
Coordination of Data in Heterogenous Domains
Michael Lawrence #1, Rachel Pottinger #2, Sheryl Staub-French ∗3

#Department of Computer Science, University of British Columbia
201-2366 Main Mall Vancouver, BC, Canada V6T 1Z4

1mklawren@cs.ubc.ca 2rap@cs.ubc.ca
∗Department of Civil Engineering, University of British Columbia

2002-6250 Applied Science Lane Vancouver, BC, Canada V6T 1Z4
3ssf@civil.ubc.ca

Abstract— Existing semantic integration approaches to coordi-
nating data do not meet the needs of real world scenarios which
contain fine-grained relationships between data sources. In this
paper, we describe extensions to the popular GLAV mapping
formalism to express such relationships. We outline methods for
solving the data coordination problem using these mappings, and
discuss future research problems for data coordination to be
realized in heterogeneous domain scenarios that occur in practice.

I. INTRODUCTION

In many applications, multiple heterogeneous data sources
need to coordinate data so that changes made to one data
source are reflected in another related data source. This allows
the manager of a data source to ensure it is up to date and
consistent with the latest data provided by related sources upon
which it depends. Current information integration methods
do not address some needs of real world data coordination
problems, such as when the sources of data describe different,
but related, types of objects. Such situations often have a
small intersection between schemas and lack of a common
domain. The implication is that there are very fine grained and
complex relationships between values, rather than the com-
monly considered coarse grained relationships between tables.
For example, in the architecture, engineering and construction
(AEC) industry, these properties are exhibited by the relation-
ships between a building’s design and its cost estimate. Such
relationships often require aggregation, arithmetic, conditional
expressions etc. This is further illustrated in Section II. Current
methods relying on a significant schema overlap and tuple
level correspondences fail to meet the needs of these situations.

This paper describes our ongoing research into data co-
ordination between sources with heterogeneous domains. We
formally state the data coordination problem, and show how
value correspondences between sources can be expressed
by augmenting existing mapping formalisms with keys and
mapping tables. We outline the proposed method for solving
data coordination, state the remaining research challenges, and
describe a number of extensions which address an even greater
variety of real world problems.

The rest of this paper is organized as follows. Section II
describes a motivating example, based on our work with prac-
titioners in AEC. Section III formulates the data coordination
problem, gives the details of our contributions and outlines

Wall(id, type, length, height, area)
Layer(id, material, thickness)
HasLayer(id, wid, lid)

Fig. 1. A subset of the schema for building design data.

CostItem(code, description, unit, rate)
Estimate(code, description, qty, unit, rate)

Fig. 2. A relational schema for cost items and a specific building’s estimate.

the proposed algorithm for solving it. We discuss remaining
research problems and extensions in Section IV. Related work
is in Section V, followed by our conclusions in Section VI.

II. A MOTIVATING EXAMPLE: THE ARTIFACT PROJECT

Our study of data coordination in heterogeneous domains
arises as part of a collaborative project. The Advanced Re-
search, Techniques, and Informatics for Future Advantages in
Construction Technology (ARTIFACT) project is a collabora-
tion between industry, computer science researchers, and civil
engineering researchers. The project addresses information
management issues which arise in real world Architecture,
Engineering and Construction (AEC) projects.

One particular challenge arises in the context of cost esti-
mating a large building project; maintaining a cost estimate as
changes are made to the design is time consuming. Not only is
it difficult to determine how a design has changed, determining
the effects on the estimate is error prone and subjective. The
design is frequently revised during the life cycle of a project;
estimating errors are a major cause of revenue loss for general
contractors. Consider the following example:

Example 1: In large AEC projects, 3D building designs
are created and maintained by the principal architects. These
designs consist of building components such as walls, columns
and doors, and may be exported to a relational database. The
designs are examined by a general contractor (GC) who creates
and maintains a cost estimate. A subset of the (simplified)
design data schema is shown in Figure 1, while the GC’s cost
data is structured as shown in Figure 2.

The GC would like to coordinate the cost data with the
architect’s design data so that changes are propogated auto-
matically. For example the GC would like to express how
the quantity, and cost of particular estimate items depends on
aggregate functions of the design. �



III. MAPPINGS FOR DATA COORDINATION

In this section we formulate the data coordination prob-
lem using global and local as view (GLAV) mappings [1],
which have previously been applied to data integration. We
demonstrate with an example how GLAV mappings, although
appropriate for expressing constraints, are ambiguous in the
data coordination cases we address. We describe extending
these mappings by using join keys and mapping tables, allow-
ing a unique solution to be found for data coordination where
complex value mappings are necessary. We outline our process
for using the extended mappings to perform data coordination.

For a database instance I and query q, let q(I) denote
the relation resulting from executing q on I, and schema(q)
denote the schema of the relations in q’s domain. A GLAV
mapping is of the form qI = qJ where qI and qJ are
queries, and represents a constraint which is satisfied with
respect to database instances I and J if qI(I) = qJ(J). Data
coordination involves finding updates to J so that a set of
mapping constraints are satisfied. Let ∆(J) denote the result
of performing a set of updates ∆ on a database instance J.
Formally, the data coordination problem is as follows.

Definition 1: (Data Coordination Problem) Given a set of
mapping constraints Σ = {q1I = q1J , . . . q

n
I = qn

J}, and
database instances I and J, find a set of update statements
∆J such that qi

I(I) = qi
J(∆J(J)) for all i. �

A. Solution Overview

In this paper we propose to execute each qi
I and qi

J , compare
the results to obtain a set of updates ∆q so that qI(I) =
∆q(qJ(J)), and then translate ∆q into ∆J . Our final solution
is the union of all such updates for each mapping constraint.
This section describes some details of the solution. Consider
the following example, which is based on design and estimate
data from a real world construction project provided to the
ARTIFACT team members by Stuart Olson Construction.

Example 2: A building design contains walls of various
materials: w1 and w2 are interior partition walls consisting of
two layers of gypsum wall board mounted on a layer of metal
studs; w3 has a single layer of gypsum wall board mounted to
a layer of concrete via metal furring; and w4 is only concrete.
The data corresponding to the walls of this design is shown in
Table I. An estimator has created a cost estimate for this design
as shown in Table II; each item corresponds to a different
type of wall. The category code 3310 is used for the material
and labour items pertaining to structural concrete, while the
category code 9250 is used for partition walls. The quantity
of item “Pump and Place Wall Concrete” depends on the
volume of w3 and w4; the quantity of “Metal Stud Partition
Wall” depends on the area of w1 and w2, while the quantity
of “Furred Partition Wall” depends on the area of w3. This
estimator would like to express the quantities of partition walls
in the estimate using a mapping constraint, and keep these
quantities updated as walls are added, deleted or modified.

�
We can express the cost estimator’s mapping as qI = qJ ,

where qI and qJ are as in Figure 3. Note the complexity of qI :

Wall
id type length height area

w1 1234 20 8 136
w2 1234 10 8 80
w3 1240 15 8 120
w4 1122 25 10 202
Layer
id material thickness
l1 “Gypsum Wall Board” 16
l2 “Metal Studs” 150
l3 “Concrete” 300
l4 “Metal Furring” 22

HasLayer
id wid lid
1 w1 l1
2 w1 l2
3 w1 l1
4 w2 l1
5 w2 l2
6 w2 l1
7 w3 l3
8 w3 l4
9 w3 l1

10 w4 l3

TABLE I
EXAMPLE DESIGN DATA (I) CONSISTING OF 4 WALLS.

Estimate
code description qty unit rate
3310 “Pump and Place Wall Concrete” 20 cuyd 19.00
9250 “Metal Stud Partition Wall” 216 sqft 9.00
9250 “Furred Partition Wall” 120 sqft 9.00

TABLE II
EXAMPLE COST ESTIMATE (J) FOR THE DESIGN DATA IN TABLE I.

a nested query must first select all partition walls (i.e. having
at least 1 layer of “Gypsum Wall Board”), which are then
aggregated by type. To our knowledge, most previous work
does not allow mappings of this type. We can easily confirm
that this mapping constraint is satisfied with respect to I and J
by evaluating qI(I) and qJ(J), which both yield a set of two
tuples: {〈qty : 216〉, 〈qty : 120〉}. However, if we evaluate the
queries and get differing results (for example, q(I) = {〈qty :
230〉, 〈qty : 120〉}), there are many possible ∆J for which
qI(I) = qJ(∆J(J)). In this case, we could update the quantity
of item “Metal Stud Partition Wall” from 216 to 230, or change
the quantity of “Furred Partition Wall” to 230, and the quantity
of “Metal Stud Partition Wall” to 120. In this example, the
first update option reflects the estimator’s intentions while the
second does not, and the mapping constraint qI = qJ is not
strong enough to choose the correct solution.

As shown in this example, there is a mismatch between
the strict requirements of data coordination and the coarse
relationships of GLAV mappings. A mapping constraint qI =
qJ relates sets of tuples, whereas data coordination requires
knowing which tuples are related. This is because data co-
ordination requires updating individual tuples of existing and
independently maintained data sources, whereas data exchange
generates a data instance. In addition, when I and J are domain
heterogeneous, the attributes selected by qI and qJ typically
describe but do not identify tuples (e.g. the attribute qty in
Figure 3), and hence it is generally impossible to identify
which tuples are related based on these queries alone.

B. Augmented Mappings

We propose to deal with update ambiguity by using aug-
mented mappings. For a mapping constraint qI = qJ , an
augmented mapping constraint consists of 1) an expression of
the form q′I = q′J , where schema(q′I) = schema(qI) + [kI ],
and schema(q′J) = schema(q′J) + [kI ] (ki and kj are called



SELECT SUM(Wall.area) AS qty
FROM (

SELECT Wall.area, Wall.type,
DISTINCT Wall.id

FROM Wall
JOIN HasLayer, Layer
ON Wall.id = HasLayer.wid,

Layer.id = HasLayer.lid
WHERE material

= ’Gypsum Wall Board’)
GROUP BY type;

(a)

SELECT qty
FROM Estimate
WHERE code = 9250;

(b)

Fig. 3. The queries qI and qJ of the example mapping constraint qI = qJ .
(a) returns the sum of partition wall areas, group by type. (b) returns the
quantity of partition wall items.

mapping keys), and 2) a mapping table K [2], [3], which
is a relation over the schema [kI , kJ ]. Currently, we require
the mapping designer to choose keys and create augmented
mappings. Part of our ongoing research involves suggesting
candidate keys. The mapping key kI should be such that for
any feasible I, each tuple in q′I(I) has a distinct value for
kI (similarly for kJ , J and q′J .) The keys of an augmented
mapping need not necessarily be keys of the databases.

Following Example 2, we can use the augmented map-
ping constraint q′I = q′J , where q′I is identical to
Figure III-A (a) except containing the term “Wall.type”
in the SELECT clause, similarly for q′J in Figure III-
A (b) with the term “Estimate.description”. A suitable
mapping table K for this augmented mapping would be

Wall.type Estimate.description
1234 “Metal Stud Partition Wall”
1240 “Furred Partition Wall”

Satisfaction of an aug-

mented mapping q′I = q′J is stricter than the non-
augmented GLAV mapping qI = qJ , because the condition
πschema(qI)q

′
I(I) = πschema(qJ )qJ(J) must be met (as is the

case for qI = qJ ), and additionally, for each tI ∈ q′I(I), there
must be a tJ ∈ q′J(J) such that 〈tI [kI ], tJ [kJ ]〉 ∈ K and
πschema(qI)tI = πschema(qJ )tj . In the following section, we
describe how to use augmented mappings to find ∆q .

C. Finding ∆q

In order to find ∆q , we materialize qI(I) and qJ(J) as I
and J respectively, perform the join (I on K) on (K on J), and
iterate through the result. For each tuple which has differing
values (e.g. qty), we either perform an insertion (if the value
from J is NULL), a deletion (if the value from I is NULL), or
an update otherwise. Following the example above, suppose
all walls of type 1234 are deleted, a new type of partition
wall is inserted, and the result of (I on K) on (K on J)

is
Wall.type I.qty Estimate.description J.qty

1234 NULL “Metal Stud Partition Wall” 216
1240 130 “Furred Partition Wall” 120
1300 200 NULL NULL

Then

(informally) ∆q is
1) Delete “Metal Stud Partition Wall”
2) Update “Furred Partition Wall” by setting qty to 130
3) Insert a tuple with description corresponding to wall type

1300 and qty 200
In this case, the ∆J corresponding to ∆q is easy to see.
Since qJ is a select-project query, we need to ensure that

our deletion and update statement contain the same selection
predicate (code=9250). For the third update, we do not know
the item description or rate for the tuple which should be
inserted. In this case we can notify the estimator that values
for these attributes should be filled in. In the case of item
description, having a tuple in the mapping table K for wall
type 1300 would allow that value to be used.

The techniques for computing ∆J from ∆q are still a
work in progress. Most work on view update translation has
followed the approach of Bancilhon and Spyratos [4] which
makes use of a complement q̂J such that the mapping 〈qJ , q̂J〉
is injective, and that q̂J(J) = q̂J(∆J(J)) (called a constant
complement). Unfortunately, select-project queries such as
the qJ in Figure 3 (b) do not have a constant complement.
Despite this, we may still be able to partially solve the
update translation problem by suggesting potential updates,
or using “unknown” values, and requiring a human expert
resolve these ambiguities. In the following section, we discuss
remaining challenges that must be solved in order to make data
coordination practical in a wide variety of real world scenarios.

IV. ADDITIONAL RESEARCH

There are a number of additional research challenges which
must be addressed in order to apply the proposed techniques
to a wide variety of real world data coordination problems.
Section IV-A describes research into efficiently implementing
data coordination using the process outlined above, while
Section IV-B describes extending the mapping formalism to
support a greater breadth of data coordination scenarios.

A. Executing Mappings

1) Conflicting Mappings: Our solution discussed in Section
III-A computes ∆J for each mapping constraint, and takes
the union of all such ∆J . This introduces the possibility of
conflicts, for example if one mapping constraint results in
deleting a tuple that another mapping constraint wishes to
update. Detecting such conflicts is an important issue.

2) Performance: In order for our methods to be scalable in
the number of mapping constraints, we should be considerate
of the plan for materializing each of the qi

I(I) and qi
J(J), as

well as the design of algorithms which find ∆q and ∆J .
3) Creating Mappings: Given the complexity of the re-

lationships in heterogeneous domains, creating mappings is
difficult. Previous research approached this by first establishing
schema matchings, which may not be possible between sources
with heterogeneous domains. We will focus on assisting an
expert user in creating accurate mappings, e.g. by suggesting
attributes to use as mapping keys.

B. Extensions

1) Mapping Cardinality: In some applications it may not be
possible to create a mapping qI = qJ so that qI(I) only returns
tuples for which there is an associated tuple in qJ(J). The
algorithm for finding ∆q must be sensitive to the cardinality
of matching between I and J , to avoid incorrect insertions or
deletions. Our research must fully consider data coordination
in many different cardinalities.



2) Arithmetic: In Example 1, the rate (cost per unit) of
items in the Estimate relation depends on a base rate (from the
CostItem relation) and the particular conditions of the design.
For example, if most walls of type x are over 8 feet in height,
the estimate item corresponding to walls of type x costs 20%
more than the base rate due to a lower rate of productivity of
the carpenter installing these walls. This mapping cannot be
expressed using qI = qJ , but could if we extend the formalism
to allow arithmetic operations on queries. Accommodating
mappings of this sort requires a great deal of work on ensuring
mappings are well formed.

V. RELATED WORK

Broadly speaking, semantic integration is partitioned into
two types of applications: data integration, which provides
uniform access to multiple data sources, and data exchange,
which transforms data from one schema to another [5]. In both
cases schema mappings are of central importance. There has
been a plethora of work on representing and creating schema
mappings, such as [6], [7], [8], [9].

In both data exchange and data integration, GLAV mappings
are common; in data exchange, these are called source to target
tuple generating dependencies. Using GLAV mappings in data
integration requires answering queries using views [10]. We
are currently investigating how the extensive past work on this
problem, especially recent work involving dependencies (e.g.
[11]) is related to the problems considered here.

Early research into Active Databases [12] allowed speci-
fication of events of interest (i.e. insertion/deletion/update of
a tuple), and rules which describe how to respond to those
events. Such rules usually contain a condition on the updated
tuple, and an action which should be executed, and are often
called event-condition-action (ECA) rules. For example, an
insertion into the Transaction relation of a bank’s database
should trigger an event which causes an action that updates the
account balance of the customer which made the transaction.

Hyperion [2], [13] focuses on query time integration and
maintenance of data consistency in a peer setting. Kantere
et al. [14] proposed the use of ECA rules for coordinating
data between peers in Hyperion. For example, deleting a flight
by an airline may trigger a deletion of the corresponding
flight in a cooperating airline’s database. A major motivation
of Hyperion’s mapping tables is “Mediation across multiple
worlds” [2], which is the same as what we call domain
heterogeneity. They are correct to point out that “In a typical
integration scenario, we are often dealing with one world”.
Their approach is to manage mappings between values using
mapping tables, allowing the association of which tuples are
related, but not how they are related. Our approach is to make
principled extensions to GLAV mappings in order to allow
expressive mappings between domain heterogeneous sources.

The previous work described above operates from the
perspective of change (i.e. how a change to data source I
corresponds to a change to data source J.) This is a flexible
approach which is appropriate when there are 1-1 tuple cor-
respondences between data sources, as each type of event has

a corresponding type of action (an insertion in I corresponds
to an insertion in J, a deletion to a deletion, etc.) However,
when we have relationships at the value level which involve
aggregation (as is the case in heterogeneous domains), there
are many different events which can result in the same action.
Referring again to the partition wall quantity relationship of
Example 2 from Section III, we would need to specify how
each possible design change (e.g. insertion of a wall, deletion
of a wall, change of wall type, change of wall dimensions)
would affect the quantity of the corresponding estimate item.
Using GLAV mappings we only need to specify the quantity
of such estimate items as an aggregate query on the design.

VI. CONCLUSIONS

In this paper we have described a class of problems in-
volving coordination of data in heterogeneous domains, which
have unique properties not well addressed by existing data
integration techniques. We have formalized the problem of
data coordination using GLAV mappings. We have proposed
augmented mappings with keys and mapping tables and given
an overview of our solution to the data coordination problem
using these augmented mappings. We have described future
research into solving the major outstanding problems and
addressing many practical concerns.

REFERENCES

[1] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y. Halevy, “Rep-
resenting and reasoning about mappings between domain models,” in
AAAI/IAAI, 2002, pp. 80–86.

[2] A. Kementsietsidis, M. Arenas, and R. J. Miller, “Managing data
mappings in the hyperion project,” in ICDE, 2003, pp. 732–734.

[3] P. Rodrı́guez-Gianolli, M. Garzetti, L. Jiang, A. Kementsietsidis,
I. Kiringa, M. Masud, R. J. Miller, and J. Mylopoulos, “Data sharing in
the hyperion peer database system,” in VLDB, 2005, pp. 1291–1294.

[4] F. Bancilhon and N. Spyratos, “Update semantics of relational views,”
ACM Trans. Database Syst., vol. 6, no. 4, pp. 557–575, 1981.

[5] C. Yu and L. Popa, “Constraint-based xml query rewriting for data
integration,” in SIGMOD Conference, 2004, pp. 371–382.

[6] A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J. Miller, P. Papotti,
and L. Popa, “Nested mappings: Schema mapping reloaded,” in VLDB,
2006, pp. 67–78.

[7] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy, “Corpus-based
schema matching,” in ICDE, 2005, pp. 57–68.

[8] R. J. Miller, L. M. Haas, and M. A. Hernández, “Schema mapping as
query discovery,” in VLDB, 2000, pp. 77–88.

[9] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic
schema matching,” VLDB J., vol. 10, no. 4, pp. 334–350, 2001.

[10] A. Y. Halevy, “Answering queries using views: A survey,” The VLDB
Journal, vol. 10, no. 4, pp. 270–294, December 2001.

[11] F. N. Afrati and N. Kiourtis, “Query answering using views in the
presence of dependencies,” in NTII, 2008, pp. 8–11.

[12] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan, “Alert: An
architecture for transforming a passive dbms into an active dbms,” in
VLDB, 1991, pp. 469–478.

[13] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller,
and J. Mylopoulos, “The hyperion project: from data integration to data
coordination,” SIGMOD Record, vol. 32, no. 3, pp. 53–58, 2003.

[14] V. Kantere, I. Kiringa, and J. Mylopoulos, “Supporting distributed
event-condition-action rules in a multidatabase environment,” Int. J.
Cooperative Inf. Syst., vol. 16, no. 3/4, pp. 467–506, 2007.


