).

ImportConjunctiveMapping (Definition 6.7) requires that µ satisfies the Vanilla

Encoding of a Conjunctive mapping (Definition 6.6). And by Remark 6.2,

Definition 6.6 does not change E or F. By bullet 5 of Definition 6.6, there are

no relationships in MapE_F other than the relationships required in bullets 1-4.

Mapping relationships are only created in bullets 2 and 4. Bullet 2 only creates

180

mapping relationships with destination on the schema names. Bullet 4 only

creates mapping relationships with destination elements e5 s.t. µ(r5,e5), and r5 ∈

body(ms) for some ms ∈ MapE_F or µ(a5,e5) and VM(v5,a5) for some variable v5 ∈

MapE_F. Hence, since r does not appear in the body of any mapping statement, e

does not appear as the destination of any mapping relationships.

From the definition of µ, ∀ attributes a ∈ attributese, ∃! a1 s.t µ(a, a1) and

C(e,a1). As in the previous paragraph, by definition of µ (Definition 6.6), the

only relevant creation of mapping relationships occurs in Bullet 4. Bullet 4 of

Definition 6.6 only creates mapping relationships with destination elements e5

s.t. µ(r5,e5), and r5 ∈ body(ms) for some ms ∈ MapE_F or µ(a5,e5) and VM(v5,a5)

for some variable v5 ∈ MapE_F. So ∀ a1 s.t. µ(a, a1) and C(e,a1) if e does not

appear as the destination of any mapping relationship, a1 does not appear as the

destination of any mapping relationships.

From the definition of Merge (Definition 5.1) and given that Lemma 6.9

tells us that there are no implied relationships or fundamental conflicts in

creating G, and that Lemma 6.8 tells us there is no transitivity of equality in

MapE_F, we know that if an element e1 appears in E or F and ∃/ element e6 ∈

MapE_F s.t. Ms(e6,e1) or Me(e6,e1), then ∃! element e3 ∈ G s.t. χ(e1) = e3.

Similarly if an element e2 ∈ E or F and ∃/ element e7 ∈ MapE_F s.t. Ms(e7,e2) or

Me(e7,e2), then ∃! element e4 ∈ G s.t. χ(e2) = e4. As well, since Lemma 6.9 tells

us that there are no implied relationships or fundamental conflicts in creating G,

if ∃ a relationship C(e1,e2) ∈ E or F and χ(e1) = e3 and χ(e2) = e4, then ∃ a

relationship C(e3,e4) ∈ G.

By Theorem 6.1, G satisfies the relational meta-model (Definition 6.2).

Since ExportRelationalSchema (Definition 6.9) requires that ∀ elements e8, e9

s.t. C(Root(G),e8) and C(e8,e9), then ∃ a relation g s.t. γ(e8,g) and ga ∈

attributesg where γ(e9,ga). Hence it follows that each relation in EF that does not

appear in MapE_F appears in G. □

181

Lemma 6.13: ∀ relations r ∈ E where r is not mapping-included and ∃ ms ∈

MapE_F s.t. r ∈ body(ms), ∃ g ∈ G s.t. ne = ng and attributese = attributesg.

Similarly for all relations f ∈ F.

Proof sketch: From Lemma 6.6, it follows that each relation r ∈ EF

corresponds to a unique element e ∈ EF s.t. ∀ attributes of r, e contains

elements corresponding to those attributes. It follows from

ImportConjunctiveMapping that each element corresponding to a non-mapping

included relation that is represented in MapE_F and its attributes is only the

destination of mapping similarity relationships. From the definition of Vanilla

Merge, and the fact that no fundamental conflict resolution occurs and that no

relationship implication rules are applied (Lemma 6.9), and that there is no

equality of transitivity in MapE_F (Lemma 6.8), it follows that there exists a

unique element g s.t. e corresponds to g, and g contains elements corresponding

to all of the elements contained by e. By Lemma 6.7, it follows there exists a

relation g1 ∈ G s.t. g1 corresponds to g and g1 contains attributes for each

element contained by g. Hence each non-mapping included relation appearing

in MapE_F appears in G.

Proof: From Lemma 6.6 it follows that for all relations r ∈ EF, ∃! e ∈ EF s.t.

µ(r,e). ∀ attributes a ∈ attributesr ∃! a1 ∈ EF s.t. µ(a,a1) and C(e,a1).

From the definition of Keep (Definition 6.5), it follows that if a relation r is

non-mapping-included, Keep(r) = true, and ∀ attributes a ∈ attributesr, Keep(a)

= true.

From ImportConjunctiveMapping (Definition 6.7) it follows that ∀ elements

e s.t. µ(ms,e) where ms ∈ MapE_F, since Keep(r) = true, ∃! d ∈ MapE_F s.t.

Ms(d,e) where µ(r,e). Similarly ∀ e3 s.t. C(e, e3), ∃! d2 ∈ MapE_F s.t. Ms(d2,e3).

From the definition of Merge, and the fact that no fundamental conflict

resolution occurs and that no relationship implication rules are applied (Lemma

6.9) and that there is no transitivity of equality in MapE_F (Lemma 6.8), it

182

follows that there exists a unique element g s.t. χ(e, g), and ∀ e3 s.t. C(e,e3), ∃

element g1 ∈ G s.t. χ(e3,g1) and C(g,g1).

By Lemma 6.7, it follows ∀ g ∈ G s.t. C(Root(G), g), ∃! relation r ∈ G s.t. γ(g,

r). ∀ elements g1 s.t. C(g,g1), ∃! a ∈ attributesr s.t. γ(g1,a). Hence Lemma 6.13

holds. □

Hence Lemma 6.3 holds.

6.3.1.2 Proof that Relations Generated from MapE_F are in G
To prove Lemma 6.4 (relations generated from MapE_F are in G) we split it up into two

lemmas: one for relations created by mapping similarity relationships (Lemma 6.14) and one for

relations created by mapping equality relationships (Lemma 6.15). These are the only two cases

because of the following: ∀ IDBs idb ∈ IDB(MapE_F), by ImportConjunctiveMapping,(Definition

6.7), there exists a µ that satisfies Definition 6.6. By the third bullet of Definition 6.6 ∃! element

s ∈ MapE_F s.t. µ(idb,s). Bullet 4b of Definition 6.6 implies that s is the origin of exactly two

mapping relationships, mr1 and mr2. mr1 and mr2 may be either similarity or equality mapping

relationships. Hence these are the only two cases.

Lemma 6.14: Given relational schemas E and F and a conjunctive mapping

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates

a mediated schema G, s.t. ∀ IDB names idb ∈ IDB(MapE_F), ∀ MSq s.t. IDB(MSq)

= idb, ∃ s ∈ MapE_F s.t. µ(idb,s) and s is the origin of a mapping similarity

relationship, ∃ g ∈ G s.t. idb = ng and attributesg = Vars(MSq).

Proof sketch: Assuming that we are considering only IDB names that are

represented using mapping similarity relationships, from the definition of µ we

know that ∀ IDBs idb, idb will be represented by one element d ∈ MapE_F.

From µ we also know that ∀ mapping statements ms s.t. IDB(ms) = idb, ∀

relations r ∈ body(ms), ∃ a mapping similarity relationship from s, the element

representing idb, to e, the element representing r. From the definition of µ we

know that there exists no other mapping relationship with destination at e.

183

Similarly for all variables v ∈ ms there exists a unique element d1 in MapE_F s.t.

d1 corresponds to v and d1 is contained by d, and v is the destination of no

mapping equality relationships. Hence by the definition of Merge and the fact

that there is no fundamental conflict resolution or relationship implication in

the creation of G (Lemma 6.9) and there is no transitivity of equality in MapE_F

(Lemma 6.8), there exists exactly one element g in G s.t. g corresponds to d and

g contains one element for each element corresponding to a variable in idb.

Hence by the definition of γ, there exists one relation g in G s.t. g has as

attributes the variables of all mapping statements ms s.t. IDB(ms) = idb; Lemma

6.11 ensures that the names of the attributes of g are correct, and Lemma 6.10

ensures that idb = ng.

Proof: Assuming that we are considering only IDB names that are represented

using mapping similarity relationships, from the definition of the Vanilla

encoding of a conjunctive mapping (Definition 6.6) we know that ∀ IDBs idb,

∃ ! element s ∈ MapE_F.s.t. µ(idb,s) (bullet 3) and C(Root(MapE_F),s) (bullet 4a).

From bullet 4 of Definition 6.6 we also know that ∀ mapping statements ms s.t.

IDB(ms) = idb, ∀ relations r ∈ body(ms), ∃ ! e ∈ E and d ∈ MapE_F s.t. Ms(d,e).

From the definition of µ we know that there exists no other mapping

relationship with destination at e. Similarly for all variables v ∈ ms ∃! element

d1 ∈ MapE_F s.t. µ(v,d1), and C(d,d1), and ∃/ d2 ∈ MapE_F s.t. Me(d2, d1). Hence

by the definition of Merge (Definition 5.1) and that there is no fundamental

conflict resolution or relationship implication in the creation of G (Lemma 6.9)

and there is no transitivity of equality in MapE_F (Lemma 6.8), ∃! element g ∈ G

s.t. χ(d,g) and ∀ d1 s.t. v ∈ Vars(ms) where IDB(ms) = idb and µ(v,d1), C(g,g1).

Hence by the definition of γ, there exists one relation g ∈ G s.t. g has as

attributes the variables of all mapping statements ms s.t. IDB(ms) = idb. Finally,

Lemma 6.11 ensures that the names of the attributes of g are correct, and

Lemma 6.10 ensures that idb = ng, so Lemma 6.14 holds. □

184

Lemma 6.15: Given relational schemas E and F and a conjunctive mapping

MapE_F, MergeConjunctiveMediatedSchemaCreation (Definition 6.10) generates

mediated schema G, s.t. ∀ IDB names idb ∈ IDB(MapE_F), ∀ MSq s.t. IDB(MSq) =

idb, ∃ s ∈ MapE_F s.t. µ(idb,s) and s is the origin of a mapping equality

relationship, ∃ g ∈ G s.t. q = ng and attributesg = Vars(MSq).

Proof sketch: Assuming that we are considering only IDBs that are represented

using mapping equality relationships, all relations r that appear in a mapping

statement for an IDB idb ∈ IDB(MapE_F) will be equated to the same element in

MapE_F by the definition of ImportConjunctiveMapping, and similarly for the

variables in idb’s definition. Similarly, each attribute a ∈ attributesr will be

mapped iff a is joined-on in a mapping statement or a is mapped to a

distinguished variable. The only time that attributes will be mapped by the

same element in MapE_F is if they are mapped by the same variable. From

Merge and the fact that there is no fundamental conflict resolution or

relationship implication in the creation of G (Lemma 6.9) and there is no

transitivity of equality in MapE_F (Lemma 6.8), we know that this will result in

an element g ∈ G that contains one element for each attribute not joined-on,

and one element for each joined-on variable. From ExportRelationalSchema we

know that there exists a relation g1 ∈ G that contains one attribute for each

element contained in g. Finally, Lemma 6.11 ensures that the names of the

attributes of g are correct, and Lemma 6.10 that idb = ng.

Proof: ∀ IDBs idb ∈ IDB(MapE_F), ∀ ms s.t. IDB(ms) = idb, ∃ ! s ∈ MapE_F s.t.

µ(ms, s) iff IDB(ms) = idb by µ (Definition 6.6) bullet 3. We know from

Definition 6.6 bullet 4b that ∀ relations r ∈ body(ms), ∃! e ∈ E s.t. µ(r,e) and

Me(s,e). From Definition 6.6 bullets 4.c.ii.2, ∀ attributes a ∈ attributesr s.t.

VM(v,a) and v ∈ distinguished(ms) or v ∈ join(ms), ∃ unique elements e1and s2

in MapE_F s.t. µ(a,e1), µ(v,s2), and C(e,e1), C(s, s2), Me(s2, e1).

185

From the definition of conjunctive queries (Definition 2.2), an attribute is

only mapped if its relation is mapped. From the definition of conjunctive

mappings (Section 4.3.1.1), a relation is only mapped once. From Lemma 6.8

there is no transitivity of equality in MapE_F. By the definition of Merge

(Definition 5.1) and the fact that there are no fundamental conflicts or implied

relationships in creating G (Lemma 6.9), ∃ ! g ∈ G s.t. χ(s, g). In addition g

contains exactly one element g1 per element d1 s.t. C(s,d1), and one element per

element e1 ∈ E s.t. Me(e,e2), C(e2,e1). By Lemma 6.7, there will be exactly

relation rg ∈ G s.t. γ(g,rg), and if C(g,g1) then ∃! ag s.t. γ(g1,ag) and ag ∈

attributesrg. Finally, Lemma 6.11 ensures that the names of the attributes of g

are correct, and Lemma 6.10 that idb = ng. Hence Lemma 6.15 holds. □

Since Lemma 6.14 and Lemma 6.15 hold, Lemma 6.4 holds.

6.3.1.3 Proof that No Additional Relations Exist in G

From the definitions of ImportRelationalSchema and ImportConjunctiveMapping, it follows

that no other elements exist in MapE_F besides those elements required above. Hence, from the

definition of Merge, no other relations exist in G and Lemma 6.5 holds.

Hence with the proofs of Lemma 6.3 and Lemma 6.4 above, Lemma 6.1 holds.

6.3.2 Proof of Correctness of MapG_E and MapG_F
We now show Lemma 6.2: LVG and GVG are well-formed mediated schema mappings as

defined in Section 4.3.3.2. Recall that Definition 4.17 requires that a well-formed relational

mediated schema mapping obeys the following lemmas, one for each of the numbered bullets in

Definition 4.17:

Lemma 6.16: ∀ mapping statements ms with IDB name q, let rq ∈ G be a

relation with name q and attributes = Vars(MSq) and ξ(q,rq). Let qj be a fresh

IDB name (i.e., an IDB name that appears in no other mapping statements in

MapE_F or in any other local view definitions or global view definitions in

186

MapG_EF).

lvms = qj(Vars(ms)) :- rq

gvms = qj(Vars(ms)) :- body(rq)

lvms ∈LVG

gvms ∈ GVG □

Lemma 6.17: relations g ∈ G s.t. ξ(e,g) and ξ(e1,g) implies e1 = e (i.e., directly

corresponding to a relation in E or F), let qj be a fresh IDB name (i.e., qj is an

IDB name that appears in no other mapping statements in MapE_F or in any other

local view definitions or global view definitions in MapG_EF).

lvg = qj(attributesg) :- g(attributesg)

gvg = qj(attributesg) :- g(attributesg)

lvg ∈LVG

gvg ∈ GVG □

Lemma 6.18: LVG and GVG contain no views other than those required above. □

 We prove Lemma 6.16, Lemma 6.17, and Lemma 6.18 in Sections 6.3.2.1, 6.3.2.2, and

6.3.2.3 respectively.

6.3.2.1 Proof that Mapping Views for Relations Corresponding to IDBs are in
MapG_EF

We now prove Lemma 6.16 – mapping view for relations corresponding to IDBs are in

MapG_EF. There are two cases: A mapping statement is represented by mapping equality

relationships (Lemma 6.21) or mapping similarity relationships (Lemma 6.24).

6.3.2.1.1 Proof that Mapping Views for Created by Mapping Equality
Relationships are in G

Assume that we are creating MapG_E (MapG_F can be shown mutatis mutandis). Let ms be a

mapping statement with IDB name idb and ∀ relations r ∈ body(ms), Keep(r) = false (i.e., ms is

going to be expressed using mapping equality relationships). We show that mapping views

187

created for mapping equality relationships in Lemma 6.21. To prove Lemma 6.21 we require

Lemma 6.19 and Lemma 6.20. Lemma 6.19 shows that the relations in body(ms) in the first

bullet of Definition 4.17 are the same as re1, …, rep in Step (2) in Definition 6.12 and Lemma

6.20 shows that the variables used in Lemma 6.19 are isomorphic to one another. Both Lemma

6.19 and Lemma 6.20 use the definitions of ms, idb, and r as above:

Lemma 6.19: ∀ mapping statements ms ∈ MapE_F, re1, …, rep in Step (2) in

Definition 6.12 equals the relations in body(ms) the first bullet of Definition

4.17.

Proof: Since we know that each IDB only appears in at most one mapping

statement over E (Remark 6.1), from the definition of µ, a relation r ∈ body(ms)

IFF ∃ e ∈ E such that µ(r, e) and either Me(d, e), or Ms(d, e) for some d ∈

MapE_F. Since Keep(r) = false, it follows from bullet 4.b of Definition 6.6 that

Me(d,e). From the definition of Merge (Definition 5.1), Lemma 6.9 (there are

no fundamental conflicts or implication rules used in the creation of G), and

Lemma 6.8 (there is no transitivity of equality in MapE_F), it follows that there

exists some g s.t. χ(e,g) and e ∈ E IFF Me(d,e). Hence re1, …, rep in Step (2) of

Definition 6.12 is a set of elements corresponding to those relations that are in

the body of ms. By Lemma 6.10 the names of re1, …, rep equal the names of the

relations in the body of ms, and thus re1, …, rep equals the relations in body(ms)

in Definition 4.17. □

Lemma 6.20: ∀ mapping statements ms ∈ MapE_F, the elements in Mappedrei ∀

i, 1 ≤ i ≤ p, where p = |MappedRE| in Step (2) of Definition 6.12 are isomorphic

to the variables of r in body(ms) in the second part of Definition 4.17.

Proof: ∀ r in body(ms), by the definition of µ:

• ∃ e ∈E s.t. C(Root(E),e) and µ(r,e)

• ∃ d ∈MapE_F s.t. Me(d,r).

188

• ∀ attributes a ∈ attributesr, ∃ element e1 ∈ E s.t. C(e,e1) and µ(a,e1).

• ∃ d ∈ MapE_F s.t. µ(ms) = d.

• ∀ variables v s.t. v ∈ distinguished(ms) or v ∈ Joined(ms), there exists a

unique e2 ∈ E s.t. µ(v,e2) and d1 ∈ MapE_F s.t. C(d, d1), Me(d1,e2), and

C(d,d1).

We know that there will be no more elements e3 ∈ E and d3 ∈ MapE_F s.t.

Me(d3, e3) and C(d,d3) since each IDB only appears in at most one mapping

statement over E (Remark 6.1). From these facts and the definition of Merge

(which requires a value to be taken from the mapping before from either of the

other schemas), it follows that the elements in Mappedr in the second bullet of

6.2.1 are isomorphic to the attributes of r in body(ms) in the second part of

Definition 4.1723. □

We are now ready to prove that LVG and GVG are correct for relations created as a result of

mapping equality relationships:

Lemma 6.21: ∀ relations created in G as a result of mapping equality

relationships as in the second bullet of 6.2.1, LVG and GVG contain the required

mappings from Definition 4.17.

Proof: We show that: 1. the left hand sides of both lvms and gvms (which are

identical) are created correctly, 2. the right hand side of lvms is created correctly,

and 3. the right hand side of gvms is created correctly. For each we first show the

definition in Section 6.2.1 followed by the definition in Definition 4.17:

1. [The left hand side of lvms and gvms] (MappedRE) = qj(Vars(ms)). q and qj

are both fresh IDB names, and since the name does not matter, only

that it is unused elsewhere, we may safely assume that they are equal.

23 Note that they differ only on the existential variables that are not joined-on (see Section

6.1.2.1 for how we could make this identical)

189

From Lemma 6.19 the elements of RE = body(ms). From that and

Lemma 6.20, it follows that MappedRE = Vars(ms). Hence q(MappedRE)

= qj(Vars(ms)).

2. [The right hand side of lvms] g(AG) = rq. Given Lemma 6.1, we know

that there exists a unique relation rq ∈ G s.t. nrq = idb and attributesr =

Vars(MSq). Thus it follows that g(AG) = rq.

3. [The right hand side of gvms] re1(Mappedre1), …, rep(Mappedrep) =

body(ms) – This follows directly from Lemma 6.19 and Lemma 6.20.

Hence ∀ relations created in G as a result of mapping equality relationships as

in the second bullet of 6.2.1, LVG and GVG contain the required mappings from

Definition 4.17, and Lemma 6.21 holds. □

6.3.2.1.2 Proof that Mapping Views Created by Mapping Similarity Relationships
are in G

We proceed here much as in the previous section. Assume that we are creating MapG_E

(MapG_F can shown mutatis mutandis). Let ms be a mapping statement with IDB name idb and ∀

r ∈ body(ms), Keep(r) = true. (i.e., ms is going to correspond to mapping similarity

relationships). We require Lemma 6.22 and Lemma 6.23 each of which use the definitions of

ms, idb, and r as above and only refer to the case where mapping similarity relationships are

under consideration (i.e., excluding mapping equality relationships):

Lemma 6.22: ∀ mapping statements ms ∈ MapE_F, re1, …, rep = relations in

the body of ms.

Proof:

• By the definition µ: a relation r ∈ body(ms), IFF µ(r, e) and either

Me(e1, e), or Ms(e1, e) for some e1 ∈ MapE_F.

• Since Keep(r) = true, Ms(e1,e).

• From µ: ∃ element e1 ∈ E s.t. µ(ms,e), µ(r,e1), Ms(e,e1).

190

• From the definition of Merge and hence χ and the fact that we have

constrained the input to disallow any mappings that would contain

transitivity of equality in MapE_F: ∃ some g1 ∈ G s.t. χ(e,g), χ(e1,g1),

H(g,g1).

• Hence RE consists of all of the relations in ms.

• We know that there will be no more elements e3 ∈ E and d3 ∈ MapE_F

s.t. Me(e1, e3) and C(e1,d3) since we know that each IDB only appears

in at most one mapping statement over E (Remark 6.1). □

Lemma 6.23: ∀ mapping statements ms ∈ MapE_F, ∀ attributes a ∈ attributesr, r

∈ body(ms), VM(v,a)
24 IFF ∃ e1 ∈ E, e2 ∈ MapE_F, g1 ∈ G s.t. µ(a,e1), µ(v, e2),

ψg(g1,e1), name(g1) = name(e2). Proof:

• From µ: ∀ attributes a ∈ attributesr, r ∈ body(ms), if VM(v,a) then ∃ aE,

rE ∈ E, vmape_f, msmape_f ∈ MapE_F s.t. µ(a,aE), µ(v, vmape_f), µ(r,rE),

µ(ms, msmape_f), C(rE,aE), C(msmape_f, vmape_f), Ms(vmape_f,aE), and

Ms(msmape_f,rE).

• We know that there will be no more elements e3 ∈ E and d3 ∈ MapE_F

s.t. Me(d3, e3) and C(mape_f,d3) since we know that each IDB only

appears in at most one mapping statement over E (Remark 6.1).

• From the definition of Merge and hence χ: ∃ rg, vg, ag ∈ G s.t. χ(rE,rg),

χ(aE,ag), χ(msmape_f,g) C(g,gv), H(gv,ag), C(rg,aE).

• Hence Lemma 6.23 holds. □

We are now ready to prove Lemma 6.24.

24 Recall that VM is defined to be the mapping of a variable in Definition 6.4 in Section

6.3.2.

191

Lemma 6.24: ∀ relations created in G as a result of mapping similarity

relationships as in the third bullet of 6.2.1, LVG and GVG contains the required

mappings from Definition 4.17.

Proof: We break this down into three parts: 1. showing that the left hand sides

of both lvms and gvms (which are identical) are created correctly, 2. showing that

the right hand side of lvms is created correctly, and 3. showing that the right

hand side of gvms is created correctly.

1. [The left hand sides of both lvms and gvms] q(VarsMapped) =

qj(Vars(ms)). From Lemma 6.23 and the definition of ψg we know that

ψg is defined on exactly the variables in ms. Hence VarsMapped =

Vars(ms). Since ms = ms and q and qj are both fresh IDB names,

q(VarsMapped) is functionally equivalent to qj(Vars(ms)).

2. [The right hand side of lvms] g(AG) = rq. Given the proofs in Section

6.3.1, we know that there exists a unique relation rq ∈ G where nrq = idb

and attributesr = Vars(MSq). Thus g(AG) = rq.

3. [The right hand side of gvms] AMrelg(re1), …, AMrelg(rep) = body(ms).

Lemma 6.22 proves that ER = the relations in body(ms). From Lemma

6.23 we know that each AMrelg(rej), rej ∈ RE, contains the same

attributes as its corresponding relation in body(ms). Hence AMrelg(re1),

…, AMrelg(rep) = body(ms).

Hence, ∀ relations created in G as a result of mapping similarity

relationships as in the third bullet of 6.2.1, LVG and GVG contains the

required mappings from Definition 4.17, and Lemma 6.24 holds. □

Since all relations corresponding to IDBs are created by either a result of mapping equality

relationships or mapping similarity relationships, since we have now proved Lemma 6.21 and

Lemma 6.24, Lemma 6.16 holds.

192

6.3.2.2 Proof that MapG_EF is Correct for Relations in G Corresponding to
Relations in E or F

We are now ready to prove Lemma 6.17: MapG_EF is correct for relations in G corresponding

to relations in E or F. By the proof in Section 6.3.1.1 we know that all non-mapping included

relations will exist in G with the proper attributes. Section 4.3.3.2 requires that GVG and LVG

must each include q(attributesg) :- g(attributesg), where q is a fresh IDB name for each g ∈ G

s.t. g corresponds to a non-mapping included relation in E or F. The requirements in the first

bullet in Section 6.2.1 will add exactly those mapping views. Hence Lemma 6.17 holds.

6.3.2.3 Proof that No Other Mapping Views Exist in MapG_EF

We are now ready to prove Lemma 6.18: no other mapping views exist in MapG_EF. Since

there exist no more relations in G than those required for Lemma 6.16 and Lemma 6.17 and the

relationships in G are also only those required to satisfy Lemma 6.16 and Lemma 6.17, there are

no other mapping views in GVG and LVG, Lemma 6.18 holds.

Since Lemma 6.16, Lemma 6.17, and Lemma 6.18 holds, Lemma 6.2 holds.

Since Lemma 6.1 holds (Section 6.3.1) and Lemma 6.2 as shown here, Theorem 6.2 also

holds.

6.4 Allowing More than Two Mapping Statements per IDB
In Section 6.1 we restrict the input to consider only IDB names that appear in two mapping

statements. We make this restriction not for the sake of having a correct mediated schema, but

to ensure the correctness of MapG_EF. The reason is as follows. Consider the case when we allow

IDBs to appear in more than two mapping statements; unless the mapping statements are

mapped in pairs, there is no method for differentiating between joins (i.e., the relationships

between relations within a mapping statement) and unions (i.e., the relationship between

relations in separate mapping statements with the same IDB name) in MapE_F. As an example,

consider the mapping in Example 6.5:

Example 6.5:

q7(x,y) :- e3(x,y,w)

193

q7(x,y) :- f1(x,y)

q7(x,y) :- f2(y,z,x) □

If only one element in MapE_F corresponded to the concept of q7, the result would be the

mapping in Figure 6.2. While the correct model G is, in fact, the model in Figure 6.3, MapG_EF

could not be created correctly without referring to MapE_F. In the current creation of MapG_EF

given MapG_EF, we assume that all relations in F that are the destination of a mapping

relationship from the same mapping element are related in MapG_EF by a join. However, now the

relations in MapG_EF could either be related through a join or through a union; MapG_EF does not

encode enough information for us to be able to differentiate between the two. Figure 6.9 shows

how duplicating elements in MapE_F can represent the difference between a join and a union in

MapE_F. Hence MapG_E and MapG_F can be created from E, F, and MapE_F rather than needing to

refer all the way back to MapE_F. This mapping results in the same model G as shown in Figure

6.3

e3

b ca x y

q7 f1

g hd

f2

i

E FMapE_F

jx y

q7

Figure 6.9: A Vanilla mapping for the conjunctive mapping in Example 6.5 that retains
enough information to create MapG_E and MapG_F.

However, this strategy relies on the transitivity of mapping equality relationships, and hence

only works in the case where mapping equality relationships are used. If mapping similarity

relationships are used, then the strategy does not work since those relationships are not

transitive. For example, if all of the mapping equality relationships in Figure 6.9 were replaced

with mapping similarity relationships, there would be two relations corresponding to q7 in G.

194

6.5 Encoding Alternative Conjunctive Definitions in Merge
A key idea of generic Merge is that every schema element in E, F, or MapE_F should be

present in some form in G. Hence, though the encoding in Section 6.1.2.1 can encode the

majority of the alternate scenarios in Section 4.4, there are some situations described in Section

4.4 that cannot be encoded using generic Merge alone. As one would expect, both require

discarding MSC 1: Completeness as in Section 4.4.1.1. In Section 6.5.1 we discuss when MapE_F

is assumed to contain no components (Section 4.4.2) and minimality is also discarded as

discussed in Section 4.4.1.2. In Section 6.5.2 we discuss when relations in E and F not

referenced in MapE_F are not retained.

6.5.1 Relaxing MSC 3: Not Keeping All Attributes of Relations
Corresponding to Relations in D

6.5.1.1 Problems with G
Recall the third Mediated Schema Criterion: “For every component QC in MapE_F not

subsumed by any intersection in MapE_F, there exists a canonical query for QC over G and

MapG_EF.” If it is relaxed, it is unclear whether to retain attributes represented by existential

variables in MapE_F. Using only Encode, Decode, and Merge, it is impossible to encode the case

when attributes represented by existential variables in MapE_F in non-mapping-included relations

are excluded from G unless relations that appear in MapE_F are retained. Consider the mapping

from Example 4.13:

q2(x) :- e1(x,y)

q2(x) :- f1(x,z)

This mapping can be encoded in a Vanilla mapping using either mapping equality

relationships or mapping similarity relationships. If we connect q2 to e1 and f1 with similarity

mapping relationships, then q2 can be created without representing either y or z as in Figure 6.8.

The concepts of y and z are still retained in e1 and f1, so the Generic Merge Requirements for

Merge are satisfied.

However, if q2 is connected to e1 and f1 with equality mapping relationships, as shown in

Figure 6.10, then the representation of q2 will contain both y and z since Merge retains all

195

relationships in the input, and y, z, and the Contains relationships connecting them must be

represented in G to agree with the GMRs. Hence, because of the GMRs because e1 and f1 are

only represented by q2, it is impossible to build a mediated schema where q2 must include y and

z.

e1

a y x

q2 f1

zb

E FMapE_F

Figure 6.10: A mapping that does not allow the attributes to be kept.

The use of the equality mapping corresponds to encoding the case where the only relations

related by MapE_F that are kept are the relations that appear in D; in this case G would not contain

either f1 or e1. Unfortunately, this is the most natural situation in which the user likely would not

want to have y or z in the mediated schema either. This case could, however, be handled by a

combination of Model Management operators.

6.5.1.2 Problems with MapG_EF

Another problem can exist if all attributes of a relation r in G created from a mapping

statement are not kept. This time it is not a problem of building G but a problem of creating

MapG_EF. In this case, the problem occurs if r is created from mapping similarity relationships

and all attributes that are joined-on are not retained. In this case, because those attributes are not

to be kept in the mediated schema, they do not appear in MapE_F, so there is no way to tell that

those attributes are to be joined-on. It is difficult, if not impossible, to see how this could be

handled sensibly by any combination of Model Management operators.

6.5.2 Relaxing MSC 1 (G is complete): Discarding Relations not in
MapE_F

A key idea of Merge is that every element in E, F, and MapE_F should be represented in some

fashion in the merged model. Hence, as in the previous case, if there are relations in E and F

196

that are not to be mentioned at all in G, a separate differencing operator would need to remove

them from the relations that were not needed in G.

6.6 Conclusions
In Chapter 4 we considered the problem of using a conjunctive mapping to create a mediated

schema. In Chapter 5 we introduced a generic Merge operator for use in creating mediated

schemas and other applications. In this chapter we showed how Merge could be used to encode

the algorithm in Chapter 4. We now consider the lessons that we have learned from this

exercise.

6.6.1 Creating Mediated Schema Easy using Model Management
Vanilla mappings can handle mappings under the restrictions in Section 6.1 and can be used

to encode the alternatives described in Section 4.4. For example, given the same relations and

conjunctive mappings, Figure 6.11 through Figure 6.13 show how to create a Vanilla mapping

that will satisfy three different alternatives: Figure 6.11 shows how to create mappings if MSC

1: Completeness is relaxed (Section 4.4.1.1), Figure 6.12 shows a mapping that satisfies the

base semantics (Definition 4.18), and Figure 6.13 shows a Vanilla mapping where MSC 5:

minimality (Section 4.4.1.2) is relaxed.

e3

b t x

q1 f1

zc

E FMapE_F

e1

a y

Figure 6.11: A Vanilla mapping in which the mediated schema retains only relations
defined in the mapping

197

e3

b t x

q1 f1

zc

E FMapEF

e1

a y

Figure 6.12: A Vanilla mapping for the base semantics: non-mapping-included
relationships represented by a relation in the mediated schema

e3

b t x

q1 f1

zc

E FMapE_F

e1

a y

Figure 6.13: A Vanilla mapping where all relations in the input are retained

In addition, Vanilla mappings can express some of the kinds of relationships described in

Section 4.5.3 as being inexpressible for conjunctive mappings even restricted to the case of

relational schemas.

6.6.2 Creating Mapping Views Difficult Using Model Management
While Model Management and Merge are adept at specifying and creating a mediated

schema, they are lacking when it comes to creating the mapping views that allow queries to be

translated. In the simplest case, conjunctive mappings using only two mapping statements per

IDB, creating the mapping is straightforward. However, as is shown in Section 6.4 even in the

case where there are more than two mapping statements per IDB this rapidly becomes very

difficult to understand or even impossible to encode in Model Management models, mappings,

and operators without resorting to the Expression property of the mapping elements – which is

not very generic. It is difficult to envision any generic representation that would be able to

handle all such subtleties needed here. This thesis provides the first test of such an end-to-end

application; clearly more work is needed at this boundary to see what application support Model

Management is capable of providing beyond just creating schemas.

198

Chapter 7

Conclusions and Future Directions

7.1 Conclusions
As more and more data is stored by more and more people, the number of overlapping

sources of data about any given topic is going to increase. In that milieu, it will be increasingly

important to have systems that are capable of rapidly querying multiple databases

simultaneously. In this thesis we explore how both how to create such systems based on

information about how the data sources are related to one another and also how to query those

systems efficiently once the system is built. In particular, this thesis makes the following

contributions:

• In Chapter 3 we provide the MiniCon algorithm that proves that conjunctive queries

can be efficiently answered in data integration systems that use Local-As-View

(LAV) mappings. The query rewriting for such systems is done by answering

queries using views, where queries are answered using stored queries rather than the

underlying relations used to define the views. We show in the first large-scale

evaluation of algorithms for answering queries using views that our MiniCon

algorithm is faster than previous algorithms for the same problem, sometimes by an

order of magnitude. We extend the MiniCon algorithm to include arithmetic

comparison predicates, and offer a sound but incomplete solution to this problem.

Finally, we show how MiniCon can be extended to rewriting queries in query

optimization, which both requires equivalent rewritings and allows access to the

relations that define the views.

• In Chapter 4 we leave behind the assumption that the mediated schema is given to us

a priori, and discuss how to create the mediated schema given that the source

schemas are related to one another using conjunctive mappings – mappings that

consist of conjunctive queries. We define a set of mediated schema criteria that

describe desirable features in the mediated schema, regardless of how the mediated

schema is created, and show a mediated schema and mappings that adhere to these

199

requirements. We also show by examining the mappings required by the

relationships between the local sources, even when the relationships between local

sources are very simple, the traditional LAV and GAV mappings from mediated

schema to source schemas may not be sufficiently expressive to express the mapping

from mediated schema to source schemas. While others have shown that GAV and

LAV may not be expressive enough to form the mapping from mediated schema to

source schema, Chapter 4 gives an underlying reason for why this occurs.

• In Chapter 5 we extend the problem of mediated schema creation using conjunctive

mappings in Chapter 4 to Merge: the problem of merging models for many

applications, including data integration, view integration, and ontology merging.

Unlike previous algorithms that concentrate on solving meta-model specific

problems, we describe how to handle conflicts that occur in merging two models.

We provide a generic definition for Merge which includes a first class mapping

between input models and describe when we expect that it will be able to be fully

automatic and when user intervention is expected. We show how with other Model

Management operators Merge in a specific meta-meta-model can subsume previous

work from view integration, ontology merging, and programming languages.

• In Chapter 6 we show that the Merge defined in Chapter 5 can be used along with

simple import and export operators to mimic the semantic mediated schema creation

used in Chapter 4. We show that given an input mapping between the sources

(which is outside the scope of this thesis), creating the mediated schema is simple

and intuitive in most cases, but that creating the mappings from mediated schema to

sources is more difficult and sometimes impossible to be done in a comprehensible

fashion using Model Management. This provides not only verification of Merge, but

also a first glimpse at how Model Management can be expected to help solve more

of the requirements of the applications other than simply creating the mediated

schema.

200

7.2 Future Directions
There are a number of future directions that we are interested in pursuing, all in the realm of

extending and Merge other Model Management operators to be more useful and concrete in

helping with the semantics of given applications rather than being as divorced from the

applications as it is now.

7.2.1 Schema Creation for Peer Data Management Systems
Much of the work in dealing with multiple databases recently has moved from data

integration to peer data management systems (Aberer et al. 2002; Arenas et al. 2003; Bernstein

et al. 2002; Halevy et al. 2003; Ooi et al. 2003). In a peer data management system, there are

many different sources that can be added in an ad-hoc fashion. Deciding what schema these

sources should be queried in is a notion of much concern. Some work has been done on

answering queries given mappings between peers saying how those schemas are related

(Tatarinov et al. 2004). This work is a huge leap forward, but can only answer queries where the

concepts are common not only to the schema that the user has, but to all the intermediate

schemas that give mappings to the destination schemas. The work in Chapter 4 on automatically

determining a mediated schema based on mappings between the source schemas could be

leveraged to create schemas to use for querying in peer-based data management systems.

7.2.2 Generic Merge for Complex Structures
Within the generic Merge described in Chapter 5, in some of our experiments we

encountered a complex structure in one model that expressed a similar concept to a complex

structure in another model, but there was no obvious mapping for the individual elements even

though the structures as a whole were similar. An open question is how best to express such

similarities and exploit them.

7.2.3 EnforceConstraints
We would like to see a model-driven implementation of the EnforceConstraints operator that

we proposed in Section 5.3.2. The goal of this operator is to coerce models that are valid in a

meta-meta-model (e.g., Vanilla), but not in any particular meta-model (e.g., relational schemas)

into being valid in particular meta-models. Preliminary work suggests that some of the work

201

created for the purpose of translating between data models can be leveraged in order to create

this operator. In particular some of the work by Atzeni and Torlone in viewing meta-models as

consisting of different patterns and changing a schema from one meta-model to another (Atzeni

et al. 1996) seems promising, as does some of the similar work in M(DM) (Barsalou et al.

1992).

7.2.4 Semantic Applications for Model Management
Model Management is at a pivotal point: thus far it has focused on schema-level operators

without considering the overall context in which they are used. A critical step toward this

broader picture is to build a Model Management system that considers an application from end-

to-end, including the data. One natural target application is three-way merge described in

Section 5.7.2. This problem is common not only in core database applications but also in file

versioning and versioning support for computer-supported collaborative work. Creating three-

way merge requires rigorous definitions and implementations of two Model Management

operators: Diff, which takes the difference of two models, and EnforceConstraints, which

coerces models to adhere to the constraints of a specific data model. Creating prototypes of

these operators and analyzing results at both the schema and data level will show that Model

Management can solve real world problems in the context of the entire application and will

likely expose new Model Management research problems.

202

Bibliography

Aberer, K., Cudré-Mauroux, P., and Hauswirth, M. "A Framework for Semantic Gossiping,"

SIGMOD Record (31:4), December 2002, pp 48-53.

Abiteboul, S., and Duschka, O. "Complexity of Answering Queries Using Materialized Views,"

Symposium on Principles of Database Systems (PODS), 1998, pp. 254-263.

Abiteboul, S., Hull, R., and Vianu, V. Foundations of Databases Addison-Wesley Publishing

Company, Inc., Reading, Massachusetts, 1995, p. 685.

Afrati, F., Gergatsoulis, M., and Kavalieros, T. "Answering Queries using Materialized Views

with Disjunctions," International Conference on Database Theory (ICDT), 1999, pp.

435-452.

Afrati, F.N., Li, C., and Ullman, J.D. "Generating Efficient Plans for Queries Using Views,"

ACM SIGMOD International Conference on Management of Data (SIGMOD), 2001,

pp. 319 - 330.

Arenas, M., Kantere, V., Kementsietsidis, A., Kiringa, I., Miller, R.J., and Mylopoulos, J. "The

Hyperion Project: From Data Integration to Data Coordination," SIGMOD Record

(32:3), September 2003, pp 53-58.

Atzeni, P., and Torlone, R. "Management of Multiple Models in an Extensible Database Design

Tool," International Conference on Extending Database Technology (EDBT), 1996, pp.

79-95.

Avnur, R., and Hellerstein, J.M. "Eddies: Continuously Adaptive Query Processing," ACM

SIGMOD International Conference on Management of Data (SIGMOD), 2000, pp. 261-

272.

203

Balasubramaniam, S., and Pierce, B.C. "What is a File Synchronizer?," ACM/IEEE

International Conference on Mobile Computing and Networking (MOBICOM), 1998,

pp. 98-108.

Barsalou, T., and Gangopadhyay, D. "M(DM): An Open Framework for Interoperation of

Multimodel Multidatabase Systems," International Conference on Extending Database

Technology (EDBT), 1992, pp. 218-227.

Batini, C., Lenzerini, M., and Navathe, S.B. "A Comparative Analysis of Methodologies for

Database Schema Integration," ACM Computing Surveys (18:4) 1986, pp 323-364.

Beeri, C., and Milo, T. "Schemas for Integration and Translation of Structured and Semi-

Structured Data," ICDT, 1999, pp. 296-313.

Bello, R., Dias, K., Downing, A., Feenan, J., Finnerty, J., Norcott, W., Sun, H., Witkowski, A.,

and Ziauddin, M. "Materialized Views in Oracle," Very Large Data Bases Conference

(VLDB), 1998, pp. 659-664.

Bergamaschi, S., Castano, S., and Vincini, M. "Semantic Integration of Semistructured and

Structured Data Sources," SIGMOD Record (28:1) 1999, pp 54-59.

Berger, M., Schill, A., and Völksen, G. "Coordination Technology for Collaborative

Applications: Organizations, Processes, and Agents," Springer, New York, 1998, pp.

177-198.

Berlage, T., and Genau, A. "A Framework of Shared Applications with a Replicated

Architecture," ACM Symposium on User Interface Software and Technology, 1993, pp.

249-257.

Bernstein, P.A. "Applying Model Management to Classical Meta Data Problems," Conference

on Innovative Data Systems Research (CIDR), 2003, pp. 209-220.

204

Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L., and

Zaihrayeu, I. "Data Management for Peer-to-Peer Computing: A Vision," International

Workshop on the Web and Databases (WebDB), 2002, pp. 89-94.

Bernstein, P.A., Halevy, A.Y., and Pottinger, R.A. "A Vision of Management of Complex

Models," SIGMOD Record (29:4) 2000, pp 55-63.

Biskup, J., and Convent, B. "A formal view integration method," SIGMOD, 1986, pp. 398-407.

Bracha, G., and Lindstrom, G. "Modularity Meets Inheritance," Computer Languages

Conference, 1992, pp. 282-290.

Buneman, P., Davidson, S.B., and Kosky, A. "Theoretical Aspects of Schema Merging,"

International Conference on Extending Database Technology (EDBT), 1992, pp. 152-

167.

Calì, A., Calvanese, D., Giacomo, G.D., and Lenzerini, M. "On the Expressive Power of Data

Integration Systems," Conference on Conceptual Modeling (ER), 2002, pp. 338-350.

Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., and Rosati "Schema and Data

Integration Methodology for DWQ," DWQ-UNIROMA-004, DWQ Consortium.

Calvanese, D., Giacomo, G.D., Lenzerini, M., and Vardi, M. "Rewriting of regular expressions

and regular path queries," Symposium on Principles of Database Systems (PODS),

1999, pp. 194-204.

Chandra, A.K., and Merlin, P.M. "Optimal Implementation of conjunctive queries in relational

databases," ACM Symposium on Theory of Computing (STOC), 1977, pp. 77-90.

Chaudhuri, S., Krishnamurthy, R., Potamianos, S., and Shim, K. "Optimizing Queries with

Materialized Views," International Conference on Data Engineering (ICDE), 1995, pp.

190-200.

205

Chaudhuri, S., and Vardi, M. "On the Equivalence of Recursive and Nonrecursive Datalog

Programs," Symposium on Principles of Database Systems (PODS), 1992, pp. 55-66.

Chaudhuri, S., and Vardi, M. "On the Complexity of Equivalence between Recursive and

Nonrecursive Datalog Programs," Symposium on Principles of Database Systems

(PODS), 1994, pp. 55-66.

Chirkova, R., Halevy, A.Y., and Suciu, D. "A Formal Perspective on the View Selection

Problem," Very Large Data Bases Conference (VLDB), 2001, pp. 59-68.

Cohen, S., Nutt, W., and Serebrenik, A. "Rewriting Aggregate Queries Using Views,"

Symposium on Principles of Database Systems (PODS), 1999, pp. 155-166.

Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., and Domingos, P. "iMAP: Discovering

Complex Mappings between Database Schemas," ACM SIGMOD International

Conference on Management of Data (SIGMOD), 2004, pp. 383-394.

Duschka, O.M., and Genesereth, M.R. "Answering Recursive Queries Using Views,"

Symposium on Principles of Database Systems (PODS), 1997a, pp. 109-116.

Duschka, O.M., and Genesereth, M.R. "Query Planning in Infomaster," ACM Symposium on

Applied Computing (SAC), 1997b, pp. 109-111.

Duschka, O.M., and Genesereth, M.R. "Query Planning with Disjunctive Sources," AAAI

Workshop on AI and Information Integration, AAAI Press, 1998, pp. 23-28.

Duschka, O.M., and Levy, A.Y. "Recursive Plans for Information Gathering," The International

Joint Conference on Artificial Intelligence (IJCAI), 1997c, pp. 778-784.

Fagin, R., Kolatis, P.G., Popa, L., and Tan, W.C. "Composing Schema Mappings: Second-

Order Dependencies to the Rescue," Symposium on Principles of Database Systems

(PODS), 2004, pp. 83-94.

206

Farquhar, A., Fikes, R., and Rice, J. "The Ontolingua Server: A Tool for Collaborative

Ontology Construction," KSL-96-26, Stanford University Knowledge Systems

Laboratory.

Fikes, R. "Ontologies: What Are They, and Where's The Research?," Principles of Knowledge

Representation and Reasoning (KR), 1996, pp. 652-653.

Florescu, D., Raschid, L., and Valduriez, P. "A Methodology for Query Reformulation in CIS

using Semantic Knowledge," International Journal of Intelligent & Cooperative

Information Systems (5:4) 1996, pp 431-468.

Friedman, M., Levy, A., and Millstein, T. "Navigational Plans for Data Integration,"

Proceedings of the National Conference on Artificial Intelligence (AAAI), 1999, pp.

67-73.

Friedman, M., and Weld, D. "Efficient Execution of Information Gathering Plans," International

Joint Conference on Artificial Intelligence (IJCAI), 1997, pp. 785-791.

Grahne, G., and Mendelzon, A.O. "Tableau Techniques for Querying Information Sources

Through Global Schemas," International Conference on Database Theory (ICDT),

1999, pp. 332-347.

Grumbach, S., Rafanelli, M., and Tininini, L. "Querying Aggregate Data," Symposium on

Principles of Database Systems (PODS), 1999, pp. 174-184.

Gryz, J. "Query Folding with Inclusion Dependencies," International Conference on Data

Engineering (ICDE), 1998, pp. 126-133.

Gupta, A., Harinarayan, V., and Quass, D. "Aggregate-query processing in data warehousing

environments," Very Large Data Bases Conference (VLDB), 1995, pp. 358-369.

Halevy, A.Y. "Answering Queries Using Views: A Survey," VLDB Journal (10:4), December

2001, pp 270-294.

207

Halevy, A.Y., Ives, Z.G., Suciu, D., and Tatarinov, I. "Piazza: Data Management Infrastructure

for Semantic Web Applications," International Conference on Data Engineering

(ICDE), 2003, pp. 505-516.

Harinarayan, V., Rajaraman, A., and Ullman, J.D. "Implementing Data Cubes Efficiently,"

ACM SIGMOD International Conference on Management of Data (SIGMOD), 1996,

pp. 205-216.

Harrison, W., and Ossher, H. "Subject-Oriented Programming (A Critique of Pure Objects),"

ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &

Applications (OOPSLA), 1993, pp. 411-428.

He, B., and Chang, K.C.-C. "Statistical Schema Matching across Web Query Interfaces," ACM

SIGMOD International Conference on Management of Data (SIGMOD), 2003, pp. 217-

228.

Hull, R. "Relative Information Capacity of Simple Relational Database Schemata," Symposium

on Principles of Database Systems (PODS), 1984, pp. 97-109.

Hull, R. "Relative Information Capacity of Simple Relational Database Schemata," SIAM

Journal of Computing (15:3), August 1986, pp 856-886.

Hull, R., and Yoshikawa, M. "ILOG: Declarative Creation and Manipulation of Object

Identifiers," Very Large Data Bases Conference (VLDB), 1990, pp. 455-468.

Ives, Z.G. "Efficient Query Processing for Data Integration," in: Computer Science and

Engineering, University of Washington, Seattle, WA, USA, 2002, p. 186.

Kalinichenko, L.A. "Methods and Tools for Equivalent Data Model Mapping Construction,"

International Conference on Extending Database Technology (EDBT), 1990, pp. 92-

119.

208

Kang, J., and Naughton, J.F. "On Schema Matching with Opaque Column Names and Data

Values," ACM SIGMOD International Conference on Management of Data

(SIGMOD), 2003, pp. 205-216.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., and Irwin,

J. "Aspect-Oriented Programming," Object-Oriented Programming, 11th European

Conference (ECOOP), 1997, pp. 220-242.

Klug, A. "On Conjunctive Queries Containing Inequalities," Journal of the ACM (JACM) (35:1)

1988, pp 943-962.

Kolaitis, P., Martin, D., and Thakur, M. "On the Complexity of the Containment Problem for

Conjunctive Queries with Built-in Predicates," Symposium on Principles of Database

Systems (PODS), 1998, pp. 197-204.

Kossmann, D. "The State of the Art in Distributed Query Processing," ACM Computing Surveys

(32:4), December 2000, pp 422-469.

Kushmerick, N., Doorenbos, R., and Weld, D. "Wrapper Induction for Information Extraction,"

International Joint Conference on Artificial Intelligence (IJCAI), 1997, pp. 729-737.

Kwok, C.T., and Weld, D.S. "Planning to gather information," Thirteenth National Conference

on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence

Conference (AAAI/IAAI), 1996, pp. 148-155.

Lakshmanan, L.V.S., Sadri, F., and Subramanian, I.N. "SchemaSQL - A Language for

Interoperability in Relational Multi-Database Systems," Very Large Data Bases

Conference (VLDB), 1996, pp. 239-250.

Lambrecht, E., Kambhampati, S., and Gnanaprakasam, S. "Optimizing Recursive Information

Gathering Plans," International Joint Conference on Artificial Intelligence (IJCAI),

1999, pp. 1204-1211.

209

Larson, J.A., Navathe, S.B., and Elmasri, R. "A Theory of Attribute Equivalence in Databases

with Application to Schema Integration," Transactions on Software Engineering (15:4),

April 1989, pp 449-463.

Lenzerini, M. "Data Integration: A Theoretical Perspective," Symposium on Principles of

Database Systems (PODS), 2002, pp. 233-246.

Levy, A.Y., Mendelzon, A.O., Sagiv, Y., and Srivastava, D. "Answering Queries Using Views,"

Symposium on Principles of Database Systems (PODS), 1995, pp. 95-104.

Levy, A.Y., Rajaraman, A., and Ordille, J.J. "Querying Heterogeneous Information Sources

Using Source Descriptions," Very Large Data Bases Conference (VLDB), 1996, pp.

251-262.

Levy, A.Y., and Sagiv, Y. "Queries Independent of Updates," Very Large Data Bases

Conference (VLDB), 1993, pp. 171-181.

Madhavan, J., Bernstein, P.A., and Rahm, E. "Generic Schema Matching with Cupid," Very

Large Databases Conference (VLDB), 2001, pp. 49-58.

Madhavan, J., and Halevy, A.Y. "Composing Mappings Among Data Sources," Very Large

Data Bases Conference (VLDB), 2003, pp. 572-583.

McBrien, P., and Poulovassilis, A. "Data Integration by Bi-Directional Schema Transformation

Rules," International Conference on Data Engineering (ICDE), 2003, pp. 227-238.

McGuinness, D.L., Fikes, R., Rice, J., and Wilder, S. "The Chimæra Ontology Environment,"

National Conference on Artificial Intelligence (AAAI), 2000, pp. 1123-1124.

Melnik, S., Rahm, E., and Bernstein, P.A. "Rondo: A Programming Platform for Generic Model

Management," ACM SIGMOD International Conference on Management of Data

(SIGMOD), 2003, pp. 193-204.

210

Miller, R.J. "Using Schematically Heterogeneous Structures," ACM SIGMOD International

Conference on Management of Data (SIGMOD), 1998, pp. 189-200.

Miller, R.J., Ioannidis, Y.E., and Ramakrishnan, R. "The Use of Information Capacity in

Schema Integration and Translation," Very Large Data Bases Conference (VLDB),

1993, pp. 120-133.

Mitra, P. "An Algorithm for Answering Queries Efficiently Using Views," The Australasian

Conference on Database Technologies, 1999, pp. 99-106.

Mork, P., Pottinger, R.A., and Bernstein, P.A. "Challenges In Precisely Aligning Models of

Human Anatomy," American Medical Informatics Association Annual Symposium,

2004, p. To Appear.

Munson, J.P., and Dewan, P. "A Flexible Object Merging Framework," Conference on

Computer Supported Cooperative Work (CSCW), 1994, pp. 231-242.

Noy, N.F., and Musen, M.A. "SMART: Automated Support for Ontology Merging and

Alignment," Banff Workshop on Knowledge Acquisition, Modeling, and Management,

1999.

Noy, N.F., and Musen, M.A. "PROMPT: Algorithm and Tool for Ontology Merging and

Alignment," Proceedings of the National Conference on Artificial Intelligence (AAAI),

2000, pp. 450-455.

Ooi, B.C., Shu, Y., and Tan, K.-L. "Relational Data Sharing in Peer-Based Data Management

Systems," SIGMOD Record (23:3), September 2003, pp 59-64.

Ossher, H., and Harrison, W. "Combination of Inheritance Hierarchies," Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA), 1992, pp.

25-40.

211

Ossher, H., Kaplan, M., Katz, A., Harrison, W., and Kruskal, V. "Specifying Subject-Oriented

Composition," Theory and Practice of Object Systems (2:3) 1996, pp 179-202.

Papakonstantinou, Y., and Vassalos, V. "Query Rewriting for Semi-Structured Data," ACM

SIGMOD International Conference on Management of Data (SIGMOD), 1999, pp. 455-

466.

Popa, L., Deutsch, A., Sahuguet, A., and Tannen, V. "A Chase Too Far?," ACM SIGMOD

International Conference on Management of Data (SIGMOD), 2000, pp. 273-284.

Pottinger, R.A., and Bernstein, P.A. "Merging Models Based on Given Correspondences," Very

Large Data Bases Conference (VLDB), 2003, pp. 862-873.

Pottinger, R.A., and Halevy, A.Y. "MiniCon: A scalable algorithm for answering queries using

views," VLDB Journal (10:2-3) 2001, pp 182-198.

Qian, X. "Query Folding," International Conference on Data Engineering (ICDE), 1996, pp. 48-

55.

Rahm, E., and Bernstein, P.A. "A Survey of Approaches to Automatic Schema Matching,"

VLDB Journal (10:4) 2001, pp 334-350.

Rajaraman, A., Sagiv, Y., and Ullman, J.D. "Answering Queries Using Templates with Binding

Patterns," Symposium on Principles of Database Systems (PODS), 1995, pp. 105-112.

Rector, A., Gangemi, A., Galeazzi, E., Glowinski, A., and Rossi-Mori, A. "The GALEN CORE

Model Schemata for Anatomy: Towards a re-usable application-independent model of

medical concepts," The Twelfth International Congress of the European Federation for

Medical Informatics, 1994, pp 229-233.

212

Rosenthal, A., and Reiner, D. "Tools and Transformations - Rigorous and Otherwise - for

Practical Database Design," ACM Transactions on Database Systems (19:2), June 1994,

pp 167-211.

Rosse, C., Shapiro, L.G., and Brinkley, J.F. "The digital anatomist foundational model:

principles for defining and structuring its concept domain," AMIA, 1998, pp. 820-824.

Sabetzadeh, M., and Easterbrook, S. "Analysis of Inconsistency in Graph-Based Viewpoints: A

Category-Theoretic Approach," The IEEE International Conference on Automated

Software Engineering (ASE), 2003, pp. 12-21.

Sagiv, Y. "Optimizing Datalog Programs," in: Foundations of Deductive Databases and Logic

Programming, J. Minker (ed.), Morgan Kaufmann, Los Altos, CA, 1988, pp. 659-698.

Sagiv, Y., and Yannakakis, M. "Equivalence Among Relational Expressions With the Union

and Difference Operators," Journal of the ACM (27:4) 1981, pp 633-655.

Shmueli, O. "Equivalence of Datalog Queries is Undecidable," Journal of Logic Programming

(15) 1993, pp 231-241.

Shu, N.C., Housel, B.C., and Lum, V.Y. "CONVERT: A High Level Translation Definition

Language for Data Conversion," Communications of the ACM (18:10) 1975, pp 557-

567.

Song, W.W., Johannesson, P., and Bubenko, J.A., Jr. "Semantic Similarity Relations in Schema

Integration," Data Knowledge and Engineering (19:1) 1996, pp 65-97.

Spaccapietra, S., and Parent, C. "View Integration: A Step Forward in Solving Structural

Conflicts," IEEE Transactions on Data Knowledge and Data Engineering (TKDE)

(6:2), April 1994, pp 258-274.

Srivastava, D., Dar, S., Jagadish, H.V., and Levy, A.Y. "Answering SQL Queries Using

Materialized Views," Very Large Data Bases Conference (VLDB), 1996, pp. 318-329.

213

Steinbrunn, M., Moerkotte, G., and Kemper, A. "Heuristic and Randomized Optimization for

the Join," VLDB Journal (6:3) 1997, pp 191-208.

Stumme, G., and Maedche, A. "FCA-Merge: Bottom-Up Merging of Ontologies," International

Joint Conference on Artificial Intelligence (IJCAI), 2001, pp. 225-234.

Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., and Lakhal, L. "Fast Computation of Concept

Lattices Using Data Mining Techniques," Knowledge Representation Meets Databases

(KRDB), 2000, pp. 129-139.

Tatarinov, I., and Halevy, A.Y. "Efficient Query Reformulation in Peer Data Management

Systems," ACM SIGMOD International Conference on Management of Data

(SIGMOD), 2004, pp. 539-550.

Theodoratos, D., and Sellis, T. "Data Warehouse Configuration," Very Large Data Bases

Conference (VLDB), 1997, pp. 126-135.

Tsatalos, O.G., Solomon, M.H., and Ioannidis, Y.E. "The GMAP: A Versatile Tool for Physical

Data Independence," VLDB Journal (5:2) 1996, pp 101-118.

Ullman, J.D. Principles of Database and Knowledge-base Systems, Volumes I, II Computer

Science Press, Rockville MD, 1989.

Ullman, J.D. "Information Integration Using Logical Views," International Conference on

Database Theory (ICDT), 1997, pp. 19-40.

Yang, H.Z., and Larson, P.A. "Query Transformation for PSJ-queries," Very Large Data Bases

Conference (VLDB), 1987, pp. 245-254.

Zaharioudakis, M., Cochrane, R., Lapis, G., Pirahesh, H., and Urata, M. "Answering Complex

SQL Queries using Automatic Summary Tables," ACM SIGMOD International

Conference on Management of Data (SIGMOD), 2000, pp. 105-116.

214

Zhang, X., and Ozsoyoglu, M.Z. "On Efficient Reasoning with Implication Constraints," Proc.

of the Int. Conf. on Deductive and Object-Oriented Databases (DOOD), 1993, pp. 236-

252.

215

Appendix A
Proof of Correctness of the MiniCon Algorithm

A.1 Preliminaries
We consider conjunctive queries and views without built-in predicates. We assume the query

has the form Q(X) :- 1 1 …
n n

e (X), ,e (X) .

Without loss of generality we assume that no variable appears in more than one view, and

the variables used in the views are disjoint from those in the query. Furthermore, we assume

that the heads of the views and the query do not contain multiple occurrences of any variable.

We apply variable mappings to tuples and to atoms with the obvious meaning, i.e.,

= ϕ ϕ ϕ… nQ(X) ((x), (x), , (x))1 2 where = … nX (x , ,x)1 .Recall that a maximally-contained

rewriting is, in general, a union of conjunctive rewritings. A conjunctive rewriting has the form

′Q (Y) :- … k kV (Y),V (Y), ,V (Y)1 1 2 2 .

Note that for any i ≠j it is possible that Vi = Vj. Given a conjunctive rewriting Q', the

expansion of Q', denoted by Q'' is the query in which the view atoms are replaced by their

definitions (i.e., they are unfolded). Note that when expanding the view definitions we need to

create fresh variables for the existential variables in the views. We assume we have a function

fi(x) that returns the i th fresh copy of a variable x. For a given subgoal gi ∈ Q', we denote by

exp(i) the set of subgoals in Q'' obtained by expanding the definition of Vi. Given two head

homomorphisms h1 and h2 over the variables of a view V, we say that h2 is more restrictive than

h1 if whenever h1(x)=h1(y), then h2(x)=h2(y). Recall that the MiniCon Algorithm produces

conjunctive rewritings of the form Q'(EC(X)) :- Ψ Ψ…
m mC C C m CV (EC((Y))), ,V (EC((Y)))

1 11 .

Where for a variable x in Q, EC(x) denotes the representative variable of the set to which x

belongs. EC is defined to be the identity on any variable that is not in Q.

Remark 7.1: The following property will be used in the soundness proof.

Suppose that a subgoal g ∈ Q is in Gi, i.e., φi(g) ∈hi(Vi). The expansion Q'' will

contain an atom τ(g), where, for a variable x:

216

τ(x) = EC(x) if φi(x) is a head variable in hi(Vi), and

τ(x) = fi(x) otherwise □

A.2 Proof of Soundness
We need to show that every conjunctive rewriting Q' that is obtained by the MiniCon

Algorithm is contained in Q. To show soundness, we show that there is a containment mapping

Υ, from Q to Q''. We define an intermediate Υi for i = 0, ..., k by induction as follows. The

containment mapping Υ will be defined to be Υk.

U2. For all x where x ∈Vars(Q) and EC(x) ∈Vars(Q''), Υ0(x) = EC(x).

U3. Υi is an extension of Υi-1, defined as follows: for all x in the Domain(φi), if x ∉ Domain

(Υi-1) then Υ_i(x) = fi(EC(φi(x))).

Now we show that Υ is a containment mapping.

• Mapping of the head: we need to show that =Y(X) EC(X) . Because of U1, it suffices

to show that for every variable in ∈x X , EC(x) appears in Q''. By Property 3.1, clause

C1, we know whenever x is in the domain of φ and is a head variable in Q, φ maps x to

a head variable in h(V). By Property 3.2, clause D1, we know that given a MCD set, all

the head variables in Q are in the domain of some MCD in the set. From the definition

of Ψi, we know that X is a subset of the union of the ranges of the Ψi's, and hence, EC(x)

is in Q'' for every ∈x X .

• Mapping of a subgoal g. We need to show that Q'' includes Υ(g). By Remark 7.1 we

know that Q'' includes τ(g). It suffices to show that Υ(g) = τ(g), which follows

immediately from the definition of Υ.

A.3 Completeness
Let P be a maximally-contained rewriting of Q using V, and let R be the rewriting produced

by the MiniCon Algorithm. The MiniCon Algorithm is complete if R P. Since both R and P

are unions of conjunctive queries, it suffices to show that if p' is a conjunctive rewriting in P,

then there exists a conjunctive rewriting r' in R, such that r' p' (Sagiv et al. 1981). Since p' is

part of a maximally-contained rewriting of Q, there exists a containment mapping θ from Q to

217

the expansion p'' of p' (Chandra et al. 1977). We will use θ to show that there exists a set of

MCDs that are created by the MiniCon Algorithm such that when the MCDs are combined, we

obtain a conjunctive rewriting r' that contains p'.

We proceed as follows:

• ∀ subgoals gi ∈ p', we define Gi to be the set of subgoals g ∈ Q, such that θ(g) ∈ exp(i)

(i.e., Gi includes the set of subgoals in Q that are mapped to the expansion of gi in p'').

Note that for i ≠ j, the sets Gi and Gj are disjoint.

• We denote by θi the restriction of the containment mapping θ to the variables appearing

in Gi.

• The mapping θi is a mapping from Vars(Gi) to Vars(exp(gi)). However, it can be written

as a composition of two mappings, one from Vars(Gi) to hi(Vars(Vi)) (where hi is a head

homomorphism on Vi), and another from hi(Vars(Vi)) to Vars(exp(gi)). Formally, there

exists a mapping τi: Vars(Gi) hi(Vars(Vi)) and a renaming α of the variables in

hi(Vars(Vi)), such that θ_i(x) = α(τi(hi(x))) for every variable x ∈Gi.

We choose hi to be the least restrictive head homomorphism on Vars(Vi) for which τi and

α exist. Note that since we chose hi to be the least restrictive head homomorphism, then

any MCD created by the MiniCon Algorithm for Vi would at least as restrictive as τi

(hence, τi depends only on Q and the view Vi, and not on how Vi is used in the rewriting

p').

• We show that we now have all the components of a MCD, which we will denote by Ci:

 hi is a head homomorphism on Vars(Vi),

 i ih (V (A)) is the result of applying hi to the head variables A of Vi.

 τi is a partial mapping from Vars(Q) to hi(Vars(Vi)), and

 Gi is a set of subgoals in Q that are covered by τi

Furthermore, the MCD Ci satisfies the conditions of Property 3.1 which are

enforced by the MiniCon Algorithm:

218

C1. For any head variable x of Q, τi(x) is a head variable of hi(Vi), because

θi(x) is a head variable of p''.

C2. It follows from the fact that θi is a restriction of a containment

mapping from Q to p'', that if τi(x) is an existential variable in hi(Vi),

then for every subgoal g1 ∈ Q that includes x (1) all the variables in g1

are in the domain of τi, and (2) τi(g1) ∈hi(Vi).

In addition, note that C1,...,Ck satisfy Property 3.2, which is the condition that the

MiniCon Algorithm checks before it combines a set of MCDs:

D1. G1 ∪ ... ∪ Gk= Subgoals(Q) because θ is a containment mapping from

Q to p'', and

D2. for every i ≠ j, Gi ∩ Gj = ∅ because of the way we constructed the Gi's.

• The only difference between the MCD Ci and a MCD created by the MiniCon

Algorithm is that τi may not be the minimal mapping necessary to satisfy Property 3.1.

However, this is easy to fix by simply decomposing the MCD Ci into a set of MCDs that

satisfy Property 3.1 exactly and contain only minimal mappings for τi and minimal sets

of subgoals in their fourth component. Note that even after decomposing the MCDs, the

Gi's are still disjoint subsets of subgoals in Q, and hence Property 3.2 is still satisfied.

• At this point we have shown that we have a set of MCDs C1, ..., Cl, that satisfy Property

3.1 and Property 3.2. Furthermore, each of the mappings τi in the MCDs less restrictive

than θ in the following sense: for any variables x, y, if τi(x)=τi(y) then θ(x)=θ(y)

As a result, when procedure combineMCDs creates the function EC, it will have the

property that EC(x)=EC(y) only if θ(x)=θ(y). Consequently, the conjunctive rewriting r'

that is produced when C1, ..., Cl are combined will have the same property: whenever the

same variable appears in two argument positions in r', those two argument positions

will have the same variable in p'. Hence, there is a containment mapping from r' to p',

and therefore p' r'.

219

Appendix B
Examples of Relational Mathematical Mapping Requirements

• Functionality: It is important to realize functionality is talking about the entire state at

once, rather than just about the state of one relation. For example, if

I(m1) =

{m11(<1>), m12(<3>)}

{m11(<1>), m12(<2>)}

m1_m2({m11(<1>), m12(<3>)} m21(<3>), {m11(<1>), m12(<2>)} m22(<4>)) is

functional despite mapping m11(<1>) to two different values in m2 because the mapping

takes the state as a whole (including the state of m12) rather than just the state of m11.

Similar arguments apply to injectivity.

• Totality: For example, m1_m2(e1(<1, 2>)) f1(<1>, <2>) would be a total function if

I(m1) = σm1 = {e1(<1, 2>}.

• Surjectivity: For example, m1_m2(e1(<1, 2>)) f1(<1>, <2>) would be a surjective

function if I(m2) = σm2 = {f1(<1>, <2>)}.

220

Appendix C
Our Modifications to the BDK Algorithm

BDK combine the representation of our Has-a and Type-of relationships into one

relationship. They represent the fact that an element r Has-a element x of type y by an arrow

from r to y with the label x. The different representations are shown in Figure C.1 (a single Has-

a relationship) and in Figure C.2 (a violation of the one-type restriction). Although they

represent both the Vanilla Has-a and Type-of relationships with a single relationship, the BDK

algorithm only involves duplicate element types, not duplicate containers, hence our

modification involves only transforming the Vanilla Type-of relationships rather than the

associated Has-a and Contains relationships.

r

y

x

r

x

y
(a) (b)

Figure C.1: Modeling Has-a and Type-of relationships. (a) In the BDK meta-meta-
model (b) In Vanilla

r

y

x

z

x

r

x

y z
(a) (b)

Figure C.2: A violation of the one-type restriction. (a) In the BDK meta-meta-model (b)
In Vanilla

Applying the BDK algorithm to a model M expressed in Vanilla requires the following

conceptual steps:

1. Apply all implied relationships (listed in Section 5.4.1) that can lead to the inclusion of

additional Type-of or Is-a relationships.

221

2. Apply a transformation T1(M) N to transform M into a model N in BDK’s meta-meta-

model. This transformation operates in the following fashion:

a. Each element m of M becomes a node n in N, where the label of n is the value

of the ID property of m.

b. Each Vanilla Is-a relationship between two elements in M becomes a BDK Is-a

relationship between the corresponding nodes in N.

c. For each Vanilla Type-of relationship in M, a BDK Has-a relationship with

label “t” is created between corresponding nodes in N. Note that the label is

unimportant except that it must be the same for the BDK algorithm to function

correctly.

3. Run the BDK algorithm to change weak schemas (those that do not obey the one-type

restriction) into strong schemas (those that obey the one-type restriction).

4. Remove all Type-of and Is-a relationships from M (i.e., all relationships imported into N

are removed)

5. Apply a transformation T2(N) M to add into M:

a. All nodes from N that do not correspond to elements in M (i.e., nodes that were

created to help resolve one-type conflicts).

b. All relationships in N (i.e., all relationships that were originally imported into N

plus all of the changes and additions to resolve one-type conflicts). All Is-a

relationships are added directly between corresponding elements since the Is-a

relationships are the same in BDK and in Vanilla. All BDK Has-a relationships

are transformed into Vanilla Type-of relationships, and their labels are

discarded (since we specified that these would all be equal to the arbitrary

choice “t”, no information is lost in this transformation)

6. All implied relationships are removed.

This algorithm guarantees:

222

1. All relationships originally in M are retained at least implicitly. All relationships that are

not Is-a or Type-of relationships are retained. All Is-a and Type-of relationships are

imported from N. Since the BDK transformation only changes the relationships based

on the implication rule “If T(q, r) and I(r, s) then T(q, s),” which exists in Vanilla and

makes the same guarantee of retaining all relationships at least implicitly, this is

retained.

2. No element in M has more than one type. The BDK algorithm ensures that this is true

for Has-a relationships in N. No Type-of relationships are included in M other than

those in N, and T2’s transformation between Has-a and Type-of relationships cannot

violate this. The final step of removing implied relationships cannot violate this since

no new relationships are added.

3. The associativity and commutativity properties of BDK are retained. Both T1 and T2

are entirely order independent. Note that in order for the conflict resolution to be

associative and commutative, the algorithm must be run only once at the end of a series

of merges (see (Buneman et al. 1992) for an explanation as to why).

223

Appendix D
Compose

The Compose operator takes a mapping, MapA_B, between models A and B and a mapping,

MapB_C, between models B and C and returns, MapA_C, the composed mapping between A and C.

We define Compose based on the definition of right composition (i.e., composition driven by

the right hand mapping) in (Bernstein 2003).

Let m be a mapping element in mapping MapA_B between models A and B. Define

domain(m) (respectively, range(m)) to be all elements e such that e ∈A (respectively e ∈ B) and

Me(m, e). For each element e in the domain of each mapping element m in MapB_C, Compose

must identify the mapping elements in MapA_B that provide input to e. We compose each

element mB_C ∈ MapB_C with the union of all elements mA_B = mAB1, …, mABn ∈ MapA_B where

range(mA_B) ∩ domain(mB_C) ≠ ∅.

Given this decision, we define the composition MapA_C of MapA_B and MapB_C constructively

as follows:

1. (Copy) Create a copy MapA_C of MapB_C. Note that MapA_C and MapB_C have

corresponding mapping relationships to B and C and, therefore, the same domains and

ranges.

2. (Pre-compute Input) ∀ objects mA_C in MapA_C, let Input(mA_C) be the set of all elements

mA_B in MapA_B such that range(mA_B) ∩ domain(mB_C) ≠ ∅.

3. (Define domains) ∀ mA_C ∈ MapA_C,

a. If () ()ACmInputm ABi mdomainmrange
ACABi

⊇
∈∪)(

, then set domain(mA_C) =

()∪)(ACABi mInputm ABimdomain
∈

.

224

b. Else if mA_C is not needed as a support element25 (because none of its

descendants satisfies (3a)), then delete it, else set domain(mA_C) = range(mA_C) =

∅.

Step 3 defines the domain of each object mA_C in MapA_C. Input(mA_C) is the set of all objects

in MapA_B whose range intersects the domain of mA_C. If the union of the ranges of Input(mA_C)

contains the domain of mA_C, then the union of the domains of Input(mA_C) becomes the domain

of mA_C. Otherwise, mA_C is not in the composition, so it is either deleted (if it is not a support

object, required to maintain the well-formed-ness of MapA_C), or its domain and range are

cleared (since it does not compose with objects in MapA_B).

25 A support element is an element needed to support the structural integrity of the model

(i.e., an element needed to ensure that the result is a model)

225

Appendix E
Three-Way Merge Algorithm

1. MapO_A = Match(O, A) (can be automatic from History properties)

2. MapO_B = Match(O, B) (can be automatic from History properties)

3. MapO_A′ = Apply(MapO_A) such that if e∈MapO_A if domain(e) is identical to range(e),

then delete e (we are capturing the things changed in A)

4. MapO_B′ = Apply(MapO_B) such that if e∈MapO_B if domain(e) is identical to range(e),

then delete e (we are capturing the things changed in B)

5. ChangedA = range(MapO_A′) (the things changed in A)

6. ChangedB = range(MapO_B′) (the things changed in B)

7. MapChA_ChB = Match(ChangedA, ChangedB)

8. MapChB_ChA = Match(ChangedB, ChangedA)

9. A′ = Diff(ChangedA, ChangedB, MapChA_ChB)

(A′ represents the things changed in A that were not changed in B, and mutatis mutandis

for B′ below)

10. B′ = Diff(ChangedB, ChangedA, MapChB_ChA)

11. MapA_B = Match(A,B) (according to OIDs)

12. G = Merge(A, MapA_B, B)

13. MapG_A′ =Match(G,A′)

14. GA = Merge(G, MapG_A′, A′) with preference for A′

15. MapGA_′B′ =Match(GA′,B′)

16. GAB = Merge(GA′, MapGA′_B′, B′) with preference for B′

(GAB represents the full merge with a preference for those things that have changed in

either A or B but not both)

226

17. DeletedA = Diff(O,A,MapO_A)

18. DeletedB = Diff(O, B, MapO_B)

19. MapDeletedA_ChangedB = Match(DeletedA, ChangedB)

20. MapDeletedB_ChangedA = Match(DeletedB, ChangedA)

21. ShouldDeleteA = Diff(DeletedA, ChangedB, MapDeletedA_ChangedB)

22. ShouldDeleteB = Diff(DeletedB, ChangedA, MapDeletedB_ChangedA)

23. MapGAB_SDA = Match(GAB, ShouldDeleteA)

24. GABSDA = Diff(GAB, ShouldDeleteA, MapGAB_SDA)

25. MapGABSDA_SDB = Match(GABSDA, ShouldDeleteB)

26. Final result = Diff(GABSDA, ShouldDeleteB, MapGABSDA_SDB)

227

Appendix F
The PROMPT Algorithm

1. The user performs setup by loading the models, A and B, and specifying some options.

If the operation is merge, the result model C is initialized to be a new model with a new

root and A and B as that root's children.

2. PROMPT generates an initial list of suggestions, based largely on content or syntactic

information. It examines the objects, but not the structural information (i.e., the position

of the objects or their participation in specific relationships as represented by

relationships between the objects).

If the operation is merge:

a. ∀ pairs of objects a ∈ A and a ∈ B with identical names PROMPT either

merges the a and b in C or removes either a or b from C.

b. ∀ pairs of objects a ∈ A and b ∈ B with linguistically similar names a link is

created between them in C (with a lower degree of confidence than if the names

were identical). This means that both a and b are still in C, but PROMPT

suggests that they may need to be merged by adding them to the ToDo list.

If the operation is match and the user has tagged one model (say, A) as more general

during setup, then PROMPT assumes that the objects in the less general model (say, B)

should be linked in as sub-objects of the objects in A. If there is a top-level object, t, in

B, with the same name as an object in A, then the two objects are merged in C.

Otherwise finding a parent object for t is added to the ToDo list.

3. The user selects and performs an operation such as merging an object or resolving an

item on the ToDo or Conflict lists.

4. PROMPT performs any automatic updates that it can and creates new suggestions. It

has the ability to:

a. Execute any changes automatically determined as necessary by PROMPT.

228

b. Add any conflicts caused by the user's actions in step 3 to the Conflicts list

c. Add to the ToDo list any other suggested operations or make new suggestions

based on linguistic similarity or structural stability.

5. Steps 3 and 4 are repeated until the ontologies are completely merged or matched.

229

Vita

Rachel Pottinger finished her PhD in Computer Science and Engineering at the University of

Washington in 2004. She earned her MS in Computer Science and Engineering from the

University of Washington in 1999. She received her BS in Computer Science from Duke

University in 1997.Her main research interests are meta-data management and data integration

systems. She is a recipient of the Microsoft Research Fellowship and a National Science

Foundation Fellowship.

