
ROBOTIC ARM FOR SORTING RAW AND RIPE
ORANGES USING COMPUTER VISION
MAJOR PROJECT - ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT, MANIT BHOPAL

INTRODUCTION
◼ Sorting of fruits is repetitive and time

consuming when done manually.
◼ It also requires skilled personnel and in

many regions there are shortages of skilled
manpower for various reasons.

◼ In 2015, India was ranked second in terms
of fruit production in the world, just after
China.

◼ This has created huge demands for
automating the classification and sorting of
fruits effectively and efficiently, in super
market and agro packaging industries in
India.

Machine
Learning

Data
Mining

Intelligent
Sensing

SUGGESTED SOLUTION

ROBOTICS

Autonomous
Control

Computer
Vision

Artificial
Intelligence

Computer
Vision

Autonomous
Control

Intelligent
Sensing

Technologies
adopted

OUR APPROACH TO THE PROBLEM

4 DOF
ROBOTIC

ARM

RASPBERRY
PI INTERFACE

CAMERA
MOUNT

A ROBOTIC
MODEL

COMPRISING

MODEL DESCRIPTION

◼ We use a RGB Camera (Raspberry Pi Camera) connected to a processor (Raspberry Pi 2)
◼ Processor drives 5 servo motors, which form the robotic arm and the gripper
◼ The camera is mounted on a separate stand with the processing board
◼ In between, there will be 3 boxes for keeping ripe, unsorted and raw fruits respectively

◼ Power supply will be 5V, 2A given by mobile adapter

GRAPHIC MODEL

Arm will be used to pick
up and move the oranges

from one container to
another

Pick up and placement of
oranges will be governed

by the coordinates
calculated by the image

data captured by the
camera

Camera mounted in the
stand captures the image

when asked.

CAMERA
MOUNT

4 DOF
ROBOTIC

ARM

MODEL REALISATION

Arm will be used to pick
up and move the oranges

from one container to
another

CAMERA
MOUNT

4 DOF
ROBOTIC

ARM

CAMERA MOUNT

ROBOTIC ARM

It houses the Raspi
Camera, and the
Raspberry Pi 2 board
used for processing.

It is the complete
assembly of arm
along with a circuit to
safely power the
motors.

DESIGN AND ASSEMBLY OF THE ROBOT ARM

◼ All the parts used for the assembly of the arm were designed by us using SOLIDWORKS 3D modelling
software.

◼ The designs are realised using 2 methods of printing: 3D parts for the joints of the arm, and CNC Laser cut
parts for the gripper and arm links from 4mm Acrylic sheet.

◼ We have successfully realised a 4 DOF Robotic Arm and a gripper to hold circular objects such as fruits.

DESIGN AND ASSEMBLY OF THE ROBOT ARM

DESIGN AND ASSEMBLY OF THE GRIPPER CLAW

DEGREE OF FREEDOM OF THE MODEL

Degrees of freedom (DOF) are the set of independent
displacements and/or rotations that specify completely the
displaced or deformed position and orientation of the body or
system. The degree of freedom (DOF) for planar configuration
as shown in figure is computed using Gruebler's equation as,

Number of links, n = 5
Number of lower pairs, M = 4
Number of higher pairs, h = 0

DOF = 3(n-1) – 2M– h = 3(5-1) – 2(4) – 0 = 4

 As we have 4 actuators and 4 DOF, the robotic arm is
non-redundant.

B

A

C

Link 4

Lin
k 3

Link 2

Link 1

Lin
k 5

M1

M3

M4

M5
M2

LOAD ANALYSIS

LOAD = Gripper + Orange

B

A

C

20 cm

20
 cm

Average weight at C = Weight of gripper + Load
 = Weight of (M4 + M5 + Material) + Load

 = 10 + 55 + 100 + 130
 = 295 gm
 ~ 300 gm

WORST CASE TORQUE CALCULATION

MODEL SCHEMATIC TOP VIEW

FORWARD AND INVERSE KINEMATICS

The transformation matrix for each joint, transforms the coordinates of its previous link to its next link. For each
joint, this matrix is represented by,

 j-1Aj

The forward kinematics is then given by the multiplication of all the transformation matrices,

ξE ~ 0TE = 0A1.
1A2.2A3

 ξE = К(q)

After obtaining the forward kinematics equation, we can calculate the inverse kinematics as,

 q = К-1(ξE)

Using this inverse kinematics equation, we can calculate the joint angles required for any particular end effector
pose (ξE) required.

SOFTWARE DETAILS

1. Capture Image.
2. Apply perspective shift, smoothing
3. Use segmentation techniques to separate into two images:

a. green : for raw fruits
b. orange : for ripe fruits

4. Calculate centroids of each fruits in respective images and store them separately
a. connected-component analysis (blob detection)

5. First pick up all the raw_fruits and place in Destination 1 (hard coded coordinate for raw fruits box.)
a. Use inverse kinematics equation to correctly move to the required place

6. Then pick the ripe_fruits and place in Destination 2 (hard coded coordinate for ripe fruits box.)

Complete code is written in Python 2 using OpenCV libraries for Image Processing and is run on Raspberry Pi 2 board.

CODE ARCHITECTURE

◼ To achieve the desired performance, we have developed a modular code structure to handle two different
parts of the code.
◼ Image Processing
◼ Motor Control + Kinematics

main.py

imageProcessing.py movements.py

centre.py kinematics.py motor.py

MODULE DESCRIPTION

1. main.py : This file integrates the working of different modules and define the iterations and sequence of
working.

2. imageProcesssing.py : This file handles the image operations : image capture, perspective shift, and
segmentation.

3. centre.py : This file calculates the centres of different segments from a binary image. Uses watershed
algorithm.

4. movements.py : This file is used to coordinate the movement of the arm.
5. kinematics.py : This file calculated the inverse kinematics and handles the coordinate transformation into

world coordinate frame.
6. motor.py : This file is used for low level motor control.

IMAGE PROCESSING ALGORITHMS
PERSPECTIVE CORRECTION: Since the camera is mounted 50 cm above the ground plane, the image that it
takes are warped due to perspective shift. To correctly find the position of oranges, we need to apply a
perspective correction to the raw image taken.

a. getPerspectiveTransform() function of the OpenCV library takes in 4 points as input to give a transformation matrix
to warp the image to give a correct perspective. Then, a non-affine transformation is applied to warp the image.

Raw image taken from camera. Corrected perspective

IMAGE PROCESSING ALGORITHMS
CENTROID DETECTION: To command the arm to pick up the oranges, we needed their coordinate position from
the camera image. We achieve this by properly segmenting the image and using watershed algorithm to handle
overlapping circular segments when oranges are placed closely.

a. Segmentation is done by converting the raw image into HSV and using the correct Hue channels to create filters for
green and orange color, indication different maturity level of the oranges.

Image after perspective correction is applied. Marked centroids of ripe oranges.

CENTROID COORDINATE PROCESSING
TRANSFORMATION OF CENTROIDS: The centroid values calculated till now are in the units of pixels with a
coordinate frame different than of the world coordinate. Each centroid coordinate is converted into world
coordinate frame using geometric transformations.

Centroid
Coordinate in
Pixels

Centroid
Coordinate in
centimeters

Origin shift of image
grid to world
coordinate frame.

KINEMATICS
INVERSE KINEMATICS: Once the destination coordinate is calculated, we use inverse kinematics to find the joint
angles of the arm necessary to reach the orange. We do this by forming a triangle with the desired position of the
arms as the sides, and calculate the angles of the triangle. We get the angles of the joints in Radians.

MOTOR CONTROL
CONVERSION OF ANGLES TO PULSE WIDTHS: The motor control of the servo is done by PWM and thus, the
angle calculated in the previous step is converted into the PWM pulse value required to reach the particular angle.
We have created the conversion functions by practical experimentation of the motor’s profile.

MOTOR CONTROL
VELOCITY AND ACCELERATION PROFILING: The default property of servo motors is such that when we give it
as input the destination pulse width, it tends to rotate at full speed. This leads to very abrupt motion of the whole
robot arm. We have created functions to achieve velocity and acceleration control to achieve a smooth motion
through software.

Velocity

Velocity

Position

Position

PROGRAM FLOW DEFINED IN MAIN FUNCTION

HARDWARE AND MATERIAL USED

◼ Camera - Raspberry Pi Camera 5MP resolution
OmniVision 5647 Sensor

◼ Processor - Raspberry Pi 2 A 900MHz quad-core
ARM Cortex-A7 CPU

◼ 1 GB RAM
◼ 16 GB MicroSD Card
◼ Servo Motors of required torque (4 x MG996, 1 x

MG958, 1 x MicroServo)
◼ Power : Custom Built 4.8V 2.1A micro USB power

supply
◼ Acrylic plastic sheet used for laser cutting the

proposed arm structure

CONCLUSION
We have successfully implemented the hardware design and software architecture for a Robotic Arm intended to
sort oranges to automate processes in an industrial environment. The software is implemented in a modular
fashion for easier debugging and better control. We have also learned the nuances of hardware design and
manufacturing through this project.
Due to the limitations of the electronic components used and the manufacturing processes, there are several
limitations faced in the real world performance of our project, which are discussed below:
1. Good servo motors essential for precise control were out of our budget, thus, we are limited in our reach and

weight of payload by the torques of our motors. This also leads to jittery motions as our motors are always
close to their limits.

2. We decided to skip using a complex gear assembly to couple our motor with the mechanical arm because it
would have taken the focus of our project away from our scope. Using a better coupling method would have
made the movements of our arm more professional and easier to control.

3. Although the Raspberry Pi board is great for image processing operation, it has its limitation in
simultaneously generating different PWM pulses for simultaneous motor control. Due to this, we can only
move one motor at a time. This significantly increases our time to reach a destination arm position.

PROJECT TEAM

Preeti Vyas 131114005
Suhita Bhatia 131114004
Vibhor Dubey 131114139
Apoorva Manwani 131114053
Vrushabh Ambade 131114025
Himanshu Raghuvanshi 131114021

