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Overview

➤ Knowledge representation, logic, decision theory.

➤ Abduction + who chooses the assumptions?

➤ Logic + handle uncertainty using decision theory.

➤ Bayesian networks + rule-structured conditional

probability tables.

➤ Dynamical systems and logic.
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Knowledge Representation

problem

representation

solution

output

solve

compute

informal

formal
represent interpret

➤ Find compact / natural representations, exploit features

of representation for computational gain.

➤ Approximate the solution, not the problem!

➤ Simplicity.
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The problem: what should an agent do?

➤ It depends on its goals / background knowledge /

(experience) / observations.

➤ Two normative traditions:

➣ logic semantics (symbols have meaning), proofs

➣ decision / game theorytradeoffs under uncertainty

(use logic at the object-level, not the meta-level)
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Assumption-based reasoning

➤ Given background knowledge / factsF and

assumables / possible hypothesesH ,

➤ An explanationof g is a setD of assumables such that

F ∪ D 6|= false

F ∪ D |= g

➤ abductionis wheng is given and you wantD

➤ default reasoning / predictionis wheng is unknown
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Who chooses the assumptions?

➤ scepticaladversary chooses the assumptions

➤ credulousagent chooses what assumptions it likes

➤ probabilistic nature gets to choose assumptions

sceptical credulous probabilistic

prediction

abduction
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Independent Choice Logic

➤ C, the choice spaceis a set of alternatives.

An alternative is a set of atomic choices.

An atomic choiceis a ground atomic formula.

An atomic choice can only appear in one alternative.

➤ F, the facts is an acyclic logic program.

No atomic choice unifies with the head of a rule.
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Example: cascaded inverters

input i1 i2

C = { {ok(i1), shorted(i1), broken(i1)}
{ok(i2), shorted(i2), broken(i2)}
{input(on), input(off )}}

F = { out(i1, on) ← ok(i1) ∧ input(off ),

out(i1, V) ← shorted(i1) ∧ input(V),

out(i1, off ) ← broken(i1), · · ·}
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Abductive Characterisation of ICL

➤ The atomic choices are assumable.

➤ The elements of an alternative are mutually exclusive.

➤ Each alternative is controlled by an agent. They get to

choose the elements of the alternative.

Note that:

➤ The choices are independent; the facts provide no

constraints on choices.

➤ We can do both abduction and prediction.
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Nature choosing assumptions

➤ Have a probability distribution over alternatives

controlled by nature.

➤ For every alternativeχ ∈ C that is controlled by nature,

there is a function:

P0 : χ → [0, 1]
such that

1 =
∑

α∈χ

P0(α)
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Independent choice logic theory

C is achoice space

F, thefacts, is an acyclic logic program such that no

atomic choice unifies with the head of any rule.

A is a finite set of agents. There is a distinguished agent 0

called “nature”.

controller is a function fromC → A. Let

Ca = {χ ∈ C : controller(χ) = a}.
P0 is a function∪C0 → [0, 1] such that∀χ ∈ C0,∑

α∈χ P0(α) = 1.
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Probabilities of propositions
Suppose the rules are disjoint

a ← b1

· · ·
a ← bk

bi ∧ bj for i 6= j can’t be true

We can define:

P(g) =
∑

E is a minimal explanation ofg
P(E)

P(E) =
∏

h∈E

P0(h)

P satisfies the axioms of probability.
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Conditional Probabilities

P(g|e) = P(g ∧ e)

P(e)

←− explaing ∧ e

←− explaine

➤ Given evidencee, explaine then try to explaing from

these explanations.

➤ The explanations ofg ∧ eare the explanations ofe

extended to also explaing.

➤ Probabilistic conditioning is abduction + prediction.
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Logic for reasoning

➤ How can we reconcile the normative arguments for logic

and decision theory?

➤ Logic provides:

➣ Symbols have denotation.

➣ Way to determine truth of sentences (semantics).

➣ Proof procedures.

. . . so we need at least the first order predicate calculus.
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Logic and decisions

➤ Claim: disjunction is a stupid way to handle uncertainty.

➤ Idea: lets try to handleall uncertainty using Bayesian

decision theory / game theory.

➤ We want: the strongest logic that includes no

uncertainty. Let’s use acyclic logic programs (including

negation as failure).

➤ All we have lost is the ability to handle uncertainty using

disjunction!
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Game theory

The strategic form of a game[von Neumann and

Morgenstern, 1953]

➤ Multiple agents each get to choose a strategy.

➤ Nature has a probability distribution over strategies.

➤ A complete game (choice by every agent including

nature) has a utility.

➤ Each player chooses its strategy to maximize its utility.

We use a logic program to specify the consequences of

choices.
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Semantics of ICL

➤ A total choiceis a set containing exactly one element of

each alternative inC.

➤ For each total choiceτ there is apossible worldwτ .

➤ Formulaf is true in wτ (writtenwτ |= f ) if f is true in

the (unique) stable model ofF ∪ τ .
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Meaningless Example

C = {{c1, c2, c3}, {b1, b2}}
F = { f ← c1 ∧ b1, f ← c3 ∧ b2,

d ← c1, d ← ∼c2 ∧ b1,

e ← f , e ← ∼d,

u(a1, 5) ← ∼e, u(a1, 0) ← e∧ f ,

u(a1, 9) ← e∧ ∼f ,

u(a2, 7) ← d, u(a2, 2) ← ∼d}
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There are 6 possible worlds:

w1 |= c1 b1 f d e u(a1, 0) u(a2, 7)

w2 |= c2 b1 ∼f ∼d e u(a1, 9) u(a2, 2)

w3 |= c3 b1 ∼f d ∼e u(a1, 5) u(a2, 7)

w4 |= c1 b2 ∼f d ∼e u(a1, 5) u(a2, 7)

w5 |= c2 b2 ∼f ∼d e u(a1, 9) u(a2, 2)

w6 |= c3 b2 f ∼d e u(a1, 0) u(a2, 2)
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Abductive and semantic view

➤ The explanations ofg form a concise (DNF) description

of the worlds whereg is true.

➤ The abductive characterisation is sound and complete

with respect to the semantics.

➤ The possible worlds view shows how we can handle

negation as failure and non-disjoint rules.

➤ The abductive characterisation can be extended to

include negation as failure and non-disjoint rules.
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Probabilities of Propositions

➤ When all choices are made by nature (& finiteC):

P(wτ ) =
∏

a∈τ

P0(a)

P(f ) =
∑

τ :wτ |=f

P(wτ )

➤ Theorem: the probabilities from the semantic view

correspond to the probabilities in the abductive view.
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Power of ICL
Surely independent hypotheses aren’t powerful

enough for real applications.

➤ No! Independent hypotheses can represent any

probability distribution.

➤ The ICL can represent any probability represented in a

Bayesian network.

➤ The ICL is more compact than a Bayesian network.
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Factorization of probability distribution

➤ Bayesian networks provide a decomposition of a joint

probability.

➤ Totally order the variables,x1, . . . , xn.

P(x1, . . . , xn) =
n∏

i=1

P(xi |xi−1 . . . x1)

=
n∏

i=1

P(xi |πxi )

➤ πxi are parentsof xi : set of variables such that the

predecessors are independent ofxi given its parents.
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(Bayesian) Belief Networks

➤ Graphical representation of dependence.

➤ DAGs with nodes representing random variables.

➤ Arcs from parents of a node into the node.

➤ If b1, · · · , bk are the parents ofa, we have an associated

conditional probability table

P(a|b1, · · · , bk)
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Bayesian Network for Overhead Projector

projector_lamp_on

screen_lit_up

lamp_works

projector_switch_onpower_in_wire

power_in_building projector_plugged_in

mirror_working

room_light_on

light_switch_on

alan_reading_book

ray_says_"screen is dark"

ray_is_awake

power_in_projector
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Bayesian networks as logic programs

projector_lamp_on ←
power_in_projector∧
lamp_works∧
projector_working_ok. ←− atomic choice

chosen by nature
projector_lamp_on ←

power_in_projector∧
∼lamp_works∧
working_with_faulty_lamp.
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Probabilities of hypotheses

P0(projector_working_ok)

= P(projector_lamp_on |
power_in_projector∧ lamp_works)

— provided as part of Bayesian network
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Mapping Bayesian networks into ICL

b1 bk

a

...

➤ Translated into the rules

a(V) ← b1(V1) ∧ · · · ∧ bk(Vk) ∧ h(V, V1, . . . , Vk).

➤ and the alternatives

∀v1 · · · ∀vk{h(v, v1, . . . , vk)|v ∈ domain(a)} ∈ C
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Bayesian networks and the ICL

➤ The probabilities for the Bayesian network and the ICL

translation are identical.

➤ In the translation, the ICL requires the same number of

probabilities as the Bayesian network.

➤ Often the ICL theory is more compact than the

corresponding conditional probability table.

➤ The probabilistic part of the ICL can be seen as a

representation for the independence of Bayesian

networks.
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What can we learn from the mapping?

ICL adds

➤ rule-structured conditional probability tables

➤ logical variables and negation as failure in rules

➤ arbitrary computation in the network

➤ choices by other agents

➤ algorithms

Bayesian networks add

➤ theory of causation

➤ algorithms

➤ ties to MDPs, Neural networks, …
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Where to now?

Algorithms:

➤ Extend model-based diagnosis algorithms to Bayes nets

➤ Extend Bayes net algorithms to exploit rule-structure

Decisions:

➤ Choices make by various agents

➤ Utility

➤ Actions contingent on observations (conditional plans)
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Dynamical systems:

➤ Represent change using the situation calculus

➤ Logic-based partially observable Markov decision

processes

Learning:

➤ represent the task of learning in the ICL

➤ combining inductive logic programming and Bayesian

network (and neural network) learning
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Decision Theory

➤ An agent makes choices to maximize its expected utility.

➤ What an agent should do now depends on what it will do

in the future.

➤ What an agent will do in the future depends on what it

will observe.

➤ An agent adopts a policy (strategy), a function from

observations (and past actions) into actions.
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Sequential decision problem

test treat

results

disease

utility
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Representing the decision problem

You represent the problem with rules such as:

result(none) ← ∼test

result(positive) ← test∧ disease∧ ∼false_neg.

result(positive) ← test∧ ∼disease∧ false_pos.

utility(20) ← test∧ disease∧ treat.

A policy is something like:

test.

treat ← result(positive).

All of these rules imply an expected utility.
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Example: a simple robot domain

carrying

at(robot)

at(key)

sense
at_key

do

carrying

at(robot)

at(key)
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Axiomatising the simple robot domain

carrying(key, T + 1) ←
do(pickup(key), T) ∧
at(robot, Pos, T) ∧ at(key, Pos, T) ∧
pickup_succeeds(T).

carrying(key, T + 1) ←
do(A, T) ∧
carrying(key, T) ∧
A 6= putdown(key) ∧ A 6= pickup(key) ∧
keeps_carrying(key, T).
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Alternatives

∀T {pickup_succeeds(T), pickup_fails(T)} ∈ C0

P0(pickup_succeeds(T)) is the probability the robot is

carrying the key after thepickup(key) action when it was at

the same position as the key, and wasn’t carrying the key.

∀S {keeps_carrying(key, T), drops(key, T)} ∈ C0
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Imperfect Sensors
A sensor is symptomatic of what is true in the world.

sense(at_key, T) ←
at(robot, P, T) ∧
at(key, P, T) ∧
sensor_true_pos(T).

sense(at_key, T) ←
at(robot, P1, T) ∧
at(key, P2, T) ∧
P1 6= P2 ∧
sensor_false_pos(T).
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Utility Axioms
Utility complete if ∀wτ∀T, there exists uniqueU such that

wτ |= utility(U, T)

utility(R+ P, T) ←
prize(P, T) ∧
resources(R, T).

prize(−1000, T) ← crashed(T).

prize(1000, T) ← in_lab(T) ∧ ∼crashed(T).

prize(0, T) ← ∼in_lab(T) ∧ ∼crashed(T).
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resources(200, s0).

resources(R− Cost, T + 1) ←
do(goto(To, Route), T) ∧
at(robot, From, T) ∧
pathcost(From, To, Route, Cost) ∧
resources(R, T).

resources(R− 10, T + 1) ←
do(A, T) ∧
∼gotoaction(A) ∧
resources(R, T).

gotoaction(goto(Pos, T)).
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Example Policy

do(pickup(key), T) ←
sense(at_key, T) ∧
∼carrying(key, T).

do(goto(door1, direct), T) ←
carrying(key, T).

do(goto(key_cupboard, direct), T) ←
∼sense(at_key, T) ∧
∼carrying(key, T).
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Conclusions

➤ ICL is a representation that combines logic and Bayesian

decision theory / game theory.

➤ Generalises acyclic logic programs, Bayesian networks,

the strategic form of a game, …

➤ All rules can be interpreted logically. All numbers can be

interpreted as probabilities.

➤ It’s (reasonably) simple.

➤ Applications: diagnosis, robot control, multimedia

presentation, user modelling, …
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