(Exact) Lifted inference

Luc De Raedt, Kristian Kersting,Sriraam Natarajan, David Poole

Belgium, Germany, USA, Canada

February 2017

Outline

1 Exact Inference

- Lifted Inference
- Recursive Conditioning
- Lifted Recursive Conditioning

Why do we care about exact inference?

• Gold standard

Why do we care about exact inference?

- Gold standard
- Size of problems amenable to exact inference is growing

Why do we care about exact inference?

- Gold standard
- Size of problems amenable to exact inference is growing
- Learning for inference

Why do we care about exact inference?

- Gold standard
- Size of problems amenable to exact inference is growing
- Learning for inference
- Basis for efficient approximate inference:
 - Rao-Blackwellization
 - Variational Methods

Outline

1 Exact Inference

Lifted Inference

- Recursive Conditioning
- Lifted Recursive Conditioning

Lifted Inference

- Idea: treat those individuals about which you have the same information as a block; just count them.
- Use the ideas from lifted theorem proving no need to ground.
- Potential to be exponentially faster in the number of non-differentialed individuals.
- Relies on knowing the number of individuals (the population size).

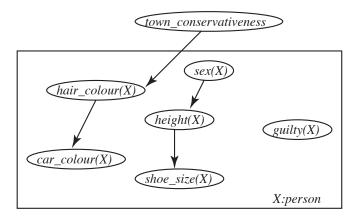
Queries depend on population size

Suppose we observe:

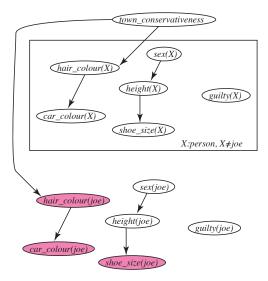
- Joe has purple hair, a purple car, and has big feet.
- A person with purple hair, a purple car, and who is very tall was seen committing a crime.

What is the probability that Joe is guilty?

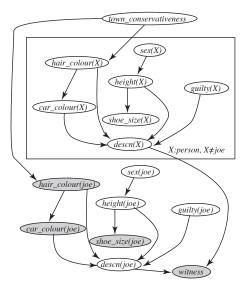
Background parametrized belief network



Observing information about Joe



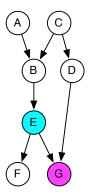
Observing Joe and the crime



Outline

- Lifted Inference
- Recursive Conditioning
- Lifted Recursive Conditioning

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$



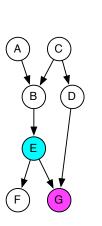
$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$P(E \land g)$$

$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$-$$

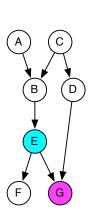


$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$P(E \land g) = \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$= \left(\sum_{D} P(D \mid C)P(g \mid ED)\right)$$



Lifted Inference De Raedt, Kersting, Natarajan, Poole

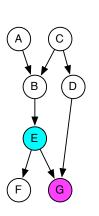
$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$P(E \land g) = \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$= \left(\sum_{A} P(A)P(B \mid AC) \right)$$

$$\left(\sum_{D} P(D \mid C)P(g \mid ED) \right)$$



$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$P(E \land g)$$

$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$= \sum_{C} \left(P(C) \left(\sum_{A} P(A)P(B \mid AC) \right) \right)$$

С

D

В

Е

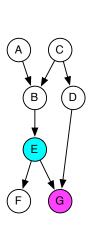
$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$P(E \land g)$$

$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$= \sum_{B} P(E \mid B) \sum_{C} \left(P(C) \left(\sum_{A} P(A)P(B \mid AC) \right) \right)$$



$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$P(E \land g) = \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$= \left(\sum_{F} P(F \mid E)\right)$$

$$\sum_{B} P(E \mid B) \sum_{C} \left(P(C) \left(\sum_{A} P(A)P(B \mid AC)\right)$$

$$\left(\sum_{D} P(D \mid C)P(g \mid ED)\right)\right)$$

- Variable elimination is the dynamic programming variant of recursive conditioning.
- Recursive Conditioning is the search variant of variable elimination
- They do the same additions and multiplications.
- Complexity $O(nr^t)$, for *n* variables, range size *r*, and treewidth *t*.

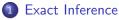
procedure *rc*(*Con* : context, *Fs* : set of factors): if $\exists v$ such that $\langle \langle Con, Fs \rangle, v \rangle \in cache$ return v else if $vars(Con) \not\subset vars(Fs)$ return $rc({X = v \in Con : X \in vars(Fs)}, Fs)$ else if $\exists F \in Fs$ such that $vars(F) \subseteq vars(Con)$ return $eval(F, Con) \times rc(Con, Fs \setminus \{F\})$ else if $Fs = Fs_1 \uplus Fs_2$ where $vars(Fs_1) \cap vars(Fs_2) \subseteq vars(Con)$ return $rc(Con, Fs_1) \times rc(Con, Fs_2)$ else select variable $X \in vars(Fs)$ $sum \leftarrow 0$ for each $v \in domain(X)$ $sum \leftarrow sum + rc(Con \cup \{X = v\}, Fs)$ cache \leftarrow cache $\cup \{\langle \langle Con, Fs \rangle, sum \rangle\}$ return sum

procedure *rc*(*Con* : context, *Fs* : set of factors): if $\exists v$ such that $\langle \langle Con, Fs \rangle, v \rangle \in cache$ return v else if $vars(Con) \not\subset vars(Fs)$ return $rc({X = v \in Con : X \in vars(Fs)}, Fs)$ else if $\exists F \in Fs$ such that $vars(F) \subseteq vars(Con)$ return $eval(F, Con) \times rc(Con, Fs \setminus \{F\})$ Evaluate else if $Fs = Fs_1 \uplus Fs_2$ where $vars(Fs_1) \cap vars(Fs_2) \subseteq vars(Con)$ return $rc(Con, Fs_1) \times rc(Con, Fs_2)$ else select variable $X \in vars(Fs)$ Branch $sum \leftarrow 0$ for each $v \in domain(X)$ $sum \leftarrow sum + rc(Con \cup \{X = v\}, Fs)$ cache \leftarrow cache $\cup \{\langle \langle Con, Fs \rangle, sum \rangle\}$ return sum

procedure *rc*(*Con* : context, *Fs* : set of factors): if $\exists v$ such that $\langle \langle Con, Fs \rangle, v \rangle \in cache$ Recall return v else if $vars(Con) \not\subset vars(Fs)$ Forget return $rc({X = v \in Con : X \in vars(Fs)}, Fs)$ else if $\exists F \in Fs$ such that $vars(F) \subseteq vars(Con)$ return $eval(F, Con) \times rc(Con, Fs \setminus \{F\})$ else if $Fs = Fs_1 \uplus Fs_2$ where $vars(Fs_1) \cap vars(Fs_2) \subseteq vars(Con)$ return $rc(Con, Fs_1) \times rc(Con, Fs_2)$ else select variable $X \in vars(Fs)$ $sum \leftarrow 0$ for each $v \in domain(X)$ $sum \leftarrow sum + rc(Con \cup \{X = v\}, Fs)$ cache \leftarrow cache $\cup \{\langle \langle Con, Fs \rangle, sum \rangle\}$ Remember return sum

procedure *rc*(*Con* : context, *Fs* : set of factors): if $\exists v$ such that $\langle \langle Con, Fs \rangle, v \rangle \in cache$ return v else if $vars(Con) \not\subset vars(Fs)$ return $rc({X = v \in Con : X \in vars(Fs)}, Fs)$ else if $\exists F \in Fs$ such that $vars(F) \subseteq vars(Con)$ return $eval(F, Con) \times rc(Con, Fs \setminus \{F\})$ else if $Fs = Fs_1 \uplus Fs_2$ where $vars(Fs_1) \cap vars(Fs_2) \subseteq vars(Con)$ return $rc(Con, Fs_1) \times rc(Con, Fs_2)$ Disconnected else select variable $X \in vars(Fs)$ $sum \leftarrow 0$ for each $v \in domain(X)$ $sum \leftarrow sum + rc(Con \cup \{X = v\}, Fs)$ cache \leftarrow cache $\cup \{\langle \langle Con, Fs \rangle, sum \rangle\}$ return sum

Outline



- Lifted Inference
- Recursive Conditioning
- Lifted Recursive Conditioning

Weighted Formula

- A Weighted formula is a triple $\langle C, V, t \rangle$ where
 - C is a set of inequality constraints on parameters,
 - V a formula on parametrized random variables
 - t number

Example:

. . .

 $\begin{array}{l} \langle \{X \neq Y, Y \neq \textit{donald} \}, \textit{likes}(X, Y) \land \textit{rich}(Y), 0.001 \rangle \\ \langle \{X \neq \textit{donald} \}, \textit{likes}(X, X) \land \textit{rich}(X), 0.1 \rangle \end{array}$

Lifted Recursive Conditioning

lrc(*Con*, *Fs*)

• *Con* is a set of assignments to random variables and counts to assignments of instances of relations. e.g.:

$$\{\neg a, \ \#_X f(X) \land g(X) = 7, \\ \#_X f(X) \land \neg g(X) = 5, \\ \#_X \neg f(X) \land g(X) = 18, \\ \#_X \neg f(X) \land \neg g(X) = 0\}$$

• Fs is a set of weighted formulae, e.g.,

$$\{ \langle \{\}, \neg a \land \neg f(X) \land g(X), 0.1 \rangle, \\ \langle \{\}, a \land \neg f(X) \land g(X), 0.2 \rangle, \\ \langle \{\}, f(X) \land g(Y), 0.3 \rangle, \\ \langle \{\}, f(X) \land h(X), 0.4 \rangle \}$$

Evaluating Weighted Formulae

Con:

$$\{\neg a, \ \#_X f(X) \land g(X) = 7, \\ \#_X f(X) \land \neg g(X) = 5, \\ \#_X \neg f(X) \land g(X) = 18, \\ \#_X \neg f(X) \land \neg g(X) = 0\}$$

Fs:

$$\{ \langle \{\}, \neg a \land \neg f(X) \land g(X), 0.1 \rangle, \\ \langle \{\}, a \land \neg f(X) \land g(X), 0.2 \rangle, \\ \langle \{\}, f(X) \land g(Y), 0.3 \rangle, \\ \langle \{\}, f(X) \land h(X), 0.4 \rangle \}$$

Irc(Con, Fs) returns:

Evaluating Weighted Formulae

Con:

$$\{\neg a, \ \#_X f(X) \land g(X) = 7, \\ \#_X f(X) \land \neg g(X) = 5, \\ \#_X \neg f(X) \land g(X) = 18, \\ \#_X \neg f(X) \land \neg g(X) = 0\}$$

Fs:

$$\{ \langle \{\}, \neg a \land \neg f(X) \land g(X), 0.1 \rangle, \\ \langle \{\}, a \land \neg f(X) \land g(X), 0.2 \rangle, \\ \langle \{\}, f(X) \land g(Y), 0.3 \rangle, \\ \langle \{\}, f(X) \land h(X), 0.4 \rangle \}$$

Irc(Con, Fs) returns:

 $0.1^{18} * 0.3^{12*25} * lrc(Con, \{\langle \{\}, f(X) \land h(X), 0.4 \rangle\})$

Branching

Con:

$$\{\neg a, \ \#_X f(X) \land g(X) = 7, \\ \#_X f(X) \land \neg g(X) = 5, \\ \#_X \neg f(X) \land g(X) = 18, \\ \#_X \neg f(X) \land \neg g(X) = 0\}$$

Fs:

$$\{\langle \{\}, f(X) \land h(X), 0.4 \rangle, \dots \}$$

Branching on *H* for the 7 "X" individuals s.th. $f(X) \land g(X)$: Irc(Con, Fs) =

Branching

Con:

$$\{\neg a, \ \#_X f(X) \land g(X) = 7, \\ \#_X f(X) \land \neg g(X) = 5, \\ \#_X \neg f(X) \land g(X) = 18, \\ \#_X \neg f(X) \land \neg g(X) = 0\}$$

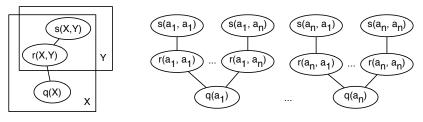
Fs:

$$\{\langle \{\}, f(X) \land h(X), 0.4 \rangle, \dots \}$$

Branching on *H* for the 7 "X" individuals s.th. $f(X) \land g(X)$: Irc(Con, Fs) =

$$\sum_{i=0}^{7} {7 \choose i} lrc(\{\neg a, \#_X f(X) \land g(X) \land h(X) = i, \\ \#_X f(X) \land g(X) \land \neg h(X) = 7 - i, \\ \#_X f(X) \land \neg g(X) = 5, \dots \}, Fs)$$

Recognizing Disconnectedness



Relational Model

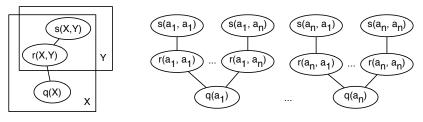
Grounding

Weighted formulae Fs:

$$\{ \langle \{\}, \{s(X, Y) \land r(X, Y)\}, t_1 \rangle \ \langle \{\}, \{q(X) \land r(X, Y)\}, t_2 \rangle \}$$

lrc(Con, Fs) =

Recognizing Disconnectedness



Relational Model

Grounding

Weighted formulae Fs:

$$\{ \langle \{\}, \{s(X, Y) \land r(X, Y)\}, t_1 \rangle \\ \langle \{\}, \{q(X) \land r(X, Y)\}, t_2 \rangle \}$$

$$lrc(Con, Fs) = lrc(Con, Fs\{X/c\})^n$$

...now we only have unary predicates

Simplifying Formulae

- So far, weighted formulae are not modified, only evaluated.
- Idea: branching creates new types (with disjoint populations)
 Example:

Consider a context where 7 "X" individuals have $f(X) \land g(X)$, For each *i* in [0, ..., 7] create variables:

- X_0 with population 7 i, all where $f(X) \wedge g(X) \wedge \neg h(X)$
- X₁ with population i, all where f(X) ∧ g(X) ∧ h(X) these populations are disjoint

Simplifying Formulae

- So far, weighted formulae are not modified, only evaluated.
- Idea: branching creates new types (with disjoint populations) Example:

Consider a context where 7 "X" individuals have $f(X) \land g(X)$, For each *i* in [0, ..., 7] create variables:

- X_0 with population 7 i, all where $f(X) \wedge g(X) \wedge \neg h(X)$
- X₁ with population *i*, all where f(X) ∧ g(X) ∧ h(X) these populations are disjoint
- Can evaluate, and simplify weighted clauses for each population:
 - $\langle \{\}, f(X_0) \land h(X_0) \land m(X_0), 0.2 \rangle \longrightarrow \text{removed}$
 - $\langle \{\}, f(X_0) \land \neg h(X_0), 0.2 \rangle \longrightarrow$ evaluates to 0.2^{7-i} .
 - $\langle \{\}, f(X_1) \land h(X_1) \land m(X_1), 0.2 \rangle \longrightarrow \langle \{\}, m(X_1), 0.2 \rangle$

Observations and Queries

- Observations become the initial context. Observations can be ground or lifted.
- P(q|obs) = rc(q∧obs, Fs)/(rc(q∧obs, Fs)+rc(¬q∧obs, Fs)) calls can share the cache
- "How many?" queries are also allowed

As the population size n of undifferentiated individuals increases:

- If grounding is polynomial instances must be disconnected
 lifted inference is constant in n (taking rⁿ for real r)
- Otherwise, for unary relations, grounding is exponential and lifted inference is polynomial.
- If non-unary relations become unary, above holds.
- Otherwise, ground an argument. Always exponentially better than grounding everything.

We can lift a model that consists just of

 $\langle \{\}, \{f(X) \land g(Z)\}, \alpha_4 \rangle$

We can lift a model that consists just of

 $\langle \{\}, \{f(X) \land g(Z)\}, \alpha_4 \rangle$

or just of

 $\langle \{\}, \{f(X,Z) \land g(Y,Z)\}, \alpha_2 \rangle$

We can lift a model that consists just of

 $\langle \{\}, \{f(X) \land g(Z)\}, \alpha_4 \rangle$

or just of

$$\langle \{\}, \{f(X, Z) \land g(Y, Z)\}, \alpha_2 \rangle$$

or just of

 $\langle \{\}, \{f(X, Z) \land g(Y, Z) \land h(Y)\}, \alpha_3 \rangle$

We can lift a model that consists just of

 $\langle \{\}, \{f(X) \land g(Z)\}, \alpha_4 \rangle$

or just of

$$\langle \{\}, \{f(X,Z) \land g(Y,Z)\}, \alpha_2 \rangle$$

or just of

$$\langle \{\}, \{f(X, Z) \land g(Y, Z) \land h(Y)\}, \alpha_3 \rangle$$

We cannot lift (still exponential) a model that consists just of: $\langle \{\}, \{f(X, Z) \land g(Y, Z) \land h(Y, W)\}, \alpha_3 \rangle$

We can lift a model that consists just of

 $\langle \{\}, \{f(X) \land g(Z)\}, \alpha_4 \rangle$

or just of

$$\langle \{\}, \{f(X,Z) \land g(Y,Z)\}, \alpha_2 \rangle$$

or just of

$$\langle \{\}, \{f(X,Z) \land g(Y,Z) \land h(Y)\}, \alpha_3 \rangle$$

We cannot lift (still exponential) a model that consists just of:

$$\langle \{\}, \{f(X,Z) \land g(Y,Z) \land h(Y,W)\}, \alpha_3 \rangle$$

or

$$\{\{\}, \{f(X,Z) \land g(Y,Z) \land h(Y,X)\}, \alpha_3 \}$$

Compilation

- The computation reduces to products and sums
- The structure can be determined at compile time
- Orders of magnitude faster than lifted recursive conditioning