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Why Exact Inference?

Why do we care about exact inference?

Gold standard

Size of problems amenable to exact inference is growing

Learning for inference

Basis for efficient approximate inference:

Rao-Blackwellization
Variational Methods
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Lifted Inference

Idea: treat those individuals about which you have the same
information as a block; just count them.

Use the ideas from lifted theorem proving - no need to ground.

Potential to be exponentially faster in the number of
non-differentialed individuals.

Relies on knowing the number of individuals (the population
size).
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Queries depend on population size

Suppose we observe:

Joe has purple hair, a purple car, and has big feet.

A person with purple hair, a purple car, and who is very tall
was seen committing a crime.

What is the probability that Joe is guilty?
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Background parametrized belief network

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)

guilty(X)

town_conservativeness

X:person
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Observing information about Joe

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)

guilty(X)

town_conservativeness

X:person, X=joe

sex(joe)

height(joe)

shoe_size(joe)

hair_colour(joe)

car_colour(joe)

guilty(joe)
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Observing Joe and the crime

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)

guilty(X)

town_conservativeness

X:person, X=joe

sex(joe)

height(joe)

shoe_size(joe)

hair_colour(joe)

car_colour(joe)

guilty(joe)

descn(X)

descn(joe)
witness
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Inference via factorization in graphical models

A C

B D

E

F G

P(E | g) =
P(E ∧ g)∑
E P(E ∧ g)

P(E ∧ g)

=
∑
F

∑
B

∑
C

∑
A

∑
D

P(A)P(B | AC )

P(C )P(D | C )P(E | B)P(F | E )P(g | ED)

=

(∑
F

P(F | E )

)
∑
B

P(E | B)
∑
C

(
P(C )

(∑
A

P(A)P(B | AC )

)
(∑

D

P(D | C )P(g | ED)

))
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Recursive Conditioning

Variable elimination is the dynamic programming variant of
recursive conditioning.

Recursive Conditioning is the search variant of variable
elimination

They do the same additions and multiplications.

Complexity O(nr t), for n variables, range size r , and
treewidth t.
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Recursive Conditioning

procedure rc(Con : context, Fs : set of factors):
if ∃v such that 〈〈Con,Fs〉 , v〉 ∈ cache

return v
else if vars(Con) 6⊆ vars(Fs)

return rc({X = v ∈ Con : X ∈ vars(Fs)},Fs)
else if ∃F ∈ Fs such that vars(F ) ⊆ vars(Con)

return eval(F ,Con)× rc(Con,Fs \ {F})
else if Fs = Fs1 ] Fs2 where vars(Fs1) ∩ vars(Fs2) ⊆ vars(Con)

return rc(Con,Fs1)× rc(Con,Fs2)
else select variable X ∈ vars(Fs)

sum← 0
for each v ∈ domain(X )

sum← sum + rc(Con ∪ {X = v},Fs)
cache ← cache ∪ {〈〈Con,Fs〉 , sum〉}
return sum
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Weighted Formula

A Weighted formula is a triple 〈C ,V , t〉 where

C is a set of inequality constraints on parameters,

V a formula on parametrized random variables

t number

Example:
〈{X 6= Y ,Y 6= donald}, likes(X ,Y ) ∧ rich(Y ), 0.001〉
〈{X 6= donald}, likes(X ,X ) ∧ rich(X ), 0.1〉
. . .

15 De Raedt, Kersting, Natarajan, Poole Lifted Inference
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Lifted Recursive Conditioning

lrc(Con,Fs)

Con is a set of assignments to random variables and counts to
assignments of instances of relations. e.g.:

{¬a, #X f (X ) ∧ g(X ) = 7,

#X f (X ) ∧ ¬g(X ) = 5,

#X¬f (X ) ∧ g(X ) = 18,

#X¬f (X ) ∧ ¬g(X ) = 0}

Fs is a set of weighted formulae, e.g.,

{ 〈{},¬a ∧ ¬f (X ) ∧ g(X ), 0.1〉 ,
〈{}, a ∧ ¬f (X ) ∧ g(X ), 0.2〉 ,
〈{}, f (X ) ∧ g(Y ), 0.3〉 ,
〈{}, f (X ) ∧ h(X ), 0.4〉}

16 De Raedt, Kersting, Natarajan, Poole Lifted Inference
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Evaluating Weighted Formulae

Con:

{¬a, #X f (X ) ∧ g(X ) = 7,

#X f (X ) ∧ ¬g(X ) = 5,

#X¬f (X ) ∧ g(X ) = 18,

#X¬f (X ) ∧ ¬g(X ) = 0}

Fs:

{ 〈{},¬a ∧ ¬f (X ) ∧ g(X ), 0.1〉 ,
〈{}, a ∧ ¬f (X ) ∧ g(X ), 0.2〉 ,
〈{}, f (X ) ∧ g(Y ), 0.3〉 ,
〈{}, f (X ) ∧ h(X ), 0.4〉}

lrc(Con,Fs) returns:

0.118 ∗ 0.312∗25 ∗ lrc(Con, {〈{}, f (X ) ∧ h(X ), 0.4〉})

17 De Raedt, Kersting, Natarajan, Poole Lifted Inference
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Branching

Con:

{¬a, #X f (X ) ∧ g(X ) = 7,

#X f (X ) ∧ ¬g(X ) = 5,

#X¬f (X ) ∧ g(X ) = 18,

#X¬f (X ) ∧ ¬g(X ) = 0}

Fs:

{ 〈{}, f (X ) ∧ h(X ), 0.4〉 , . . . }

Branching on H for the 7 “X” individuals s.th. f (X ) ∧ g(X ):
lrc(Con,Fs) =

7∑
i=0

(
7

i

)
lrc({¬a, #X f (X ) ∧ g(X ) ∧ h(X ) = i ,

#X f (X ) ∧ g(X ) ∧ ¬h(X ) = 7− i ,
#X f (X ) ∧ ¬g(X ) = 5, . . . },Fs)
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Recognizing Disconnectedness

q(X)

r(X,Y)

X

Y

q(a1)

r(a1, a1) r(a1, an)...

q(an)

r(an, a1) r(an, an)...

...

Relational Model Grounding

s(X,Y) s(a1, a1) s(a1, an) s(an, a1) s(an, an)

Weighted formulae Fs:

{ 〈{}, {s(X ,Y ) ∧ r(X ,Y )}, t1〉
〈{}, {q(X ) ∧ r(X ,Y )}, t2〉}

lrc(Con,Fs) =

lrc(Con,Fs{X/c})n
...now we only have unary predicates

19 De Raedt, Kersting, Natarajan, Poole Lifted Inference
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Simplifying Formulae

So far, weighted formulae are not modified, only evaluated.

Idea: branching creates new types (with disjoint populations)
Example:
Consider a context where 7 “X” individuals have f (X )∧ g(X ),
For each i in [0, . . . , 7] create variables:

X0 with population 7− i , all where f (X ) ∧ g(X ) ∧ ¬h(X )
X1 with population i , all where f (X ) ∧ g(X ) ∧ h(X )
these populations are disjoint

Can evaluate, and simplify weighted clauses for each
population:

〈{}, f (X0) ∧ h(X0) ∧m(X0), 0.2〉 −→ removed
〈{}, f (X0) ∧ ¬h(X0), 0.2〉 −→ evaluates to 0.27−i .
〈{}, f (X1) ∧ h(X1) ∧m(X1), 0.2〉 −→ 〈{},m(X1), 0.2〉

20 De Raedt, Kersting, Natarajan, Poole Lifted Inference
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Observations and Queries

Observations become the initial context.
Observations can be ground or lifted.

P(q|obs) = rc(q∧obs,Fs)/(rc(q∧obs,Fs)+rc(¬q∧obs,Fs))
calls can share the cache

“How many?” queries are also allowed

21 De Raedt, Kersting, Natarajan, Poole Lifted Inference
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Complexity

As the population size n of undifferentiated individuals increases:

If grounding is polynomial — instances must be disconnected
— lifted inference is constant in n (taking rn for real r)

Otherwise, for unary relations, grounding is exponential and
lifted inference is polynomial.

If non-unary relations become unary, above holds.

Otherwise, ground an argument.
Always exponentially better than grounding everything.

22 De Raedt, Kersting, Natarajan, Poole Lifted Inference
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What we can and cannot lift

We can lift a model that consists just of

〈{}, {f (X ) ∧ g(Z )}, α4〉

or just of

〈{}, {f (X ,Z ) ∧ g(Y ,Z )}, α2〉

or just of

〈{}, {f (X ,Z ) ∧ g(Y ,Z ) ∧ h(Y )}, α3〉

We cannot lift (still exponential) a model that consists just of:

〈{}, {f (X ,Z ) ∧ g(Y ,Z ) ∧ h(Y ,W )}, α3〉

or

〈{}, {f (X ,Z ) ∧ g(Y ,Z ) ∧ h(Y ,X )}, α3〉

23 De Raedt, Kersting, Natarajan, Poole Lifted Inference
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Compilation

The computation reduces to products and sums

The structure can be determined at compile time

Orders of magnitude faster than lifted recursive conditioning
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