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ABSTRACT
In a Peer Data Management System (PDMS), autonomous
peers share semantically rich data. For queries to be trans-
lated across peers, a peer must provide a mapping to other
peers in the PDMS; peers connected by such mappings are
called acquaintances. To maximize query answering abil-
ity, a peer needs to optimize its choice of acquaintances.
This paper introduces a novel framework for performing ac-
quaintance selection. Our framework includes two selection
schemes that effectively and efficiently estimate mapping
quality. The “one-shot” scheme clusters peers and estimates
the improvement in query answering based on cluster prop-
erties. The “two-hop” scheme, estimates using locally avail-
able information at multiple rounds. Our empirical study
shows that both schemes effectively help acquaintance se-
lection and scale to PDMSs with large number of peers.

1. INTRODUCTION
A Peer Data Management System (PDMS) (e.g., [12, 2,

21]) combines the flexibility of ad-hoc sharing of informa-
tion in a peer-to-peer network with the richer semantics of
a database. In a PDMS, each source is assumed to have a
database to share, rather than just exchanging files. This
allows the users of the PDMS to exchange semantic-rich
data, rather than only exchanging simple files. Since these
peers are autonomous, they are assumed to have their own
schemas. To solve this problem, PDMSs require semantic
mappings between the various schemas.

Consider the example PDMS in Figure 1. In response to a
recent earthquake, four cell phone companies (Cheap Cell
Phones, Cell Phones Forever, Cell Phone Land, Cell
Phone Easy), a land-based telephone company (Land Lines
R Us), an electric company (Electric Company) and a ca-
ble company (Happy Cable) have quickly formed a PDMS
to share data to see the global problems for their customers
and shared infrastructures. To establish basic connectiv-
ity, they have created a small number of mappings (shown
as lines between peers in Figure 1). Similarities may vary
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substantially between peers. For example, Cheap Cell
Phones has much in common with Cell Phones Forever,
and a lot (but less) in common with Land Lines R Us.
Happy Cable and Electric Company share under-water
pipes for their wires, and Electric Company and Land
Lines R Us share utility poles. For the network shown
in Figure 1, a query from Happy Cable will need to be
translated through the two Cell Phone Easy mappings
before it can be processed at Electric Company. Peers
that are directly connected to each other through such a
semantic mapping are called acquaintances. e.g., Happy
Cable’s only acquaintance is Cell Phone Easy.

Figure 1: An example of a PDMS and semantically
mapped peers

Much research has focused on answering queries in a PDMS
by composing the semantic mappings (e.g., [11, 15, 26]),
which has been shown to be computationally complex and
often undecidable. Additionally, there is considerable work
on decreasing the cost to construct such mappings (see [8]
for a recent survey). Since the mappings are inherently dif-
ficult to determine — being able to determine them fully
automatically would require solving all of Artificial Intelli-
gence — the best that can be done is to create such map-
pings semi-automatically. Due to these factors, the scale of
a PDMS is limited; unlike a typical file-exchange peer-to-
peer network, which can have thousands of peers, PDMSs
are usually formed by no more than several hundred peers.

While semi-automatic schema matching techniques de-
crease the costs, it remains too expensive to create map-
pings between a newly joined peer and all other peers in
the system. In our example, though creating a mapping
between Happy Cable and all other peers will yield the
optimal ability to answer queries, Happy Cable may not
have the resources to do so — particularly in a disaster man-
agement situation, where time is critical. Thus, it is very
important for a peer to choose acquaintances to maximize
its ability/usage of the PDMS. In our continuing example,



Cell Phone Easy is in a poor position because it lacks a
cell phone company as its acquaintance. Although queries
from Cell Phone Easy can still be translated along the
established mappings, query answering is limited, e.g., cell-
phone specific queries may be blocked because the peers on
route to the other cell phone peers lack cell-phone specific
schema elements.

Note that the best new acquaintance for a peer may not
be the candidate that has the best potential mapping qual-
ity with it. Consider our example in Figure 1; assume that
the mapping between Cell Phone Land and Cheap Cell
Phones is predicted to have a higher mapping quality than
the mapping between Cell Phone Land and Cell Phone
Easy. If Cell Phone Land is considering creating a new
mapping, its best choice may be Cell Phone Easy instead
of Cheap Cell Phones because it already has a high qual-
ity semantic path to Cheap Cell Phones through the map-
pings via Cell Phones Forever while a query will need to
take 5 hops of translation to Cell Phone Easy. The key for
a selection criteria is the extra benefit when a candidate
is chosen as acquaintance.

Because the queries that can be translated across peers
vary greatly depending on which peers are selected as ac-
quaintances, it is imperative that a peer adding a new ac-
quaintance can tell which peers are likely to be of the great-
est help on query answering, if chosen as acquaintances,
without fully creating the mappings involved. We call this
the acquaintance selection problem: given an existing PDMS,
and a peer p, which may already have some acquaintances in
the PDMS, how can p choose new acquaintance(s) to maxi-
mize its ability to translate queries?

As shown above, there are two aspects to the acquaintance
selection problem: (1) the ability of the new acquaintance
to help answer queries must be estimated and (2) it must
be estimated how well queries can be answered without the
proposed acquaintance. This paper describes two schemes to
the acquaintance selection problem. The first acquaintance
selection scheme, the “one-shot” scheme classifies peers into
a set of clusters and selects a new acquaintance based on
discovered clustering property, though the best choice may
not be in the same cluster. e.g. In example 1, suppose all
cell phone companies are clustered together, Cell Phone
Land may choose Electric Company, which is not in its
cluster, over Cheap Cell Phones because it already has a
good query answering path with the latter and the benefit
of creating an extra mapping with Cheap Cell Phones is
therefore low. The “one-shot” scheme pre-processes all peers
in the PDMS in one pass and thus the selection process af-
terwards virtually takes no extra time to estimate direct
mapping potential. The second solution, namely the “two-
hop” scheme, explores the network in multiple rounds and
performs acquaintance selection using the information avail-
able locally at each round. Whereas one-shot is quite effi-
cient when we know roughly the number of clusters of peers,
two-hop can be used when this information is unavailable. In
addition, the two-hop theme is more adaptive, it refines es-
timations more easily when new information becomes avail-
able. Our empirical study shows that both schemes effec-
tively help acquaintance selection and scale to large number
of peers.

We make the following specific contributions:

• We propose a general acquaintance selection framework,
including the operations required.

• We propose a clustering based“one-shot”scheme to quickly
estimate the quality of a potential mapping.

• We propose a“two-hop”scheme that is more flexible than
the one-shot scheme. Two-hop helps a peer explore the
network in multiple rounds and make acquaintances se-
lection decision at each round.

• We empirically evaluate the effectiveness and efficiency
of the two acquaintance selection schemes.

The paper is organized as follows. Sections 2 and 3 de-
scribe background and related work. Section 4 describes the
acquaintance selection framework and identifies the primi-
tive operations needed. Section 5 describes the two selection
schemes and analyzes them in detail. We present our empir-
ical evaluation in Section 6. Finally, we conclude the paper
and describe future work in Section 7.

2. PRELIMINARIES

2.1 PDMS query answering and mappings
While schema mappings can have many representations

and mapping composition methods can vary, our technique
depends on neither a specific mapping type, nor on a specific
composition algorithm. However, readers wanting a specific
format for examples should consider the system in [15]: a
schema mapping from data source A to data source B, de-
noted as MA B is a set of mapping formulas of the form
QA(X) ⊆ QB(X), where QA and QB are conjunctive queries
over RA and RB respectively. For example, Cell Phone
Land has two relations

User (ID, Name, Age, DOB)

PhoneNum (ID, Number,ContractRef)

and Cell Phone Forever has

Customer(Name,Number,DOB,Address,Email)

A mapping formula between the two schemas is

Customer(Name,Number,DOB) =

User(ID,Name,DOB),PhoneNum(ID,Number)

We also adopt the definition of mapping composition in [15]:
a composition of MA B and MB C , denoted as M∗A C =
Comp(MA B , MB C) is a mapping to directly translate query
written in schema A to schema C without the need of in-
termediate schema B. Note that a composed mapping is not
equivalent to a direct mapping (e.g. mapping MA C) that
the quality of the composed mapping is affected both by
the base mappings (e.g. MA B and MB C) and the mapping
composition algorithm.

We assume that the PDMS is unstructured (i.e., the net-
work is not required to conform to a particular topology). A
peer queries the PDMS by flooding its query to the network.
Queries are re-written along established schema mappings in
the network and are processed on every peer. For example
in Figure 1, a query q from Cheap Cell Phones will be
re-written to q′ in Cell Phones Forever’s schema using
the mapping between them. Then Cell Phone Forever
will both answer q′ and forward q′ to Cell Phone Land by
re-writing it into q′′ using its other mapping. Please refer
to [15] for a detailed description of query rewriting.
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Figure 2: An example of graphical model

2.2 Graphical model
The graphical model is widely used in AI research to rep-

resent the dependencies of random variables and hyper pa-
rameters in a system. We use it to represent the one-shot
estimator in Section 5.5. A graphical model uses nodes to
represent random variables and an arrow between them to
denote a dependency relationship. If a variable in the sys-
tem can be observed, which means its value is determined,
we shadow it (e.g., X1 and X2 in Figure 2). An observed
variable is also called “evidence”. Latent variables, which
have values that are never observed, are shown as unfilled
nodes (e.g., Z1 and Z2 in Figure 2). Typically, the observed
variables depend on the latent variables. The goal of the
graphical model is to use the observed variables to find the
values of the latent variables. For example, Figure 2 shows
a graphical model representation for part of our system in
Figure 1. The top three variables Z1, Z2 and Z3 represent
the schemas of Cheap Cell Phones, Cell Phones Forever and
Cell Phone Land respectively. Variable X1 is the quality of
the mapping between Cheap Cell Phones and Cell Phones
Forever. This quality depends on the latent variables Z1 and
Z2 which indicates their schema characteristics.

In most cases, unobserved variables will follow a certain
distribution which are controlled by a set of parameters.
These parameters are called“hyper parameters”and are rep-
resented by pointing to the variable using Greece characters.
In example 2, Z1 follows Poisson distribution with param-
eter α and Z2’s distribution parameter is β. So given a
graphic model representation of a system, we can know the
dependencies among the variables. In example 2, we can
know that X1 depends on Z1 and Z2 but is independent to
Z3.

For more a detailed description of graphical models, see [3].

2.3 MAP estimates
Maximum a posteriori (MAP) estimation is used widely in

statistical analysis to estimate an un-observed variable based
on some observed data [3]. Consider the example shown in
Figure 2; the MAP estimate for the values of latent variables
Z1 and Z2 can be written as

̂(Z1, Z2)MAP = arg max
Z1,Z2

P (X1, X2|Z1, Z2)P (Z1, Z2)

where P (Z1, Z2) is the prior knowledge on the (joint) dis-
tribution of Z1 and Z2. The benefit in using MAP as op-
posed to other estimates such as maximal likelihood estima-
tor (MLE) or a full Baysian treatment is that it enables prior
knowledge to be applied to the estimation. The use of the
mode of the distribution instead of the mean (expectation)
frees the estimator to compute the full full distribution of

the variable being inferred. As we will see in our one-shot es-
timator, MAP estimates opens the opportunity for scalable
local search.

2.4 Expectation Maximization (EM)
Expectation maximization (EM), is a family of algorithms

used to infer parameters in a system [3]. Take the sys-
tem shown in Figure 2 for example. We want to infer the
values of α and β in the system, given the value of X1

and X2 as observed evidence. The EM algorithm consists
of two steps. The “E-step” computes P (Z1, Z2|X1, α0, β0),
P (Z2|X1, X2, β0) using a initial parameter α0 and β0. Then
the “M-step” updates values of α and β according to some
update function. (In most cases to maximize the expected
(log)likelihood value). The EM algorithm repeats the above
E-step and M-step until the parameter(s) converge. As we
will see in Section 5.5, our one-shot estimator uses a modi-
fication of an EM algorithm to obtain the value of the clus-
tering parameters and the MAP estimate of the latent vari-
able.

3. RELATED WORK
People have long noted that selecting good neighbors can

reduce networking costs in structured (e.g., Chord [25], Pas-
try [22]) and unstructured (e.g., Napster, Gnutella) P2P net-
works. Both [19, 28] discuss peer selection and grouping
strategies to lower networking cost. Selecting peers to form
groups and exploiting the locality opportunity (by getting
as much as possible from nearby neighbors) is also studied
in works [17, 27, 24, 30, 5]. In [14], clustering information
is used to reduce large scale flooding in the network. Some
structured P2P works [6, 7, 4] study neighbor selection based
on proximity information to enable efficient routing.

An approach to improve query routing quality for informa-
tion retrieval on a clustering-based architecture is reported
in [13]. A recent work [16] discusses efficient query routing
for PDMSs in the WISDOM project; queries are passed from
one to another following certain semantic routing indices, so
that a good balance between query answering quality and
networking cost can be achieved.

All of the above, while also focusing on the peer selection
problem, do not address the problem we have now. The goal
of the previous neighbor selection techniques is improving
networking costs/efficiency, while our focus is maximizing
the semantic querying ability of a peer.

There are also a number of related works in machine learn-
ing and pattern recognition areas. Some works on pairwise
clustering algorithms [23, 18, 10] have proposed methods
to learn the pattern of a data set given pairwise distance
information, which is directly related to our one-shot ac-
quaintance selection scheme. Another pairwise clustering
approach reported in [20] also uses EM in clustering. Our
approach differs substantially from theirs on the basic as-
sumptions of variable distributions, the function to optimize
and the detail optimizing method, which theirs was devel-
oped for motion-segmentation applications. The works [23,
1] suggest looking into longer paths in the network than only
the pairwise relations. This motivates our development of
the two-hop acquaintance selection scheme.

4. THE ACQUAINTANCE SELECTION
FRAMEWORK



We now introduce a new general framework for efficient
acquaintance selection as defined in Section 1. For exam-
ple, consider helping Cell Phone Easy in Figure 1 choose
a new acquaintance to bolster its query answering capabil-
ities. At its least precise, the framework consists of two
layers of abstraction as depicted in Figure 3. The estimator
layer consists of the estimators that are used by the estimate
operation in the upper layer to compute the selection crite-
ria adopted by a certain selection scheme. For the selection
criteria identified in Section 1, we need two estimators; one
estimating direct mapping quality and the other estimating
the current mapping impact. The operation layer consists of
mechanisms for both collecting information that is needed
by the estimators and combining their estimations into the
final acquaintance selection.Operation LayerProbe | Estimate | Pick Acquaintance | Book KeepingEstimator LayerEstimate Direct Mapping Quality Estimate Current Mapping Impact

Figure 3: The acquaintance selection framework

The operations in the operation layer are the general ac-
tions that a peer will perform during the acquaintance selec-
tion process. However, depending on the specific selection
scheme a peer uses, the actions performed and the estima-
tors chosen may be different.

During acquaintance selection, the host peer will perform
the 4 operations in this layer, and the estimate operation
will use the estimators in estimator layer to compute the
selection criteria. We describe in detail these two layers in
the next two subsections.

4.1 The operation layer
1. Probe : The host peer collects information about other

peers in the PDMS and mappings among them.
2. Estimate : The host peer estimates the benefit of map-

pings to candidate peers. In this step, it uses the estima-
tors and computes the selection criteria.

3. Pick Acquaintance: The host peer picks one or more
peers as acquaintances and establishes mappings with
them. The quality measure of these newly established
mappings is then computed on the host peer. Note that
the estimate step only estimates the quality of these map-
pings. It is only after the mappings are fully built that a
peer can compute the true mapping quality.

4. Book Keeping: The host peer keeps track of the infor-
mation disseminated to other peers. The book keeping
operation ensures no duplicated or redundant informa-
tion is transmitted.

4.2 The estimator layer
The estimators generally depend on the acquaintance se-

lection scheme used by the peers. For the schemes proposed
in this paper, the estimators are categorized into two classes.
The Estimate Direct Mapping Quality class contains those
that estimate the direct mapping quality. Those in the Eval-
uate Current Mapping Impact class estimate the impact of
existing query answering paths to the host peer.

Next we describe two acquaintance selection schemes that
fit in this framework. We use “selection scheme”or “scheme”
as short forms to “acquaintance selection scheme” wherever
appropriate.

5. ACQUAINTANCE SELECTION SCHEMES
This section describes the one-shot and the two-hop se-

lection schemes in detail. Both schemes use the mapping
quality metric in Sections 5.1 and the selection criteria in
Section 5.2. In Section 5.3, we describe how to compute the
current aggregate mapping. Section 5.4 shows how to de-
rive a fast approximation for estimating its quality, which
is used by both selection schemes as the current mapping
impact estimator. The one-shot scheme is then described in
Section 5.5, and the two-hop scheme follows in Section 5.6.

5.1 Mapping and mapping quality metric
To decide which peer to pick as an acquaintance, the host

peer needs to estimate the quality of the mapping, if estab-
lished, to a candidate peer. Because the goal of a mapping
is to allow query translation, one primary factor is the num-
ber of attributes that are mapped from the source schema
to the target schema. While a sophisticated quality metric
could be chosen, this paper proposes a quality metric that
serves as a first approximation: it measures the fraction of
attributes that are mapped. Formally:

Definition 1 (Mapping Quality Metric). Let sch(i)
denote peer i’s schema and |sch(i)| be the number of at-
tributes in sch(i). Let xi j be the distinct number of at-
tributes in sch(i) that appear in mapping Mi j. Then the
mapping quality S(Mi j) is defined as S(Mi j) =

xi j

|sch(i)| 2

The mapping quality is normalized in [0, 1], which, as we
will see in Section 5.6 provides convenience. This quality
metric can be used on both direct mappings between two
peers and composed mappings. Note that it is by defini-
tion asymmetric. i.e., S(Mi j) 6= S(Mj i); quality S(Mi j)
is measured at peer i’s perspective. The set of all mapping
quality in form of S(Mi ·) roughly measure peer i’s query
translating/answering ability with the existing mappings.

We now define the “current aggregate mapping” which is
used by the current mapping impact estimator. The current
aggregate mapping, as its name suggests, can be regarded
as a virtual mapping that takes into consideration all the
existing query translation paths from the host peer to a tar-
get peer in the PDMS. To define it properly, we first define
a cordless path1.

Definition 2 (Cordless Path). In a graph G(V, E),
a cordless path p from vertex i to j is a path that satisfies

1. (simple): p is acyclic

2. (shortest): i, j with any vertex subset of p do not form
a path from i to j 2

Figure 4 shows an example of cordless paths in a graph.
The three solid grey paths are cordless paths from s to t
while the two dashed paths are not (e.g., the upper path
(s, a, b, c, t) is disqualified because of the cord (s,b)).

Observe the triangle (s, a, b) in the example and suppose
we have mapping composition M∗

s b = Comp(Ms a, Ma b).

1Thanks to David Kirkpatrick for suggesting this name
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Figure 4: An example of cordless paths: (s, b, c, t),
(s, d, e, c, t), (s, d, e, f, t) are cordless paths from s to t.

We say Ms b dominates M∗
s b if all the mapping rules in

M∗
s b appear in Ms b. As mapping composition is an infor-

mation lossy operation, we assume that a direct mapping
between two peers will always dominate a composed map-
ping. Then, it is easy to see that if we compose mappings
on all the cordless paths and union these composed map-
pings, we will get a minimal, dominating mapping rule set.
It is minimal in the sense that if we miss any cordless path
we could possibly lose mapping rules that can be used for
query answering. Therefore, when computing current map-
ping impact, we can simply only consider the cordless paths.

Hence, we define the “Current Aggregate Mapping” from
peer i to peer j as the mapping created by the union of com-
posed mappings on all cordless paths from i to j. Formally:

Definition 3 (Current Aggregate Mapping). The
current aggregate mapping from peer i to peer j is defined as

CMi j =
⋃

p∈P (i,j)

(Comp(p))

where P (i, j) is the set of cordless paths from i to j and
Comp(p) is the mapping composed from all mappings along
path p. 2

Note that mapping composition (Comp) itself can be an
involved operation [11]. So even though we have reduced the
path set to only cordless paths, computing CM explicitly is
non-trivial. To resolve this, we instead estimate Comp when
we apply the mapping quality metric to CM.

With the current aggregate mapping defined, we can mea-
sure the mapping impact of a candidate peer to a host peer:
the impact of peer j to host peer i can be seen as the map-
ping quality of the current aggregate mapping from i to j.

Now we are ready to describe the acquaintance selection
criteria. In Section 5.2, we rely on the definition of the
current aggregate mapping quality, but we defer describing
how to compute it to Section 5.3.

5.2 The acquaintance selection criteria
As the example in Section 1 shows, using only the direct

mapping quality as the selection criteria is insufficient. A
peer’s goal is to maximize its query answering ability, thus
it should choose acquaintances that maximize the benefit to
its query answering ability. This benefit can be quantified as
the difference between the direct mapping quality S(Mi j)
and the current aggregate mapping quality S(CMi j).

Hence, we want a peer in the PDMS to choose an acquain-
tance that maximizes its query answering benefit. Using the
concepts we have just defined, the selection criteria is

Definition 4 (selection criteria). Peer i selects j
as its acquaintance if and only if S(Mi j) − S(CMi j) ≥

S(Mi j′) − S(CMi j′) ∀j′ 6= j, where S(·) is the mapping
quality defined in Definition 1 and CM in Definition 3. 2

and we call S(Mi j)− S(CMi j) the “criteria value” for j.
To use this selection criteria on a candidate peer j, the

host peer i needs to compute both S(Mi j) and S(CMi j).
We first describe how to efficiently estimate S(CMi j) be-
tween a host peer and all its candidate peers.

5.3 Computing CM for all candidates
By the definition of CM (Definition 3), computing S(CMi·)

for all peer i’s candidates requires that i first discovers the
cordless path (Definition 2) set from itself to the candidate
peers. We formalize this path finding problem as follows.

Definition 5 (Cordless path set discover problem).
Given a (directed) graph G(V, E) where V and E represent
vertex and edge sets respectively, and a source vertex s ∈ V ,
the cordless path set discover problem computes the cordless
path set P (s, j) for all j ∈ V, j 6= s. 2

We now present an algorithm we call the “CP finding al-
gorithm” that solves the cordless path set discover problem.
The algorithm creates works by calculating the cordless path
set by adding each vertex v into a vertex set S and perform-
ing processing on the verticies. The algorithm terminates
when all the vertices are added into S. We will show how
the cordless path sets can be updated during this process.

We arbitrarily choose one vertex v from V and add it to
S. If (s, v) ∈ E, then we store a path (s, v) on v. All length
1 paths are cordless paths. Suppose at some stage, a number
of vertices have been added and the cordless paths from s
to all v ∈ S, involving only vertices in S, are computed and
stored on v. Now we show that we can add in a new vertex
k ∈ V − S to S and correctly update P (s, v). We first
compute the cordless paths from s to k that only involve
vertices from S ∪ {k}. We call these paths “P (s, k) w.r.t.
S ∪ {k}”.

Let V S
k− = {v|(v, k) ∈ E, v ∈ S}, the vertices in S that

have an edge with k. It is apparent that P (s, k) w.r.t S∪{k}
is a subset of

⋃
v∈V S

k−
(P (s, v)¦(v, k)), where ¦ is an operator

that appends edge (v, k) to every path in P (s, v) to form
a path set from s to k. Now observe that if two vertices
u, v ∈ V S

k− where u appears in some path p ∈ P (s, v), then
{p} ¦ (v, k) is not a cordless path because edge (u, k) is a
shortcut. Similarly, we can argue that for v ∈ V S

k− and

p ∈ P (s, v) if @u ∈ V S
k− and u ∈ p, then the new path

{p} ¦ (v, k) is a cordless path, i.e., it is in P (s, k) w.r.t.
S ∪ {k}.

To quickly determine if a path can be extended to form a
new cordless path, we store with each computed p in P (s, v)
a bit vector fp of length |V |. Let fp[i] = 0 indicate that
vertex i cannot be extended to i on this path. We initialize
each fp[i] to 1 to indicate that it may be able to be extended.
Each time a path p ∈ P (s, v) is to be extended to some
vertex k, v will first check fp[k]. If fp[k] = 1 then path
p′ = p ¦ (v, k) is added to P (s, k) and fp′ is set as following.
First p′ cannot extend to any vertex that p cannot extend
to, so fp′ [i] = 0 if fp[i] = 0. Second, p′ cannot be extended
to v or any of v’s neighbor so fp′ [i] = 0∀i ∈ Vv+ = {t|(v, t) ∈
E, t ∈ V } and fp′ [v] = 0.

Now we must update the existing cordless path sets P (s, v)
w.r.t. S so that after updating, we get cordless path sets
P (s, v) w.r.t S ∪ {k} for all v ∈ S. Observe that all the



existing paths in P (s, v) are still valid cordless paths be-
cause none of them involves k; therefore, k does not create
any shortcuts. Therefore we only need to consider paths
that are extended from P (s, k) w.r.t S ∪{k}, which we have
just obtained. This can be done easily by performing the
same test on fp that we performed before for p ∈ P (s, k)
for v ∈ Vk+ , where V S

k+ = {v|(k, v) ∈ E, v ∈ S}. Also,
when a new path is added, the corresponding fp vector is
set. Figure 5 shows the procedure of adding k to S.

f   [k]=0p2

f  [k]=1p1
s

k

u

v

s

k

u

v

w w
f   [k]=0p3

t t

p1=(s,t,u) stored on u
p2={s,t,u,v) stored on v

p3={s,t,u,k) stored on k

compute P(s,k) w.r.t. SU{k} update P(s,w) w.r.t. SU{k}

S S

Figure 5: The process of adding in a new vertex k
to the partial set S (shown by the dashed box) and
computing P (s, i) w.r.t S ∪ {k} for all i in S ∪ {k}.

Theorem 5.1. The CP finding algorithm solves the cord-
less path set discover problem in O(h) time for a (directed)
graph G with |E| = O(|V |), where h is the total number of
cordless paths, assuming that selecting a path with fp[k] = 1
for a cordless path set P (s, v) takes constant time.

Proof. Computing P (s, k) for a newly added vertex k re-
quires only finding extendable paths in P (s, v) for v ∈ V S

k−.
The number of such P (s, v) is a constant amortized across
all vertices, given that |E| = O(|V |). Adding a new path to
P (s, k) requires two operations. First it requires extending
a valid path, which takes constant time. Setting fp for this
new path involves finding one vertex’s neighbors, which is
also a constant under the |E| = O(|V |) assumption. There-
fore, all paths can be computed in O(h) time.

Note that h is the total number of cordless paths. For
example in Figure 5, p1 and p2 are counted as two paths. A
hash table on each P (s, v) can be used to quickly find the
paths that can be extended to a certain vertex k.

Here are some corollaries from the above theorem that are
useful in computing S(CM).

Corollary 5.1. CM for all candidates can be computed
in O(h) time, where h is the total number of cordless paths.
2

Corollary 5.2. When Graph G is extended by adding a
new vertex v and a constant number of new edges connect-
ing v with other vertices, then the P set can be updated in
O(hnew) time where hnew is the number of newly formed
cordless paths. 2

Corollary 5.3 immediately follows.

Corollary 5.3. When a new peer and its mappings are
discovered, CM for all candidates can be updated in O(hnew)
time where hnew is the number of newly discovered cordless
paths. 2

5.4 Max-min approximation for S(CM)

To estimate the current aggregate mapping and its quality
(Definition 3), we use a “max-min” approximation to sim-
plify the mapping composition (Comp) procedure. It as-
sumes that number of attributes mapped in the aggregate
mapping CMi j is the maximal number of mapped attributes
in all mappings each composed along a cordless path from
peer i to j, and the number of attributes mapped in such a
composed mapping, is the minimal number of mapped at-
tributes in all the mappings on this path. Let xp

i j denote the
number of attributes in schema i mapped in the composed
mapping along path p, to j. The current aggregate map-
ping quality, S(CMi j), is max-min approximated following
Definition 1, as

S(CMi j) = max
p∈P (i,j)

xp
i j/|sch(i)|

where xp
i j is estimated along path p using

xp
i j = min

(a,b)∈p
xa b

where xa b is the number of mapped attributes as defined in
Definition 1.

We agree that this is a very rough approximation for a
real mapping composition procedure that can be quite dif-
ferent and involved. However, this simplified procedure is
sufficient for us to evaluate the performance of the proposed
selection schemes without depending on a particular com-
position scheme. We will call this estimator the “max-min
estimator”. The complexity of the max-min estimator can
easily be verified to follow Corollaries 5.1 and 5.3 by observ-
ing that max, min can be computed with the discovery of
the cordless paths.

Next we describe in detail two selection schemes which
differs mainly in their direct mapping quality estimators.

5.5 The one-shot selection scheme
We now present a selection scheme that we call the “one-

shot scheme”. As with all selection schemes, the one-shot
scheme chooses its high-level structure from the operation
layer (Section 4.1). In the one-shot scheme, the host peer
first probes the PDMS to collect quality information for al-
ready established mappings. This information is referred
to as the “topology” due to its analogy to a graph with
peers as vertices and reported mapping quality as edges.
The one-shot selection scheme uses a direct mapping qual-
ity estimator called the one-shot estimator in the estimate
step. The one-shot estimator works by classifying peers in
the PDMS into a number of clusters using the quality infor-
mation from established mappings. Direct mapping quality
estimations are then made using the properties of the dis-
covered clusters. It identifies valuable candidates in one pass
over the available information and thus is named“one-shot”.

Assume that N peers in the PDMS need to be classi-
fied into C clusters. The estimator’s goal is to find the
best clustering so that pairwise mapping quality between
two peers in the same cluster is high, while that between
peers from different clusters is low. The one-shot estima-
tor needs to know the number of clusters to classify the
peers into. In many cases this information is available from
the domain knowledge of the PDMS. (our two-hop selection
scheme (Section 5.6) is developed for scenarios where this
information is unavailable.) The challenge of the one-shot
estimator is to discover best the cluster assignments using



the limited established mapping quality information from
the PDMS.

5.5.1 The one-shot estimator in detail
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Figure 6: Variables and dependencies in one-shot
estimator

The variables and their dependencies in the one-shot esti-
mator are shown in Figure 6, where nodes are divided into
two rows. The upper row consists of the peers with indepen-
dent random variables Zi representing their cluster assign-
ments. The second row shows the pairwise mapping between
every two peers; Xij represents their mapping quality. Map-
ping quality is determined by a pair of peers. Some map-
pings are already established, so their quality is observed
by the host peer (e.g., X12, X13, X24). Other mappings are
not established, and thus their quality must be estimated
(e.g., X14 and X23). The model assumes that the mapping
quality between two peers, given their cluster assignments
Zi = a and Zj = b, follows Gaussian distribution with pa-
rameters (µab, δ

2
ab). Depending on the number of clusters,

C, a set of |C| × |C| Gaussian distributions is used to char-
acterize the system. We use θ to denote these parameters
with θij = (µij , δ

2
ij).

The estimator’s task is to infer both the cluster assign-
ments Z = (Z1, . . . , ZN ) and the Gaussian parameters θ for
all peers. We choose to search for the MAP estimates (Sec-
tion 2.3) of Z and θ, formally:

(̂Z, θ)MAP = arg max
Z,θ

P (X|Z, θ)P (Z)

The fact that θ values are continuous but Z is discrete
makes it hard to optimize them together. To resolve this,
we conduct a 2-phase optimization using a modified EM
(Section 2.4): we first pick a θ and find the MAP estimates
of Z under this fixed θ; then we optimize θ with Z value
fixed. The two steps iterates until Z and θ converge.

After Z and θ have converged, the one-shot estimator es-
timates direct mapping quality between the host peer i and
a candidate peer j. It returns the mean µZiZj as the map-
ping quality estimation. Next we describe how the MAP
estimates of Z and θ can be computed.

5.5.2 Local search on Z for MAP estimates
In the first phase, we search for ẐMAP with a fixed θ. The

function to optimize, as described above, is

f(Z) = P (X|Z, θ)P (Z)

and the MAP estimates for Z, with θ fixed, is ẐMAP =
arg maxZ f(Z) where X is the set of observed mapping qual-
ity. By the independence of Zi, f(Z) can be factorized and
we study log f(Z) (they lead to the same MAP estimates)

written as

log f(Z) =
∑
i,j

(log N(xi,j |θZi,Zj ) + log P (Zi)P (Zj)).

for all (i, j) with xi,j ∈ X. Note that θ is fixed in this phase;
the only variable is Z.

Let Z [n],P [n](Z) and θ[n] denote the Z, P (Z) and θ in
iteration n of the EM algorithm. The above formula can be
transformed to an update function w.r.t the iterations.

Z [n+1] = arg max
Z

log f(Z)

= arg max
Z

∑
i,j

(log N(xi,j |θ[n]
Zi,Zj

) + log P [n](Zi)P
[n](Zj))

with P [n+1](t) = Nt
N

where Nt is the number of Z
[n]
i ’s that

are valued t and is initialized as P [1](t) = 1
C

for all t.

Finding ẐMAP (i.e., the cluster assignment) requires ex-
haustively searching all possible assignments; this is infeasi-
ble for a search space as big as CN . We conduct a segmented
local search that speeds up this procedure. Figure 7 shows
an example of segmented local search.
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Figure 7: An example of segmented local search:
Shadowed segments are active, white ones are segments

yet to be searched, and black segments are fixed assign-

ments carried over from the search on the previous seg-

ment. K is the segment length. It first searches all

CK assignments of Z(s1). Only the T (1) = 2 “best” as-

signments are carried over to the next step where each

branch searches s2 for Z(s1 ∪ s2) with carried over Z(s1).

The segmented local search algorithm works as follows:
first, it picks a constant K as the segment length and breaks
Z into t = dN/Ke segments s1..st. It then performs segment
by segment local search. Let Z(si) denote the assignment
of si. Starting with s1, it searches each segment using ex-
haustive search, i.e., it tries all CK assignments for the seg-
ment. For si, it computes f(Z(∪j≤i(sj))) with assignments
on ∪j<i(sj) fixed on one of the carried over assignments
from the search on si−1. For each si, which has search space
S(i) = CK ∗ T (i − 1), it keeps the best T (i) = log S(i) as-
signments to carry over to the search on segment si+1 We
define T (0) = 1.

The segmented local search finishes when all segments are
processed and the assignment that yields the maximal f(Z)
is used in the second phase to optimizing θ, as described in
the following section.

5.5.3 Computing MAP estimates for θ

We use the Z assignment found in the last step to compute
θ̂MAP . Still, the goal is to maximize P (X|Z, θ)P (Z). The



updating function for θ can be written as

θ[n+1] = arg max
θ

∑
i,j

log(P (xij |θZ
[n]
i ,Z

[n]
j

))+log P [n](Z
[n]
i )P [n](Z

[n]
j )

Note that in this phase, Z is fixed and the only variable is
θ. Solving (taking the derivatives and setting it equal to 0)
under the assumption of Gaussian distribution,

P (xij |θZ
[n]
i ,Z

[n]
j

) ∼ N(µ
Z

[n]
i ,Z

[n]
j

, δ
Z

[n]
i ,Z

[n]
j

)

results in

µ[n+1]
p,q =

1

N
[n]
p,q

∑

Z
[n]
i =p,Z

[n]
j =q

xi,j

δ2[n+1]
p,q =

1

N
[n]
p,q

∑

Z
[n]
i =p,Z

[n]
j =q

(xi,j − µ[n+1]
p,q )

where N
[n]
p,q is the number of xi,j ’s with Z

[n]
i = p, Z

[n]
j = q.

In other words, µ and δ2 are updated using the sample
mean and standard deviation. If one cluster receives too few
peers, the corresponding (µp,q, δ

2
p,q) is set to a prior value,

e.g., (0.7, 0.03) if p = q and (0.3, 0.03) otherwise.

5.5.4 Convergence of iterations
The one-shot estimator iteratively optimizes Z and θ un-

til they converge. In both steps of optimizing Z and θ, the
value of f(Z) is guaranteed to monotonically increase. Be-
cause f(Z) is bounded, the iterations always converge by
requiring as a convergence condition that the increment of
f(Z) is smaller than a threshold for a number of consecutive
iterations.

5.5.5 Analysis of the one-shot estimator
The time complexity of the one-shot estimator in each it-

eration comes from the two optimization procedures. While
it is easy to see that optimizing θ can be done in O(N) time,

searching for ẐMAP also finishes in O(N) time.

The time complexity on searching for ẐMAP can be broke
into two parts. One is the cost of searching through the
assignments and the other is the cost of computing f(Z) for
each (partial) assignment. With the segmented local search
described in section 5.5.2, we have the following lemma.

Lemma 5.1. Given N peers to classify into C clusters, if
the segment length is set to K, The total number of assign-
ments that the segmented local search tests is O(CKN log C).

Proof. According to the segmented local search algo-
rithm, the number of assignments of each segment of length
Kis P = CK . Let S(i) denote the search space when the
searching is on segment i and T (i) be the number of as-
signments get carried to the next segment. Then we have
S(1) = P, T (1) = logP and S(t) = P · T (t − 1), T (t − 1) =
log S(t− 1) for t > 1. Hence,

S(t) = P log S(t− 1) = P log P + P log log(S(t− 2))

expanding S(t) one more step we have

S(t) = P log P + P log[log P + log(log S(t− 3))]

because segments have uniform length, the term log(log S(t−
3)) can be approximated by log log(µCK) < (1 + ε) log K,

for small constants µ,ε. Note that K > C we have,

S(t) = P log P + P log[K log C + (1 + ε) log K]

< CKK log C + CK log[K log K + (1 + ε) log K]

= CKK log C + CK [log(K + 1 + ε) + log log K]

< CK(K log C + (1 + ε′) log K)

where ε′ is a small constant. Sum up for all dN/Ke segments,
we get an upper bound of the total complexity

dN/Ke∑
i=1

S(i) = CK [log C + (1 + ε′)
log K

K
]N

with log C > (1 + ε′) log K
K

, the total complexity goes to

O(CK log C ·N).

The other part, the cost of computing the likelihood value
for each assignment, is affected by the number of mappings
observed. In our case, where one peer does not map to a
large number of other peers, we have the following theorem:

Theorem 5.2. The complexity of the one-shot estimator
for each EM iteration is O(BKCKN log C), where B is the
maximal number of acquaintances a peer in the PDMS has.

Proof. When searching in a segment of length K, the
number of observed mapping quality for each segment of
length K is bounded by O(BK), therefore, computing the
likelihood for an assignment has the cost of O(BK). With
lemma 5.1, the total complexity of the one-shot estimator is
O(BKCK log C ·N).

Note that while there is no theoretical guarantee on the num-
ber of iterations after which the EM process will converge,
in our empirical study (Section 6), we observed that most
runs converge within a small number of iterations.

5.5.6 Reordering peers for segmented local search
It is easy to observe from the segmented local search pro-

cedure that the assignments carried over for the first several
segments are very important. If these assignments are in-
ferred correctly, better assignments will be discovered for
later segments. As the quality of the inference is largely af-
fected by the amount of available information (i.e., the qual-
ity of existing mappings) when processing these segments,
the peers can be reordered so that as much information as
possible can be used in the early stages of segmented local
search. Figure 8 shows an example of this reordering for
20 peers, numbered 1 to 20. The established mappings are
shown as X’s. The X’s in corresponding boxes are what the
segmented local search can use for segments s1 to s4.

We use a fast greedy algorithm to re-order peers as follows.
Starting with an ordered set, S, having one peer with the
maximal number of established mappings in the PDMS, we
add in each step a peer that maximizes the total number
of observed mappings among peers in S. This process is
repeated until all peers are added into S. This re-ordering
can be done in O(N2) time using an efficient proper data
structure. Figure 8(b) shows that more information can be
used by the local search in early segments.

5.5.7 Initialization strategy
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Figure 8: An example of reordering 20 peers

The one-shot estimator starts with an initial θ parameter
for the Gaussian distribution (Section 5.5.1). A carefully
initialized θ matrix can bring extra benefit to the estimator
from the following two aspects.

We observe that if we use neutral clusters, we may fur-
ther reduce the search space for the first segment without
any quality loss. Here neutral means the |C| clusters are
initialized with same parameters which means the ”name”
of the cluster does not affect the cluster assignment in our
problem. A θ matrix corresponding to such a setting can be
written as

θ|C|×|C| = c1I|C| + c2(1− I|C|)

where I is the identity matrix and c1, c2 are two (µ, δ2) pairs
with c1.µ > c2.µ. For example,




(0.7, 0.02) (0.3, 0.04) (0.3, 0.04)
(0.3, 0.04) (0.7, 0.02) (0.3, 0.04)
(0.3, 0.04) (0.3, 0.04) (0.7, 0.02)




is a “neutral” cluster setting where c1(µ, δ2) = (0.7, 0.02)
and c2 = (0.3, 0.04).

If θ is initialized this way, then we can see that given an
assignment, changing the label of clusters will not affect the
likelihood value. Thus, we can avoid testing this kind of
equivalent assignments. The equivalence relation can be
defined as follows.

Definition 6. [Equivalent Assignments] Two assignments
Z1 and Z2 are considered as equivalent under parameter θ if
the following conditions are satisfied.

1. There exists a mapping P (x) : C 7→ C that ∀i, P (Z1[i]) =
Z2[i]

2. For all P (x) = y, θ[x][k] = θ[y][k]∀k = 1..|C|
2

To have an idea of how much we can save if we can avoid
testing equivalent assignments, for |C| = 3 and K = 5,
in the 35 = 243 assignments the number of non-equivalent
assignments is only 41, an approximately 1/C! savings. 2

When testing assignments, we can avoid traveling through
those equivalent assignments by using the automata shown
in Figure 9.

2The accurate number of non-equivalent assignments can

be obtained by calculating T =
∑|C|

i=1 P (i), where P (i) =

[iK −∑i−1
j=1(

i
j)P (j)]/i! and P (1) = 1

1 2 |C|2 3 4

1 1

2

3

3

1 2

|C|

1 2

|C|

Figure 9: The automata for generating non-
equivalent assignment series.

The one-shot selection scheme relies on the one-shot esti-
mator to estimate the direct mapping quality between the
host peer and a candidate acquaintance. It uses the max-
min estimator (Section 5.4) to estimate the current aggre-
gate mapping quality for the candidate and computes the
selection criteria as described in Section 5.2. All candidates
are then ordered on these criteria values, which represents
the benefit of mapping the host peer to the candidate. Again
we point out that the host peer will not always choose its
new acquaintance from within its own cluster; both esti-
mates affect the final decision.

To summarize, the one-shot acquaintance selection scheme
manipulates existing pairwise mapping quality information
to cluster peers and further infer the unobserved mapping
quality which, combined with the current mapping quality
estimation, guides the acquaintance selection. One concern
is how much such mapping quality needs to be observed so
that the one-shot estimator can perform accurately, espe-
cially when the number of peers increases. Our empirical
study in Section 6 shows that when the number of peers in-
creases, the required number of existing observations does
not go up quickly, which makes the selection scheme prac-
tical. Our theoretical analysis showed that the estimation
algorithm scales well with PDMS size; this is also validated
in our empirical study.

The fact that one-shot estimator requires prior knowledge
on the number of clusters makes this scheme inapplicable
for scenarios in which this information is unavailable. For
acquaintance selection under such scenarios, we have devel-
oped another selection scheme that does not rely on this
prior knowledge: the two-hop selection scheme.

5.6 The two-hop selection scheme
In section describes a novel two-hop acquaintance selec-

tion scheme. The two-hop selection scheme uses a new two-
hop direct mapping estimator, which differs than the previ-
ous one-shot scheme in the following aspects:

1. The two-hop estimator does not need to know the number
of clusters that peers potentially form. Thus the scheme
is applicable when that information is unavailable.

2. Under the two-hop scheme, a peer explores the network
in multiple rounds, requiring fewer messages to be trans-
mitted during each probe step. However, it does not use
all established mapping information in the PDMS, which
means that accuracy may be lower. We show in Section 6
that two-hop is still quite accurate.

3. New peers joining the network and existing peers leaving
the network do not affect other peers’ selection proce-
dures, which makes the two-hop selection scheme suitable
for PDMSs which witness frequent peer updates.

4. In additional to using established mapping quality in the
PDMS, the two-hop scheme can utilize other peers’ direct



mapping quality estimations for estimating direct map-
ping quality. With heuristics (Section 5.6.3 enabled, it
utilizes the current aggregate mapping quality informa-
tion.

Before detailing the operation layer steps, we first describe
the new direct mapping quality estimator, namely the “two-
hop estimator”. Instead of collecting the pairwise mapping
quality as in the one-shot estimator, the two-hop estimator
focuses on mapping paths of length 2, thus receiving the
name “two-hop”.

5.6.1 The two-hop estimator in detail
We start with the definition of a two-hop path.

Definition 7 (two-hop path). A path (i, k, j) is a two-
hop path from i to j if and only if the mapping quality
or mapping quality estimation of both mappings (i, k) and
(k, j), for some other peer k, are known to peer i. 2

To estimate the direct mapping quality between peer i
and peer j, the two-hop estimator computes all the two-
hop paths from i to j. It uses this information to estimate
the direct mapping quality S(Mi j), where S is the quality
measure defined in Definition 1.

Let H denote the set of two-hop paths. For each two-hop
path p(i, k, j) ∈ H, the two-hop estimator first estimates the
direct mapping quality on path p, denoted as Sp(Mi j) using
its expectation. Formally:

Sest
p (Mi j) = E(Sp(Mi j))

=

∫ 1

0

tP (t|S(Mi k), S(Mk j))dt
(1)

where P (t|S(Mi k), S(Mk j)) is computed using a knowledge
base (KB) which is a pseudo count array where each element
KB[a][b][c] represents the number of instances observed for
a two-hop path (i, k, j) with S(Mi k) = a, S(Mk j) = b and
S(Mi j) = c. Using KB, this conditional probability P can
be approximated using the sample probability P ∗ by

P (t|S(Mi k), S(Mk j)) = P ∗(t|S(Mi k), S(Mk j))

=
KB[S(Mi k)][S(Mk j)][t]∫ 1

0
KB[S(Mi k)][S(Mk j)][t]dt

(2)

In the implementation of the two-hop estimator, the map-
ping quality metric (the metric in Definition 1 has range
[0, 1]), and is partitioned into T equal width intervals. Ele-
ments in KB are indexed by integers i ∈ [0, . . . , T − 1]. An
entry KB[i] on one of its dimension, covers mapping quality
valued in interval [i/T, (i + 1)/T ). Therefore, Equation 2 is
re-written into

P (t|S(Mi k), S(Mk j)) =
KB[a][b][c]∑T−1

u=0 KB[a][b][u]

where a = bT ·Mi kc,b = bT ·Mk jc and c = bT · tc.
The two-hop estimator aggregates the estimates from the

mapping quality on all two-hop paths in H together and re-
turn the final estimation of direct mapping quality: Sest(Mi j).
A simple aggregation3 takes the mean

Sest(Mi j) =
1

|H|
∑
p∈H

Sest
p (Mi j) (3)

3An improved aggregation is discussed in Section 5.6.3

where Sest
p (Mi j) is as computed in Equation 1.

We now look at the two-hop selection scheme in detail.

5.6.2 The operation layer in two-hop
Peers using the two-hop selection scheme need multiple

rounds discover all peers in the PDMS. The host peer dis-
covers new peers in the probe step for each round. Each
probed peer returns three types of information to the host
peer: I. the existence of some other peers, II. mapping qual-
ity of established mappings, III. (updated) direct mapping
quality estimation. The host peer uses the type II and III
information obtained in this step to update the knowledge
base. The newly discovered peers are considered as acquain-
tance candidates. After the host peer has finished the probe
phase, it goes into the evaluation phase. First the host peer
re-evaluates the direct mapping quality between itself and
all peers in its candidate list — except those which were
just added in the probe phase using the two-hop estimator
. After this process finishes and all mapping quality esti-
mation between itself and those candidates is updated, the
host peer estimates the directly mapping quality for newly
added peers.

The reason for carrying out two rounds of two-hop estima-
tion is as follows. We believe that the information collected
from most recent probe phase helps to obtain more accu-
rate two-hop estimation. The mapping quality estimation
between host peer and peers that are not new to it will be
used in the estimation of the host peer and the newly probed
peers. Therefore, a re-estimate of mapping quality will likely
to improve the estimation quality for the new peers in the
first place.

In the evaluation phase, S(CM), the current aggregate
mapping quality (Definition 3) is computed using the tech-
nique in Section 5.4. The difference between this and that
in the one-shot scheme is that the S(CM) is only computed
for the set of peers discovered to the host peer instead of all
peers in the network. In other words, in the one-shot scheme,
the topology w.r.t. a host peer will always be the whole
network while in two-hop it grows along with the probe op-
erations.

After both S(M) and S(CM) are computed, the host peer
picks its acquaintances using a selection criteria, for example
the one described in Section 5.2.

Because the two-hop selection scheme disseminates and
updates information in multiple rounds, the bookkeeping
phase needs to remember when a peer has already received
updated information so that the same message will not be
sent to a peer twice, thus avoiding unnecessary communi-
cation overhead. This can be done by time-stamping the
messages and also time-stamping each peer to indicate the
last time it was updated. Unlike in one-shot estimator, a
host peer using the two-hop scheme needs multiple steps to
discover the whole network. A natural concern is whether
it will take a long time for a peer to discover a peer that
it should create mapping to. The following theorem guar-
antees that it does not take long for a peer to discover the
whole network.

Theorem 5.3. For a network which each peer has in av-
erage K(K ≥ 3) random outbound mappings, it takes in
average O(log log N) steps for a peer to discover all peers
in the network using the two-hop scheme, where N is the
number of peers in the network.



Proof. This result follows from results reported in [9]
which states that the expected distance between two vertices
in a connected network of size N is O(ln N). Additionally,
the mean square deviation is small, so the actual distance
will not deviate much from the expectation.

Now suppose path p is the shortest path from i to j and
its length is p = O(log N). Because all peers conduct their
“probe” operation simultaneously, this length is halved after
each round of probing. So it takes O(log log N) rounds for
one peer to discover the existence of another peer — if there
exists a path between these two peers.

Before two-hop can be used on a PDMS, the knowledge
base must be trained. It is trained on a distribution of cord
quality given the two mappings (hops) on which the cord
is defined. The training process can be carried on using
two-hop selection in another PDMS with mapping quality
fully observed or the entries KB can be initialized accord-
ing to a prior distribution. If the training data’s distribution
mismatches the distribution of the running PDMS, the es-
timation from two-hop estimator will be inaccurate. This
is generally true for all algorithms that rely on pre-trained
models. However, the two-hop scheme keeps updating its
knowledge base so that KB is updated using the observa-
tions reflecting the distribution of the running PDMS. In
other words, it actively learns to improve the accuracy. In
our empirical study in Section 6, we purposely use a knowl-
edge base trained with data that has different distribution
than the test data. In practice, if the peer has a strong prior
knowledge on the PDMS, it will train KB with a big train-
ing data set so that updates from the running PDMS do not
change much of the KB’s implied distribution. On the other
hand, training KB using a small training data set allows it
to adopt to a new (observed) distribution more quickly.

Next we describe some useful heuristics that help to im-
prove the accuracy of two-hop estimator.

5.6.3 Heuristics to improve the two-hop estimator
There are several opportunities to improve the basic two-

hop estimator described in Section 5.6.1. The first is that
simply taking the mean of all estimation from individual
two-hop paths may not be the best aggregating strategy to
obtain a good estimation of S(Mi j). Consider the example
in Figure 10, where peer i wishes to estimate the direct map-
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Figure 10: A motivating example for heuristics in
two-hop estimation: labeled circles denote peers, solid

links denote established mappings, and dotted links de-

note the estimation of mapping quality obtained. The

number beside each link denotes the (estimated) map-

ping quality.

ping quality to peer j using the two-hop estimator. There

are three two-hop paths to j. Path (i, a, j) contains one
existing mapping and one estimation of mapping quality.
Knowledge about path (i, b, j) comes from a previous esti-
mation of S(Mi b) and S(Mb j). The path (i, c, j) is formed
by two existing mappings. The quality of established map-
pings is always accurate, while quality estimations may con-
tain errors. Therefore, two-hop may work better if we assign
different weights so that established mappings receive higher
weight in the estimation. This is our first heuristic:

Heuristic 1: We assign different weights to paths that are
formed by established mappings, estimated mapping qual-
ity, or the combination of the two. A two-hop path formed
by two established mappings is given the highest weight, a
path with two mapping quality estimations is given the low-
est weight. The weight for a path that has one established
mapping and one estimated mapping quality lies between.
Let wp denote the weight for a path, then the aggregate
equation 3 is re-written as

Sest(Mi j) =

∑
p∈H wpSest

p (Mi j)∑
p∈H wp

2

Next, we observe that the current aggregate mapping qual-
ity gives valuable information on the quality of the direct
mapping. Using the assumption that a direct mapping dom-
inates a composed mapping (Section 5.1), the quality of the
current aggregate mapping can be used as a lower bound of
the direct mapping quality estimation. This results in our
second heuristic for the two-hop estimator:

Heuristic 2: During acquaintance selection, the two-hop
selection scheme first estimates the quality of the current
aggregated mapping S(CMi j) for host peer i and candi-
date peer j. Then the two-hop estimator uses S(CMi j)
as a lower bound in estimating the direct mapping qual-
ity S(Mi j). I.e., instead of computing the probability as
in Equation 2, we compute the probability conditioned on
S(CMi j) as follows:

P (t|S(Mi k), S(Mk j), S(Mi j) ≥ S(CMi j))

=

{
KB[S(Mi k)][S(Mk j)][t]∫ 1

u KB[S(Mi k)][S(Mk j)][t]dt
, t ≥ S(CMi j);

0, otherwise.

where u = S(CMi j).
By replacing P in Equation 2 with this conditional prob-

ability, the mean is shifted to a more accurate value and
deviation of the estimation is reduced. 2

The third observation is more complicated. Still consider
the example in Figure 10. In the one-shot estimator, where
belief propagation is used, the inference is made based on
the result of a Bayes treatment of all the information col-
lected from the Bayes network shown in Figure 6. However,
in the two-hop estimator, thus far (including the above two
heuristics) the information we have considered is only a sub-
set of information that relates to the two ending peers S and
T . We have not exploited other information that may also
be useful for better estimate S(MS T ). e.g., the correlation
among peers a, b and c. For example, the fact that mapping
quality from b to a is high may suggest that path (S,a,T)
and (S,b,T) are correlated. When we consider quality esti-
mation returned from these two paths, it will be beneficial
that we add a penalty to account for the correlation. This
gives us our next heuristic:

Heuristic 3: We give extra reward to the estimated qual-



ity from peer S to T if there are R non-correlated two-hop
paths where both links’ quality is estimated to be low. Then
we augment the overall estimation using the following for-
mula,

Ŝ = Sest +
H − Sest

C − 1
∗R

where Ŝ is the augmented estimation. H is a parameter
larger than Sest and C is a number larger than or equal
to 2. One observation can be helpful; if we use C = 2,
R = 1 in the formula, the estimation is lifted from Sest to
H which expresses the idea that if we believe peers form 2
clusters (C) then observing a conflicting relation(both links’
quality is low) tells that the host peer and the target peer
will have high(H) expected mapping quality. The problem
of choosing H ,C and also efficiently determine R is out of
the scope of this paper.

Similar to the one-shot scheme, the two-hop estimator and
the max-min estimator work together to compute the selec-
tion criteria and rank the candidates for picking acquain-
tances in two-hop scheme.

5.6.4 Choosing between one-shot and two-hop
The use of different direct mapping quality estimators

makes the two selection schemes suitable for different kinds
of PDMSs — depending on whether the host peer knows the
number of potential clusters in the PDMS. When we have
no such information, we can only use the two-hop scheme.
Although the two-hop selection scheme can be applied virtu-
ally to any PDMS, deciding which of the one-shot or two-hop
scheme to be use is non-trivial. As we show in Section 6, the
one-shot estimator — which uses all established mappings in
the PDMS to do inference — does not need a large number
of mappings to be observed before it can perform well. Ad-
ditionally a highly mismatched KB can mislead the two-hop
estimator until updates from the current PDMS change the
distribution in KB to one that positively helps estimation.
Therefore, for such scenarios, the one-shot selection scheme
is more preferred. While the estimation from the one-shot
estimator is based on all established mapping quality in the
PDMS and is potentially more accurate, the two-hop se-
lection scheme has distinct advantages on aspects we have
mentioned at the beginning of Section 5.6, and as we show
in the next section, performs very well in practice.

6. EMPIRICAL STUDY
In this section we present our empirical evaluation of the

two acquaintance selection schemes in the previous sections.
In particular, the following components are tested:

1. The max-min estimator (CP-CM) used by both the one-
shot and two-hop acquaintance selection schemes. (Sec-
tions 5.3 and 5.4)

2. The one-shot estimator (OSME) and one-shot selection
scheme (Section 5.5).

3. The two-hop estimator (THME) with heuristics and two-
hop selection scheme (Section 5.6).

All algorithms are implemented in C++. The simulation
platform is a PC running Windows XP with an Intel core2
duo 2.4G CPU and 1 Gigabyte of RAM.

Table 1 lists the meanings of notations used in our tests.
We use synthetic data sets in our experiments. The topol-

ogy data is a set of randomly generated D-regular connected

Notation Meaning
N number of peers in PDMS
D Initial Connectivity of D-regular graph
C Cluster number for one-shot theme
Error RMSE a for a set of estimations

aRoot Mean Square Error: defined as
√

1
N

∑N
i=0(ê− e)2,

where ê is the estimation and e is the true value

Table 1: Notations in empirical study

graphs which are used to represent the initial established
mappings among peers in the PDMS. A graph is represented
as an adjacency matrix A where Aij = 1 means the mapping
between peer i and peer j is established before a selection
scheme starts. The D-regular property ensures that all peers
have the same number of initial acquaintances; thus they all
have a similar chance to discover good new acquaintances.
While in practice a PDMS may have another initial topol-
ogy, if peers act independently and wish to select a similar
number of acquaintances, then the network topology will
gradually migrate to “D-regular” for some value D. There-
fore our topology setting is representative. The mapping
and mapping quality data we use are randomly generated
with parameters hidden to the testing schemes, except that
the potential cluster number is known to the one-shot esti-
mator. We also acknowledge that because we simulate all
selection process using a single PC, networking factors are
ignored. However, our empirical study suffices to test the
quality of the selection scheme and the extra computation
overhead that the two selection schemes impose.

6.1 Evaluation of cordless path finding algo-
rithm

The key factor affecting the performance of the max-min
estimator (Section 5.4) is the performance of the cordless
path finding algorithm described in Section 5.3. We first
performed a test on the performance of the cordless path
finding algorithm.

Figure 11(a) shows the number of cordless paths (CP)
between a randomly chosen peer and all other peers in a
PDMS with a 20-regular graph as the initial topology. We
varied the network size from 40 to 60 peers. Figure 11(b)
shows the time for the cordless path finding algorithm to
compute all the paths, along with the max-min estimates.
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Figure 11: Evaluation of the CP finding algorithm

Figure 11(a) shows that when the PDMS size, N , gets
large, the number of cordless paths increases very quickly
for the tested D = 20. This suggests that indeed we need
a fast estimation of the current aggregate mapping qual-
ity. Figure 11(b) validates our claim in Theorem 5.1 that



the running time of the cordless path finding algorithm is
linear in the number of cordless paths. The results also sug-
gest that the algorithm performs very quickly: it computes
around 400K paths in 2 seconds. The main reason is that
the CP finding algorithm discovers new paths by extending
already discovered paths so that even long paths can also
be discovered very quickly. Since the cordless path algo-
rithm performs quickly, the overhead of max-min estimator
is small.

6.2 Evaluation of the one-shot selection scheme
Next we conducted a set of experiments on the one-shot se-

lection scheme. We first tested the accuracy of the one-shot
estimator (OSME). We set the initial number of acquain-
tances to vary from D = 6 to 12 and kept the cluster number
fixed to C = 4. We let the number of peers in the PDMS
vary from N = 40 to 200. The true in-cluster mapping qual-
ity distribution was set to N(µ, δ2) = N(0.8, 0.02) and the
inter-cluster mapping quality followed N(0.3, 0.05). The dis-
tribution parameters were hidden to the one-shot estimator.
The one-shot estimator initialized with N(0.7, 0.05) for in-
cluster quality distribution and N(0.4, 0.05) for inter-cluster
quality distribution. i.e., the initial θ is




(0.7, 0.05) (0.4, 0.05) (0.4, 0.05) (0.4, 0.05)
(0.4, 0.05) (0.7, 0.05) (0.4, 0.05) (0.4, 0.05)
(0.4, 0.05) (0.4, 0.05) (0.7, 0.05) (0.4, 0.05)
(0.4, 0.05) (0.4, 0.05) (0.4, 0.05) (0.7, 0.05)




This experiment tested whether the one-shot estimator is
able to accurately infer the true cluster setting.
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Figure 12: Estimation error of OSME

Figure 12 shows the RMSE error of the one-shot estimator
under different settings. The results show that the one-shot
estimator in general is more accurate when more initial map-
pings are observed (i.e., D is larger). Both figures show this
trend. In general, a lower misclassification count leads to
a smaller estimation error. Note that for D = 10 and 12,
the misclassification count is 0 for N = 80, as shown in Fig-
ure 12(b), but the corresponding estimation error is above
zero. This error comes from OSME’s error in inferring the
parameter (θ). From the results we can see that the error
on θ is also small (about 0.05 in RMSE).

We also observed the running time of the one-shot estima-
tor. The timing results use the same settings as for testing
accuracy, and are shown in Figure 13. Each figure shows
the time for each EM iteration in the estimation. We did
not show the total time because the EM processes require
different iterations to converge in different runs. Therefore,
the total time does not show a trend when N or D varies,
although we observed in our experiments that most runs
converge within 3 iterations. The results presented in Fig-
ure 13(a) show that the running time for each iteration in-
creases linearly with the size of the PDMS, which matches
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Figure 13: Time consumption of OSME

our theoretical analysis in Theorem 5.2 (Section 5.5.5). Fig-
ure 13(b) shows that the time consumption on each iter-
ation also increases linearly with the increment of average
initial observation amount (D). Our setting of using D-
regular graph has lead the experiment results to perfectly
validate the claim we have made in theorem 5.2 that the
time complexity for each iteration is linear with the upper-
bound (which is D) of each peer’s acquaintance number.

Finally, we empirically showed how many established map-
pings are required for the one-shot estimator to make good
estimations. The results are shown in Figure 14. For a
PDMS with less than 80 peers, letting each peer map to
7 other peers provides enough information for the one-shot
estimator to make fairly accurate estimations. For larger
PDMSs (up to 200 peers), increasing the mapping connec-
tivity to 11 provides adequate information for the one-shot
estimator. One such result is shown in Figure 14, and we
observed similar behavior in other experiments.
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From the tests in this section, we can conclude that the
one-shot estimator shows a good estimation accuracy with
a small amount of mapping quality information. Together
with the results for the max-min estimator, we conclude that
the one-shot selection scheme scales well with PDMS size.

6.3 Evaluation of the two-hop selection scheme
In this section, we evaluate the two-hop acquaintance se-

lection scheme. First we conduct a set of experiments on
the speed for a peer to explore the PDMS to validate our
claim in theorem 5.3. We compute the maximal shortest dis-
tance(MSD) between any two peers in a PDMS with differ-
ent random D-regular mapping topology. Let this distance
be d, then a peer will take O(log d) rounds to discover the
existence of all other peers in the PDMS if they also carry
out two-hop selection. And if the host peer is the only one
in the PDMS to perform the two-hop selection, then it needs
O(d) rounds to discover the entire population. The results
in Figure 15 show the d value under different settings of
PDMSs.

The results show that when each peer has more than 5
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Figure 15: Maximal pairwise shortest distance in
random graphs with different connectivity

acquaintances, a peer can discover other peers very quickly.
This validates the claim in Theorem 5.3.

We next evaluated the accuracy of the two-hop acquain-
tance selection on 3 sizes of PDMSs. In all sizes, the initial
topology was a 12-regular random graph. All peers in the
PDMS carry out two-hop acquaintance selection in a round-
robin fashion for 9 rounds. We let each peer choose the
top 3 candidates as its acquaintances for each round. The
knowledge base we use in the test is learned from a small
training PDMS having 10 peers and with different mapping
quality distribution than that used to test the PDMS. This
setting was purposely chosen to simulate that in the real
world, peers don’t know the distribution of two-hop path
quality and can only blindly start with a KB and hope to
refine the knowledge base using information obtained from
the running PDMS.

First we examined how well the peers selected their 3 ac-
quaintances in each round. We evaluated this as follows.
For each of the 3 acquaintances chosen by a peer in each
round, we checked with an “oracle” (which knows the true
mapping quality and computes exact criteria value for each
candidate) to see if the peer chose a candidate from the best
t% of the available candidates. A selection is considered as
a “hit” if its rank is in the best t%. We computed the hit
ratio as the“hit”number over 3. We started with t = 20 and
tightened the measure by decreasing t. The results in Fig-
ure 16 show the average hit rate for all peers in the PDMS
at each round, for different sizes of PDMSs tested. We show
the results for t = 6 because it is the first time we can ob-
serve some significant misses of the best t%. The results
suggest the acquaintances selected by the two-hop selection
scheme are very good. Thus, although the estimation from
the one-shot estimator is based on all established mapping
quality in the PDMS and potentially higher, two-hop still
performs quite well.
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We further measured the significance of the two-hop ac-
quaintance selection qualitatively by comparing the actual
mapping quality benefit for the selected acquaintances against
the average benefit when a peer chooses its acquaintances
randomly from its candidates. The benefit is computed us-
ing the selection criteria in Section 5.2. The results for a
network with 50 peers are presented in Figure 17 where we
use a box plot [29] to visualize several key statistical char-
acteristics, detailed as follows.
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Figure 17: two-hop selection vs. random selection

In Figure 17, the notched boxes represent the gain achieved
when all peers to map to their selected acquaintances in each
round (50× 3 = 150 selections per round). The lower series
of boxes are the corresponding results for a random selection
for each round. The result shows the gain achieved by the
two-hop selection scheme outperforms that of a random se-
lection, especially for the first several rounds. The descend-
ing trend of the benefit also suggests that peers capture best
acquaintances at early stages of two-hop selection. There-
fore, we conclude from the previous experiments that the
two-hop selection scheme can greatly improve peers’ query
answering potential in a PDMS.

We also tested the time consumption of the two-hop selec-
tion scheme. In this set of experiments, we let the size(N) of
the PDMS vary from 40 to 180 peers. Each PDMS started
with a 7-regular initial topology and a peer selected 3 ac-
quaintances each round. The results are shown in Figure 18.
Figure 18(a) compares the average time (over all selections)
in selecting one acquaintance in different rounds using the
two-hop selection scheme. Figure 18(b) shows how this time
changes over different sizes of PDMSs.
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Figure 18: Time consumption of THME

The results in Figure 18(a) show that peers choose their
acquaintances very quickly. Although the time needed for
each selection increases when N becomes large, selecting one
acquaintance requires less than 1.2 seconds. In a single run,
the time needed for later rounds is smaller than that for early
rounds. This is because the number of cordless paths is large
for the initial topology (D = 7); as more acquaintances are



selected, this number drops, thus saving time in computing
current aggregate mapping quality. Figure 18 gives a clear
view of how the two-hop scheme scales with the PDMS size
in practice: time increases a little faster than linearly in N .

In summary, we tested both the accuracy and the time
overhead of the two selection schemes. The experimen-
tal results show that both schemes help peers in a PDMS
choose good acquaintances. Time overhead is low, and both
schemes scale well in the size of the PDMS. We did not
compare the two schemes because they work under different
assumptions and suit different PDMS scenarios.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed two acquaintance selection

schemes to help peers in a PDMS choose acquaintances that
best enhance their query answering abilities. Both schemes
are analyzed in theory and evaluated empirically. Our em-
pirical evaluation shows that both the one-shot and two-
hop schemes work very efficiently and help peers to choose
their best acquaintances effectively. Moreover, our theoret-
ical analysis and empirical study both show that the two
schemes scales to PDMSs with a large number of peers.

There are a number of extensions we wish to further ex-
plore in the future. We will continue to explore the pos-
sibility that peers may co-operate together in acquaintance
selection procedure so to achieve an even better query an-
swering ability. We also wish to study the peers’ behavior
using game theory; it may lead to interesting results.
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