Multi-agent actions under
uncertainty: situation calculus,
discrete time, plans and policies

David Poole

University of British Columbia




The problem and Solutic

Problem: determine what an agent should do based on
background knowledge, preferences and what it observes

Basis for preferences and uncertainty: Bayesian decision
theory. Alternatives:goals, satisficing.

Problem representation: independent choice logic.
Alternatives:Bayesian networks, MDPs, FOPC, ...

Action representation: situation calculus.
Alternatives:discrete or continuous time.

Agent function represented as conditional plan.
Alternative: policies.




Logic and Uncertaint

Choice:

* Rich logic including all of first-order predicate logic

(e.g., Bacchus) — use both probability and disjunctionfc
represent uncertainty.

* \WWeaker logic where all uncertainty is handled by
Bayesian decision theory. The underlying logic contairg

Nno uncertainty — uncertainty is in terms of probabillitie:
decisions and utilities.



Independent Choice Log

Independent choices + acyclic logic program to give
consequence of choices.

extension of pure Prolog with negation as failure; rules ha
their normal logical meaning.

all numbers can be consistently interpreted as probabilities

extension of Bayesian networks: same notion of ‘causatiorff;
can express structured probability tables, logical variables,

iIndependent hypotheses: if there is a dependence we invegt a
new hypothesis to explain the dependence.



Independent choice loc

An independent choice logic theorys built from:

Co ‘nature’s choice spackis a set of alternatives.
An alternative is a set of atomic choices.
An atomic choiceis a ground atomic formula.

F thefactsis an acyclic logic program such that no atomic
choice unifies with the head of any rule. Can include
negation as failure.




A total choiceis a set containing exactly one element of eajgh
alternative InCo.

For each total choice there is a possible worly; .

Formulaf is true inw; (writtenw; = f) If f is true in the
(unique) stable model df U .




Independent choice log

An independent choice logic theorycan also contain:

A called theaction space s a set of primitive actions that
the agent can perform.

O theobservabless a set of terms.

Po Is a functionuCqp — [0, 1] .
Probabllity distribution over alternatives:
Vx € Co, Zaex Po(x) = 1.




Temporal models in IC

ICL Is independent of any model of time. E.g.,

 Time implicit: action chosen depends on history:
do(A) < do _choicgA, C) A history(C)
VC {do _choicdgA, C) : A possible actiohe C,

» Explicit time: discrete Markovian
do(A, T) < do _choicgA, S) A stategS, T)
statdS, T + 1) < state trans(S, S) A statgS, T)
vS{do choicdgA, S) : Apossible actiohe C,
VS {state trans(S, S) : S statg € Cyp

e Situation-based time, actions specified in program.




Situation calculus and Uncertal

S IS a situation andlo(A, S) is a situation IfA Is an action
andSis a situation.

Deterministic case: the trajectory of actions by the (single)
agent determines what is true — situaticstate.

With uncertainty, the trajectory of an agent’s actions does
determine what is true.

Choice:

e keep the semantic conception of situaticatate,

e Or keep the syntactic form, so situatiéstate, but situations
have simple form.




In general there will be a probability distribution over states
for a situation.

The agent’s actions are treated very differently from
exogenous actions.




Situation Calculus in IC

A possible world is temporally extended — specifies a trut
value for every fluent in every situation.

Use standard situation calculus rules to specify what is tru
after an action — body of rules can include atomic choices

Robot programs select situations in possible worlds.

Programs can be contingent on observations: the robot wi
observe different things in different possible worlds.

Actions have no preconditions — they can always be
attempted.




Situation Calculus in ICL

carrying(key, do(pickupkey), S)) <«
at(robot, Pos S) A
at(key, Pos S) A
pickup succeeds).

carrying(key, do(A, S)) «
carrying(key, S) A
A #£ putdowrikey) A
A # pickupkey) A
keepscarryingkey, S).




Alternatives

VS {pickup succeedsS), pickup fails(S)} € Cq

Po(pickup succeeds)) is the probability the robot is
carrying the key after thpickup’key) action when it was at
the same position as the key, and wasn’t carrying the key.

VS {keepscarrying(key, S), dropskey, S)} € Cq




Utility Axioms

Utility complete if Yw, VS, exists uniqueJ such that

Wz

— utility (U, S

utility(R+ P, S) <«
prize(P, S) A
resourcesR, S).

prize(—100Q S) < crashedS).
prize(100Q S) « in_lab(S) A ~ crashedy).
prize(0, S) <~ In_lab(S)A ~ crashedS).



resources?200, 59).
resourcesR — Cost do(goto(To, Routg, S)) <«
at(robot, From, S) A

pathcostFrom, To, Route Cost A

resourcesR, S).
resourceéR — 10, do(A, 5)) «

~gotoactiorfA) A

resourcegR, S).
gotoactiorigoto(A, S)).




Imperfect Senso

A sensor Is symptomatic of what is true in the world.

senséat_key, S) «
at(robot, P, S) A
at(key, P, S A
sensor true pogyS).
senséat_key S) «
at(robot, P1, S A
at(key, P2, S) A
P1 # P2 A
sensor false pogS).




Conditional Plan

A conditional plan can use sequential composition and
conditionals.

Plans select situations in worlds. The plan:

a; if c thenb elsed; eendIf g

selects situatiodo(g, do(b, do(a, s9))) In w;
If senséc, do(a, §)) IS true inw;

selects situatiodo(g, do(e, do(d, do(a, 5)))) In wW;
If senséc, do(a, 5)) Is false inw;.




Plans select situations in worl

We can recursively defindo(P, W, S, ) which is true if
doing planP in world W takes us from situatio§; to $.

... In pseudo Prolog:

do(skip W, S, S).
do(A, W, S, do(A, S)) <«

primitive(A).

do((P; Q), W, &1, &) «
do(P,W, S, $) A
do(Q, W, &, ).




do((if C thenP elseQ endlf), W, 5, ) «
W = sense€C, S§) A

do(P,W, S, S).

do((if C thenP elseQ endlf), W, S, S) «

W £ senseC, $) A
do(Q,W, &, ).




Expected Utility of Plan

Theexpected utility of planP is
e(P) = "p(W;) x u(wy, P)

whereu(W, P) is the utility of plan P in worldW:

uW,P) =U Iif W = utility (U, S
wheredo(P, W, 59, S

pP(W;) Is the probability of worldw;,:
pw:) = | | Po(xo)

X0€ET




Other Work

Exponentially more compact than probabilistic STRIPS:
E.g., each predicatg persists stochastically and
iIndependently through a wait:
pi(do(walit, S)) < persistsp;(S) A pi(S) € F for eachp
{persists pi(S), stops pi} € Cop for eachp;

Similar to action networks [Boutilier et al. 95] but doesn’t
need 7actionsx #predicatespace — this the frame problem

Plans correspond to policy trees of finite stage POMDPs
[Kaelbling et al. 96].

Conditional plans are like Levesque[AAAI-96]’s robot plang




Can axiomatize change using temporal model
(e.g., event calculus).

Reactive Policy:

do(pickupkey), T) «
senséat_key, T) A

recall(want key, T).




Conclusio

Combine situation calculus and Bayesian decision thec
Allow conditional plans and noisy sensors and effecto
Notion of goal expanded to utilities.

Plans or policies have expected values.

Planning: finding (approximately) optimal plan/policy.

Paper explores muti-agents and reactive policies vs pla




