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Knowledge representation, logic, decision theory.

| Abduction + who chooses the assumptions?

Logic + handle uncertainty using decision theory.

Bayesian networks + rule-structured conditional
probability tables.

Dynamical systems and logic.




Knowledge Representati

interpret _Informal

L] Find compact / natural representations, exploit feature
of representation for computational gain.

L] Approximate the solution, not the problem!

Ll Simplicity.




The problem: what should an agent ¢

L1 It depends on its goals / background knowledge /
(experience) / observations.

L] Two normative traditions:
L1 logic semantics (symbols have meaning), proofs

L] decision / game theoryradeoffs under uncertainty

(use logic at the object-level, not the meta-level)




Assumption-based reasoni

[l Given background knowledge / facF and
assumables / possible hypothe H 3

L1 An explanationof g is a setD of assumables such that

FUD
FUD

£ false

— 0

L] abductionis whengis given and you wand

L1 default reasoning / predictiois wheng is unknown



Who chooses the assumptio

L1 scepticaladversary chooses the assumptions

[l credulousagent chooses what assumptions it likes

[] probabilistic nature gets to choose assumptions

sceptical

credulous

probabillistic

prediction

abduction




L] C, the choice spacds a set of alternatives.

An alternativeis a set of atomic choices.
An atomic choiceis a ground atomic formula.
An atomic choice can only appear in one alternative.

L] F, the facts is an acyclic logic program.
No atomic choice unifies with the head of a rule.




Example: cascaded inverte

iInput [il [ 2

{ok(i1), shortediq), broken(iq)}
{ok(i»), shortediy), brokeni»)}
{input(on), input(off)}}

out(iq, on) < 0ok(i1) A input(off),
out(i1, V) < shortediq) A input(V),
out(i1, off) < broker(iy), - - -}



Abductive Characterisation of IC

The atomic choices are assumable.

The elements of an alternative are mutually exclusive.

Each alternative is controlled by an agent. They get to
choose the elements of the alternative.

Note that:

L] The choices are independent; the facts provide no
constraints on choices.

L] We can do both abduction and prediction.




Nature choosing assumptic

L] Have a probability distribution over alternatives
controlled by nature.

L] For every alternativer € C that is controlled by nature,
there is a function:

Po: x — [0, 1]

such that

1= Z Po(a)

aEX




Independent choice logic thec

C is achoice space

F, thefacts, is an acyclic logic program such that no
atomic choice unifies with the head of any rule.

A s a finite set of agents. There is a distinguished agenti
called “nature”.

controller i1s a function fromC — A. Let
Ca= {x € C: controller(y) = a}.

Po is a functionuCqg — [0, 1] such thatvy € Cy,
> aey Pola) = 1.
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Probabillities of propositio

Suppose the rules are disjoint

a < b]_
bi Ay fori # ) can't be true
a < bk

We can define:

P(g) = > P(E)

E is a minimal explanation of

PE) = [ [ Po(h)
P satisfies the axioms of probability.
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Conditional Probabillitie

P(gne) <«—explaingAe

P(gle) =

P(€  «— explaine

Given evidence, explaine then try to explairg from
these explanations.

The explanations af A e are the explanations @f
extended to also explaop

Probabillistic conditioning is abduction + prediction.




Logic for reasoning

How can we reconcile the normative arguments for log
and decision theory?

Logic provides:

Symbols have denotation.

Way to determine truth of sentences (semantics).

Proof procedures.

... SO we need at least the first order predicate calculug.




Logic and decision

[ Claim: disjunction is a stupid way to handle uncertaintfl

L] Idea: lets try to handleall uncertainty using Bayesian
decision theory / game theory.

L] We want: the strongest logic that includes no
uncertainty. Let’s use acyclic logic programs (including
negation as failure).

L1 All we have lost is the ability to handle uncertainty usin
disjunction!




The strategic form of a gam¢von Neumann and
Morgenstern, 1953]

Multiple agents each get to choose a strategy.

Nature has a probability distribution over strategies.

A complete game (choice by every agent including
nature) has a utility.

L] Each player chooses its strategy to maximize its utility.

We use a logic program to specify the consequences of
choices.




Semantics of IC

L] A total choiceis a set containing exactly one element ¢
each alternative I&.

L] For each total choice there is ¢ possible worldw; .

[l Formulaf is true in w; (writtenw;, = f) if f is true in
the (unique) stable model 6fU .




Meaningless Examp

C = {{c1, C2, c3}, {b1, b2}}

F={f < cyADby, f < c3 A by,
d < ¢y, d < ~C> A by,
e« f, e «— ~d,
uag, 5 <« ~e, u@a, 0) < enf,

ua, 9) < en ~f,

u(ap, 7) < d, u(ap, 2) < ~d}
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There are 6 possible worlds:

~d




Abductive and semantic vie

The explanations af form a concise (DNF) description
of the worlds wherg is true.

The abductive characterisation is sound and complete
with respect to the semantics.

The possible worlds view shows how we can handle
negation as failure and non-disjoint rules.

The abductive characterisation can be extended to
Include negation as failure and non-disjoint rules.




Probabillities of Propositio

L] When all choices are made by nature (& fin@g
Pw.) = | [ Po(a)

act

Pf)= )  Pw)

T :W; =1

L] Theorem: the probabilities from the semantic view
correspond to the probabilities in the abductive view.




Power of IC

Surely independent hypotheses aren’t powerful
enough for real applications.

[1 No! Independent hypotheses can represent any
probability distribution.

[l The ICL can represent any probability represented in &
Bayesian network.

L] The ICL is more compact than a Bayesian network.




Factorization of probabillity distributic

Bayesian networks provide a decomposition of a joint
probability.

Totally order the variablexy, ..., X,.

P(X]_, c o oy Xn)

Ty, are parentsof x;: set of variables such that the
predecessors are independengiafiven its parents.




GEVESE RS RN EIY ey

Graphical representation of dependence.
DAGs with nodes representing random variables.
Arcs from parents of a node into the node.

If by, ---, bk are the parents @&, we have an associated
conditional probability table
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Bayesian Network for Overhead Projec

power_in_building) (projector_plugged_in
@Dy [ Gover i

alan_reading_boo}

ray says "screen is dark"




Bayesian networks as logic progre

projector lamp on <«
pOwWer In_projector A

amp wWorksa

projector working ok. «— atomic choice

chosen by nature
projector lamp on «

power in_projector A
~lamp worksa

working with_faulty lamp.




Probabillities of hypothest

Po(projector working ok)
= P(projector lamp on|
power in_projector A lamp works

— provided as part of Bayesian network




Mapping Bayesian networks into IC

®_©

| ] Translated into the rules
a(V) <« b1(V1) VANERICIRIVAN bk(Vk) A\ h(V, V1, ..., V).

|1 and the alternatives

Yvi---YWh(v, v1, ..., V)|V e domaina)} € C




Bayesian networks and the I(

The probabilities for the Bayesian network and the IC
translation are identical.

In the translation, the ICL requires the same number o
probabilities as the Bayesian network.

Often the ICL theory is more compact than the
corresponding conditional probability table.

The probabilistic part of the ICL can be seen as a
representation for the independence of Bayesian
networks.




What can we learn from the mappl

ICL adds

| rule-structured conditional probability tables
logical variables and negation as failure in rules
arbitrary computation in the network

choices by other agents

algorithms

Bayesian networks add

theory of causation

algorithms

ties to MDPs, Neural networks, ...




Algorithms:

L] Extend model-based diagnosis algorithms to Bayes ndlis
| Extend Bayes net algorithms to exploit rule-structure
Decisions:

Choices make by various agents

Utility

| Actions contingent on observations (conditional plans)




Dynamical systems:
L] Represent change using the situation calculus

L] Logic-based partially observable Markov decision
processes

Learning:

Ll represent the task of learning in the ICL

L] combining inductive logic programming and Bayesian
network (and neural network) learning




An agent makes choices to maximize its expected utilig.

What an agent should do now depends on what it will @
in the future.

What an agent will do in the future depends on what it
will observe.

An agent adopts a policy (strategy), a function from
observations (and past actions) into actions.
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Sequential decision proble

disease




Representing the decision probl

You represent the problem with rules such as:

resu

resu

resu

tthone <« ~test
t(positive < testA disease\ ~false neg

t(positive < testA ~diseasen false pos

utility (20) < testA diseasen treat.

A policy is something like:

test

treat < result(positive.

All of these rules Imply an expected utility.




Example: a simple robot dome

sense
at_ke

carrying » ( @

/
at(robot




Axiomatising the simple robot dome

carrying(key, T + 1) «
do(pickupkey, T) A
at(robot, Pos T) A at(key, Pos T) A
pickup succeeddl).

carryinglkey, T + 1) «
do(A, T) A
carrying(key, T) A
A #£ putdowrikey) A A #£ pickupkey) A
keepscarrying(key, T).




Alternatives

VT {pickup succeedd ), pickup fails(T)} € Cqg
Po(pickup succeedd)) is the probability the robot is

carrying the key after thpickupkey action when it was at
the same position as the key, and wasn’t carrying the key.

VS {keepscarrying(key, T), dropgkey, T)} € Co




Imperfect Senso

A sensor Is symptomatic of what is true in the world.

senséat key T) «
at(robot, P, T) A
at(key, P, T) A
sensor true poqT).

senséat key T) «
at(robot, P1, T) A
at(key, P, T) A
P1# P> A
sensor false pogT).




Utility Axioms

Utility complete if Yw, VT, there exists unique such that
w; = utility(U, T)

utility(R+ P, T) <«
prizelP, T) A

resourcesik, T).

prize(—100Q T) <« crashedT).
prize(100Q T) <« in_lab(T) A ~crashedT).
prize(0, T) < ~in_lab(T) A ~crashedT).




resourceg?200, 59).

resourcesR — Cost T + 1) <
do(goto(To, Routg, T) A
at(robot, From, T) A
pathcostFrom, To, Route Cost A
resourcegik, T).

resourcesR— 10, T + 1) «
do(A, T) A
~gotoactiorfA) A
resourcesik, T).

gotoactiorigoto(Pos T)).




Example Polic

do(pickuplkey), T) <
senséat_key, T) A
~carrying(key, T).

do(goto(doorl, direct), T) <«
carrying(key, T).

do(goto(key cupboard direct), T) <«

~senséat _key T) A
~carrying(key, T).



Conclusion:

ICL Is a representation that combines logic and Bayesgn
decision theory / game theory.

Generalises acyclic logic programs, Bayesian networkf,
the strategic form of a game, ...

All rules can be interpreted logically. All numbers can [
Interpreted as probabilities.

It's (reasonably) simple.

Applications: diagnosis, robot control, multimedia
presentation, user modelling, ...
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