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Logic and Probability Inference Weighted Existence

There is a real world with real structure. The
program of mind has been trained on vast interaction
with this world and so contains code that reflects the
structure of the world and knows how to exploit it. This
code contains representations of real objects in the world
and represents the interactions of real objects. . . .

You exploit the structure of the world to make
decisions and take actions. Where you draw the line on
categories, what constitutes a single object or a single
class of objects for you, is determined by the program of
your mind, which does the classification. This
classification is not random but reflects a compact
description of the world, and in particular a description
useful for exploiting the structure of the world.

Eric Baum, What is Thought?, 2004, pages 169-170
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AI: computational agents that act intelligently

What should 
an agent do?

Logic Probability

Ontologies

Knowledge Representation

Learning

Relations

Preferences/Utilities

Decision Theory

Inference
Knowledge Aquisition

Perceiving

Game theory

Acting

Modelling

Data

Foundations

Prior Knowledge

InputsTasks

Hypotheses

Computation

Diagnosis
Observations

Dynamical Systems

Abilities

Statistics

Design
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Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Logic Programs

2 Lifted Inference
Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning

3 Undirected models, Directed models, and Weighted Formulae

4 Existence and Identity Uncertainty
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First-order Predicate Calculus

The world (we want to represent) is made up of
individuals (things) with relationships among them.

There isn’t anything else!

Classical (first order) logic lets us represent:

individuals in the world

relations amongst those individuals

conjunctions, disjunctions, negations of relations

quantification over individuals
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Why Probability?

There is lots of uncertainty about the world, but agents still
need to act.

Predictions are needed to decide what to do:

definitive predictions: you will be run over tomorrow
point probabilities: probability you will be run over tomorrow is
0.002 if you are not careful and 0.000001 if you are careful.
probability ranges: you will be run over with probability in
range [0.001,0.34]

Acting is gambling: agents who don’t use probabilities will
lose to those who do — Dutch books.

Probabilities can be learned from data.
Bayes’ rule specifies how to combine data and prior
knowledge.

6 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Relational Probabilistic Models Probabilistic Logic Programs

Statistical Relational AI

Propositional
Logic

Predicate
Calculus Probability

Relational
Probabilistic

Models Measures over 
possible worlds+

Conditioning

Logical Variables +
Quantification
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Bayes’ Rule

Probability provides a calculus for how knowledge (observations)
affects belief.

P(h|e) = P(e|h)  P(h)
P(e)

Likelihood Prior

Normalizing
constant

What if e is a patient’s electronic health record and h is the
effect of a particular treatment on a particular patient?
What if e is the electronic health records for all of the people
in the province?
What if e is a collection of student records in a university?
What if e is everything known about the geology of Earth?
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Example Observation, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Slope

[Clinton Smyth, Georeference Online.]
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Example Observation, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Structure

[Clinton Smyth, Georeference Online.]
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Relational Learning

Machine learning typically assumes informative feature values.
But often the values are names of individuals.

It is the properties of these individuals and their relationship
to other individuals that needs to be learned.

Relational learning has been studied under the umbrella of
“Inductive Logic Programming” as the representations were
traditionally logic programs.
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Example: trading agent

What does Joe like?

Individual Property Value

joe likes resort 14
joe dislikes resort 35
. . . . . . . . .
resort 14 type resort
resort 14 near beach 18
beach 18 type beach
beach 18 covered in ws
ws type sand
ws color white
. . . . . . . . .
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Example: trading agent

Possible hypothesis that could be learned:

“Joe likes resorts that are near sandy beaches.”

prop(joe, likes,R)←
prop(R, type, resort) ∧
prop(R, near ,B) ∧
prop(B, type, beach) ∧
prop(B, covered in, S) ∧
prop(S , type, sand).

But we want probabilistic predictions.

14 David Poole Logic, Probability and Computation
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Example: Predicting Relations

Student Course Grade

s1 c1 A
s2 c1 C
s1 c2 B
s2 c3 B
s3 c2 B
s4 c3 B
s3 c4 ?
s4 c4 ?

Students s3 and s4 have the same averages, on courses with
the same averages.

Which student would you expect to better?
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From Relations to Bayesian Belief Networks

Gr(s1, c1)
I(s1)

I(s2)

I(s3)

Gr(s2, c1)

Gr(s1, c2)

Gr(s2, c3)

D(c1)

D(c2)

I(s4)

D(c3)

D(c4)

Gr(s3, c2)

Gr(s4, c3)

Gr(s4, c4)

Gr(s3, c4)

I (S) D(C ) Gr(S ,C )
A B C

true true 0.5 0.4 0.1
true false 0.9 0.09 0.01
false true 0.01 0.09 0.9
false false 0.1 0.4 0.5

P(I (S)) = 0.5
P(D(C )) = 0.5

“parameter sharing”

http://artint.info/code/aispace/grades.xml
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Example: Predicting Relations
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Plate Notation

C

S

Gr(S,C)

I(S) D(C)

S , C logical variable representing students, courses

the set of individuals of a type is called a population

I (S), Gr(S ,C ), D(C ) are parametrized random variables

Grounding:

for every student s, there is a random variable I (s)

for every course c , there is a random variable D(c)

for every s, c pair there is a random variable Gr(s, c)

all instances share the same structure and parameters

18 David Poole Logic, Probability and Computation
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Plate Notation

C

S

Gr(S,C)

I(S) D(C)

If there were 1000 students and 100 courses:
Grounding contains

1000 I (s) variables
100 D(c) variables
100000 Gr(s, c) variables

total: 101100 variables

Numbers to be specified to define the probabilities:
1 for I (S), 1 for D(C ), 8 for Gr(S ,C ) = 10 parameters.

19 David Poole Logic, Probability and Computation
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Exchangeability

Before we know anything about individuals, they are
indistinguishable, and so should be treated identically.
exchangeability — names can be exchanged and the model
doesn’t change.

We model uncertainty about:

Properties of individuals

Relationships among individuals

How properties and relations interrelate

Identity (equality) of individuals

Existence (and number) of individuals

20 David Poole Logic, Probability and Computation
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Plate Notation for Learning Parameters

T

H(T)

!

H(t1)

!

H(t2) H(tn)...

tosses t1, t2…tn

T is a

logical variable representing tosses of a thumb tack

H(t) is a Boolean variable that is true if toss t is heads.

θ is a random variable representing the probability of heads.

Range of θ is {0.0, 0.01, 0.02, . . . , 0.99, 1.0} or interval [0, 1].

P(H(ti )=true|θ=p) = p

Independence: for i 6= j , H(ti ) is independent of H(tj) given
θ: i.i.d. or independent and identically distributed.

21 David Poole Logic, Probability and Computation
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Parametrized belief networks

Allow random variables to be parametrized. interested(X )

Parameters correspond to logical variables. X
logical variables can be drawn as plates.

Each logical variable is typed with a population. X : person

A population is a set of individuals.

Each population has a size. |person| = 1000000

Parametrized belief network means its grounding: an instance
of each random variable for each assignment of an individual
to a logical variable. interested(p1) . . . interested(p1000000)

Instances are independent (but can have common ancestors
and descendants).

22 David Poole Logic, Probability and Computation
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Parametrized Bayesian networks / Plates

X

r(X)

Individuals:
i1,...,ik

r(i1) r(ik)...+

Parametrized Bayes Net:

Bayes Net

23 David Poole Logic, Probability and Computation
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Parametrized Bayesian networks / Plates (2)

X

r(X)

Individuals:
i1,...,ik

s(i1) s(ik)...s(X)

t

q

r(i1) r(ik)...
q

t
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Creating Dependencies

Instances of plates are independent, except by common parents or
children.

X
r(X)

q

r(i1) r(ik)....
q

Common
Parents

X
r(X)

q

r(i1) r(ik)....
q

Observed
Children

25 David Poole Logic, Probability and Computation
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Overlapping plates

Person

likes

young
genre

Movie

l(s,r)

y(s)

y(c)

y(k) l(c,r)

l(k,r)

l(s,t)

l(c,t)

l(k,t)

g(r) g(t)

Relations:

likes(P,M), young(P), genre(M)
likes is Boolean, young is Boolean,
genre has range {action, romance, family}

Three people: sam (s), chris (c), kim (k)
Two movies: rango (r), terminator (t)
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Overlapping plates

Person

likes

young
genre

Movie

Relations: likes(P,M), young(P), genre(M)

likes is Boolean, young is Boolean, genre has range
{action, romance, family}
If there are 1000 people and 100 movies,
Grounding contains:

100,000 likes + 1,000 age + 100 genre
= 101,100

random variables

How many numbers need to be specified to define the
probabilities required?
1 for young , 2 for genre, 6 for likes = 9 total.

27 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Relational Probabilistic Models Probabilistic Logic Programs

Overlapping plates

Person

likes

young
genre

Movie

Relations: likes(P,M), young(P), genre(M)

likes is Boolean, young is Boolean, genre has range
{action, romance, family}
If there are 1000 people and 100 movies,
Grounding contains: 100,000 likes + 1,000 age + 100 genre
= 101,100 random variables

How many numbers need to be specified to define the
probabilities required?

1 for young , 2 for genre, 6 for likes = 9 total.

27 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Relational Probabilistic Models Probabilistic Logic Programs

Overlapping plates

Person

likes

young
genre

Movie

Relations: likes(P,M), young(P), genre(M)

likes is Boolean, young is Boolean, genre has range
{action, romance, family}
If there are 1000 people and 100 movies,
Grounding contains: 100,000 likes + 1,000 age + 100 genre
= 101,100 random variables

How many numbers need to be specified to define the
probabilities required?
1 for young , 2 for genre, 6 for likes = 9 total.

27 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Relational Probabilistic Models Probabilistic Logic Programs

Representing Conditional Probabilities

P(likes(P,M)|young(P), genre(M)) — parameter sharing —
individuals share probability parameters.

P(happy(X )|friend(X ,Y ),mean(Y )) — needs aggregation —
happy(a) depends on an unbounded number of parents.

There can be more structure about the individuals. . .

28 David Poole Logic, Probability and Computation
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Example: Aggregation

x

Shot(x,y)

Has_motive(x,y)

Someone_shot(y) y

Has_opportunity(x,y)

Has_gun(x)

29 David Poole Logic, Probability and Computation
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Exercise #1

For the relational probabilistic model:

X

cb

a

Suppose the the population of X is n and all variables are Boolean.

(a) How many random variables are in the grounding?

(b) How many numbers need to be specified for a tabular
representation of the conditional probabilities?

30 David Poole Logic, Probability and Computation
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Exercise #2

For the relational probabilistic model:

X

bc

a

d

Suppose the the population of X is n and all variables are Boolean.

(a) Which of the conditional probabilities cannot be defined as a
table?

(b) How many random variables are in the grounding?

(c) How many numbers need to be specified for a tabular
representation of those conditional probabilities that can be
defined using a table? (Assume an aggregator is an “or”
which uses no numbers).

31 David Poole Logic, Probability and Computation
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Exercise #3

For the relational probabilistic model:

Movie

Person

saw
urban

alt

profit

Suppose the population of Person is n and the population of
Movie is m, and all variables are Boolean.

(a) How many random variables are in the grounding?

(b) How many numbers are required to specify the conditional
probabilities? (Assume an “or” is the aggregator and the rest
are defined by tables).
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Hierarchical Bayesian Model

Example: SXH is true when patient X is sick in hospital H.
We want to learn the probability of Sick for each hospital.

Where do the prior probabilities for the hospitals come from?

φH

α1

X H

SXH

α2

φ1 φ2 φk

α1

...

α2

S11 S12

...

S21 S22

...

S1k

...

(a) (b)
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Example: Language Models

Unigram Model:

D
I

W(D,I)

D is the document

I is the index of a word in the document. I ranges from 1 to
the number of words in document D.

W (D, I ) is the I ’th word in document D. The range of W is
the set of all words.

34 David Poole Logic, Probability and Computation
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Example: Language Models

Topic Mixture:

D
I

W(D,I)T(D)

D is the document

I is the index of a word in the document. I ranges from 1 to
the number of words in document D.

W (d , i) is the i ’th word in document d . The range of W is
the set of all words.

T (d) is the topic of document d . The range of T is the set of
all topics.

35 David Poole Logic, Probability and Computation
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Example: Language Models

Mixture of topics, bag of words (unigram):

D
T I

W(D,I)S(T,D)

D is the set of all documents
I is the set of indexes of words in the document. I ranges
from 1 to the number of words in the document.
T is the set of all topics
W (d , i) is the i ’th word in document d . The range of W is
the set of all words.
S(t, d) is true if topic t is a subject of document d . S is
Boolean.
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Example:Latent Dirichlet Allocation

D
T I

to(D,I)pr(D,T) w(D,I)

D is the document
I is the index of a word in the document. I ranges from 1 to
the number of words in document D.
T is the topic
w(d , i) is the i ’th word in document d . The range of w is the
set of all words.
to(d , i) is the topic of the ith-word of document d . The
range of to is the set of all topics.
pr(d , t) is is the proportion of document d that is about topic
t. The range of pr is the reals.
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Example: Language Models

Mixture of topics, set of words:

D
T W

A(W,D)S(T,D)

D is the set of all documents

W is the set of all words.

T is the set of all topics

Boolean A(w , d) is true if word w appears in document d .

Boolean S(t, d) is true if topic t is a subject of document d .

Rephil (Google) has 900,000 topics, 12,000,000 “words”,
350,000,000 links.

38 David Poole Logic, Probability and Computation
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Creating Dependencies: Exploit Domain Structure

....
X

r(X)
r(i1) r(i4)

s(X)

r(i2) r(i3)

s(i1) s(i2) s(i3)

39 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Relational Probabilistic Models Probabilistic Logic Programs

Example: diagnosing addition

x2 x1
+ y2 y1

z3 z2 z1

x2

x1

y2
y1

z1z2z3

carry2carry3

knows 
addition

knows 
carry

What if there were multiple digits, problems, students, times?
How can we build a model before we know the individuals?

40 David Poole Logic, Probability and Computation
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Multi-digit addition with parametrized BNs / plates

xjx · · · x2 x1
+ yjz · · · y2 y1

zjz · · · z2 z1

Student
Time

Digit
Problem

x

y
z

carry

knows 
addition

knows 
carry

Random Variables: x(D,P), y(D,P), knowsCarry(S ,T ),
knowsAddition(S ,T ), carry(D,P,S ,T ), z(D,P,S ,T )
for each: digit D, problem P, student S , time T
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Relational Probabilistic Models

Often we want random variables for combinations of individuals in
populations

build a probabilistic model before knowing the individuals

learn the model for one set of individuals

apply the model to new individuals

allow complex relationships between individuals

42 David Poole Logic, Probability and Computation
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Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Logic Programs

2 Lifted Inference
Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning

3 Undirected models, Directed models, and Weighted Formulae

4 Existence and Identity Uncertainty

43 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Relational Probabilistic Models Probabilistic Logic Programs

Independent Choice Logic (ICL)

A language for relational probabilistic models.

Idea: combine logic and probability, where all uncertainty in
handled in terms of Bayesian decision theory, and logic
specifies consequences of choices.

An ICL theory consists of a choice space with probabilities
over choices and a logic program that gives consequences of
choices.

History: parametrized Bayesian belief networks, abduction and
default reasoning −→ probabilistic Horn abduction
(IJCAI-91); richer language (negation as failure + choices by
other agents −→ independent choice logic (AIJ 1997)
−→ Problog (probabilistic programming language)

44 David Poole Logic, Probability and Computation
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The independent choice logic influences

Independent
Choice Logic

logic

uncertainty using
decision theory

game
theory

logic specifies
consequences 

of choices

abduction

who chooses
assumptions?

Bayesian networks /
influence diagrams

first-order
rule-structured

conditional probability
tables

dynamical systems/
POMDPs

logic-based
state and transitions
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Independent Choice Logic

An atomic hypothesis is an atomic formula.
An alternative is a set of atomic hypotheses.
C, the choice space is a set of disjoint alternatives.

F , the facts is an acyclic logic program that gives
consequences of choices (can contain negation as failure).
No atomic hypothesis is the head of a rule.

P0 a probability distribution over alternatives:

∀A ∈ C
∑
a∈A

P0(a) = 1.

46 David Poole Logic, Probability and Computation
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Meaningless Example

C = {{c1, c2, c3}, {b1, b2}}

F = { f ← c1 ∧ b1, f ← c3 ∧ b2,
d ← c1, d ← ∼ c2 ∧ b1,
e ← f , e ← ∼ d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2
P0(b1) = 0.9 P0(b2) = 0.1

47 David Poole Logic, Probability and Computation
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Semantics of ICL

There is a possible world for each selection of one element
from each alternative.

The logic program together with the selected atoms specifies
what is true in each possible world.

The elements of different alternatives are probabilistically
independent.

48 David Poole Logic, Probability and Computation
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Meaningless Example: Semantics

F = { f ← c1 ∧ b1, f ← c3 ∧ b2,
d ← c1, d ← ∼ c2 ∧ b1,
e ← f , e ← ∼ d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2
P0(b1) = 0.9 P0(b2) = 0.1

selection︷ ︸︸ ︷ logic program︷ ︸︸ ︷
w1 |= c1 b1

f d e P(w1) = 0.45
w2 |= c2 b1 ∼ f ∼ d e P(w2) = 0.27
w3 |= c3 b1 ∼ f d ∼ e P(w3) = 0.18
w4 |= c1 b2 ∼ f d ∼ e P(w4) = 0.05
w5 |= c2 b2 ∼ f ∼ d e P(w5) = 0.03
w6 |= c3 b2 f ∼ d e P(w6) = 0.02

P(e) = 0.45 + 0.27 + 0.03 + 0.02 = 0.77
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Contingently Acyclic Logic Programs

Disallowed

a←∼ b. b ←∼ a.

two stable models a ∧ ¬b and ¬a ∧ b.

a←∼ a.
no stable models

Allowed

p(do(A,X ))← p(X ) ∧ rest. p(init).
well founded recursions are good!

a← b ∧ c . b ← a∧ ∼ c .
only one body will be true in any possible world.

50 David Poole Logic, Probability and Computation
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Belief Networks, Decision trees and ICL rules

There is a local mapping from Bayesian belief networks into
ICL.

Ta Fi

SmAl

Le

Re

prob ta : 0.02.
prob fire : 0.01.
alarm← ta ∧ fire ∧ atf .
alarm← ∼ ta ∧ fire ∧ antf .
alarm← ta ∧ ∼ fire ∧ atnf .
alarm← ∼ ta ∧ ∼ fire ∧ antnf .
prob atf : 0.5.
prob antf : 0.99.
prob atnf : 0.85.
prob antnf : 0.0001.
smoke ← fire ∧ sf .
prob sf : 0.9.
smoke ← ∼ fire ∧ snf .
prob snf : 0.01.
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Belief Networks, Decision trees and ICL rules

Rules can represent decision tree with probabilities:

f t
A

C B

D 0.70.2

0.90.5

0.3

P(e|A,B,C,D)

e ← a ∧ b ∧ h1. P0(h1) = 0.7
e ← a ∧ ∼ b ∧ h2. P0(h2) = 0.2
e ← ∼ a ∧ c ∧ d ∧ h3. P0(h3) = 0.9
e ← ∼ a ∧ c ∧ ∼ d ∧ h4. P0(h4) = 0.5
e ← ∼ a ∧ ∼ c ∧ h5. P0(h5) = 0.3
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Mapping belief networks into ICL

There is a local mapping from belief networks into ICL:

B1 B2 Bk...

A

is translated into the rules

a(V )← b1(V1) ∧ · · · ∧ bk(Vk) ∧ h(V ,V1, . . . ,Vk).

and the alternatives

∀v1 · · · ∀vk{h(v , v1, . . . , vk) | v ∈ domain(a)} ∈ C
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Predicting Grades

Plates correspond
to logical variables.

C

S       

grade

int
diff

prob int(S) : 0.5.
prob diff (C ) : 0.5.
grade(S ,C ,G )← int(S) ∧ diff (C ) ∧ idg(S ,C ,G ).
prob idg(S ,C , a) : 0.5, idg(S ,C , b) : 0.4, idg(S ,C , c) : 0.1.
grade(S ,C ,G )← int(S) ∧ ∼ diff (C ) ∧ indg(S ,C ,G ).
prob indg(S ,C , a) : 0.9, indg(S ,C , b) : 0.09, indg(S ,C , c) : 0.01.
. . .
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Movie Ratings

Person

likes

young
genre

Movie

prob young(P) : 0.4.
prob genre(M, action) : 0.4, genre(M, romance) : 0.3,

genre(M, family) : 0.4.
likes(P,M)← young(P) ∧ genre(M,G ) ∧ ly(P,M,G ).
likes(P,M)← ∼ young(P) ∧ genre(M,G ) ∧ lny(P,M,G ).
prob ly(P,M, action) : 0.7.
prob ly(P,M, romance) : 0.3.
prob ly(P,M, family) : 0.8.
prob lny(P,M, action) : 0.2.
prob lny(P,M, romance) : 0.9.
prob lny(P,M, family) : 0.3.
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Aggregation

The relational probabilistic model:

X

a b

Cannot be represented using tables. Why?

This can be represented in ICL by

b ← a(X )&n(X ).

“noisy-or”, where n(X ) is a noise term, {n(c), ∼ n(c)} ∈ C
for each individual c .
If a(c) is observed for each individual c :

P(b) = 1− (1− p)k

Where p = P(n(X )) and k is the number of a(c) that are
true.

56 David Poole Logic, Probability and Computation
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Example: Multi-digit addition

xjx · · · x2 x1
+ yjz · · · y2 y1

zjz · · · z2 z1

x(D,P)

y(D,P) z(D,P,S,T)

c(D,P,S,T)

knows_carry(S,T) knows_add(S,T)

D,P

S,T
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ICL rules for multi-digit addition

z(D,P, S ,T ) = V ←
x(D,P) = Vx∧
y(D,P) = Vy∧
c(D,P, S ,T ) = Vc∧
knows add(S ,T )∧
¬mistake(D,P,S ,T )∧
V is (Vx + Vy + Vc) div 10.

z(D,P, S ,T ) = V ←
knows add(S ,T )∧
mistake(D,P, S ,T )∧
selectDig(D,P,S ,T ) = V .

z(D,P,S ,T ) = V ←
¬knows add(S ,T )∧
selectDig(D,P,S ,T ) = V .

Alternatives:
∀DPST{noMistake(D,P, S ,T ),mistake(D,P,S ,T )}
∀DPST{selectDig(D,P, S ,T ) = V | V ∈ {0..9}}
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Multi-digit addition with parametrized BNs / plates

xjx · · · x2 x1
+ yjz · · · y2 y1

zjz · · · z2 z1

Student
Time

Digit
Problem

x

y
z

carry

knows 
addition

knows 
carry

Random Variables: x(D,P), y(D,P), knowsCarry(S ,T ),
knowsAddition(S ,T ), carry(D,P,S ,T ), z(D,P,S ,T )
for each: digit D, problem P, student S , time T
* parametrized random variables
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ICL rules for multi-digit addition

z(D,P, S ,T ) = V ←
x(D,P) = Vx∧
y(D,P) = Vy∧
carry(D,P, S ,T ) = Vc∧
knowsAddition(S ,T )∧
¬mistake(D,P,S ,T )∧
V is (Vx + Vy + Vc) div 10.

z(D,P,S ,T ) = V ←
knowsAddition(S ,T )∧
mistake(D,P, S ,T )∧
selectDig(D,P,S ,T ) = V .

z(D,P,S ,T ) = V ←
¬knowsAddition(S ,T )∧
selectDig(D,P,S ,T ) = V .

Alternatives:
∀DPST{noMistake(D,P, S ,T ),mistake(D,P,S ,T )}
∀DPST{selectDig(D,P, S ,T ) = V | V ∈ {0..9}}
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Logic and Probability Inference Weighted Existence Lifted Inference Recursive Conditioning Lifted Recursive Conditioning

Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Logic Programs

2 Lifted Inference
Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning

3 Undirected models, Directed models, and Weighted Formulae

4 Existence and Identity Uncertainty
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Why Exact Inference?

Why do we care about exact inference?

Gold standard

Size of problems amenable to exact inference is growing

Learning for inference

Basis for efficient approximate inference:

Rao-Blackwellization
Variational Methods
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Guy van den Broeck  
UCLA 
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Guy van den Broeck  
UCLA 

card 
(1,d2) 

card 
(1,d3) 

card 
(1,pAce) 

card 
(52,d2) 

card 
(52,d3) 

card 
(52,pAce) 

… 

… 

…
 

…
 

64 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Lifted Inference Recursive Conditioning Lifted Recursive Conditioning

Guy van den Broeck  
UCLA 

card 
(1,d2) 

card 
(1,d3) 

card 
(1,pAce) 

card 
(52,d2) 

card 
(52,d3) 

card 
(52,pAce) 

… 
…

 

…
 

… 

65 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Lifted Inference Recursive Conditioning Lifted Recursive Conditioning

Guy van den Broeck  
UCLA 

No independencies.  
Fully connected.  

22704 states  
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Guy van den Broeck  
UCLA 

A machine will not solve 
the problem 
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. . . unless it can represent and exploit symmetry.
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Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Logic Programs

2 Lifted Inference
Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning

3 Undirected models, Directed models, and Weighted Formulae

4 Existence and Identity Uncertainty
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Lifted Inference

Idea: treat those individuals about which you have the same
information as a block; just count them.

Use the ideas from lifted theorem proving - no need to ground.

Potential to be exponentially faster in the number of
non-differentialed individuals.

Relies on knowing the number of individuals (the population
size).
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Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Logic Programs

2 Lifted Inference
Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning

3 Undirected models, Directed models, and Weighted Formulae

4 Existence and Identity Uncertainty
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Inference via factorization in graphical models

A C

B D

E

F G

P(E | g) =
P(E ∧ g)∑
E P(E ∧ g)

P(E ∧ g)

=
∑
F

∑
B

∑
C

∑
A

∑
D

P(A)P(B | AC )

P(C )P(D | C )P(E | B)P(F | E )P(g | ED)

=

(∑
F

P(F | E )

)
∑
B

P(E | B)
∑
C

(
P(C )

(∑
A

P(A)P(B | AC )

)
(∑

D

P(D | C )P(g | ED)

))
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Recursive Conditioning

Computes sum (partition function) from outside in

Input:

Context - assignment of values to variables

Set of factors

Output: value of summing out other variables (partition function)

Evaluate a factor as soon as all its variables are assigned

Cache values already computed

Recognize disconnected components

Recursively branch on a variable
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Variable Elimination and Recursive Conditioning

Variable elimination is the dynamic programming variant of
recursive conditioning.

Recursive Conditioning is the search variant of variable
elimination

They do the same additions and multiplications.

Complexity O(nr t), for n variables, range size r , and
treewidth t.
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Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Logic Programs

2 Lifted Inference
Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning

3 Undirected models, Directed models, and Weighted Formulae

4 Existence and Identity Uncertainty
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Weighted Formula

A Weighted formula is a pair 〈F , v〉 where

F a formula on parametrized random variables

v number

Example:
〈X 6= Y ∧ likes(X ,Y ) ∧ rich(Y ), 0.001〉
〈likes(X ,X ) ∧ rich(X ), 0.7〉
. . .
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Lifted Recursive Conditioning

LiftedRC (Context,WeightedFormulas)

Context is a set of assignments to random variables and
counts to assignments of instances of relations. e.g.:

{¬a, #X f (X ) ∧ g(X ) = 7,

#X f (X ) ∧ ¬g(X ) = 5,

#X¬f (X ) ∧ g(X ) = 18,

#X¬f (X ) ∧ ¬g(X ) = 0}

WeightedFormulas is a set of weighted formulae, e.g.,

{ 〈¬a ∧ ¬f (X ) ∧ g(X ), 0.1〉 ,
〈a ∧ ¬f (X ) ∧ g(X ), 0.2〉 ,
〈f (X ) ∧ g(Y ), 0.3〉 ,
〈f (X ) ∧ h(X ), 0.4〉}
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Evaluating Weighted Formulae

Context:

{¬a, #X f (X ) ∧ g(X ) = 7,

#X f (X ) ∧ ¬g(X ) = 5,

#X¬f (X ) ∧ g(X ) = 18,

#X¬f (X ) ∧ ¬g(X ) = 0}
WeightedFormulas:

{ 〈¬a ∧ ¬f (X ) ∧ g(X ), 0.1〉 ,
〈a ∧ ¬f (X ) ∧ g(X ), 0.2〉 ,
〈f (X ) ∧ g(Y ), 0.3〉 ,
〈f (X ) ∧ h(X ), 0.4〉}

LiftedRC (Context,WeightedFormulas) returns:

0.118 ∗ 1 ∗ 0.312∗25 ∗ LiftedRC (Context, {〈f (X ) ∧ h(X ), 0.4〉})
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Branching

Context:

{¬a, #X f (X ) ∧ g(X ) = 7,

#X f (X ) ∧ ¬g(X ) = 5,

#X¬f (X ) ∧ g(X ) = 18,

#X¬f (X ) ∧ ¬g(X ) = 0}

WeightedFormulas: {〈f (X ) ∧ h(X ), 0.4〉 , . . . }
Branching on H for the 7 “X ” individuals s.th. f (X ) ∧ g(X ):
LiftedRC (Context,WeightedFormulas) =

7∑
i=0

(
7

i

)
LiftedRC ({¬a, #X f (X ) ∧ g(X ) ∧ h(X ) = i ,

#X f (X ) ∧ g(X ) ∧ ¬h(X ) = 7− i ,
#X f (X ) ∧ ¬g(X ) = 5, . . . },

WeightedFormulas)
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Recognizing Disconnectedness

q(X)

r(X,Y)

X

Y

q(a1)

r(a1, a1) r(a1, an)...

q(an)

r(an, a1) r(an, an)...

...

Relational Model Grounding

s(X,Y) s(a1, a1) s(a1, an) s(an, a1) s(an, an)

Weighted formulae WeightedFormulas:

{ 〈{s(X ,Y ) ∧ r(X ,Y )}, t1〉
〈{q(X ) ∧ r(X ,Y )}, t2〉}

LiftedRC (Context,WeightedFormulas)

= LiftedRC (Context,WeightedFormulas{X/c})n

...now we only have unary predicates
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...now we only have unary predicates
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Observations and Queries

Observations become the initial context.
Observations can be ground or lifted.

P(q|obs) =
LiftedRC (q ∧ obs,WFs)

LiftedRC (q ∧ obs,WFs) + LiftedRC (¬q ∧ obs,WFs)

calls can share the cache

“How many?” queries are also allowed

80 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Lifted Inference Recursive Conditioning Lifted Recursive Conditioning

Complexity

As the population size n of undifferentiated individuals increases:

If grounding is polynomial — instances must be disconnected
— lifted inference is constant in n (taking rn for real r)

Otherwise, for unary relations, grounding is exponential and
lifted inference is polynomial.

If non-unary relations become unary, above holds.

Otherwise, ground one individual from population, recurse.
Sometimes this domain recursion is linear, but is typically
exponential (as is grounding the population).

Always exponentially faster than grounding everything.
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What we can and cannot lift

We can lift a model that consists just of

〈{f (X ) ∧ g(Z )}, α4〉

or just of

〈{f (X ,Z ) ∧ g(Y ,Z )}, α2〉

or just of

〈{f (X ,Z ) ∧ g(Y ,Z ) ∧ h(Y )}, α3〉

We cannot lift (still exponential) a model that consists just of:

〈{f (X ,Z ) ∧ g(Y ,Z ) ∧ h(Y ,W )}, α3〉

or

〈{f (X ,Z ) ∧ g(Y ,Z ) ∧ h(Y ,X )}, α3〉
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Compilation

The computation reduces to products and sums

The structure can be determined at compile time

Orders of magnitude faster than lifted recursive conditioning

Often abstracted as weighted model counting (WMC)
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Take Home

Lifted inference exploits symmetries (“for all”)

Instead of considering which individuals a predicate is true for,
count how many individuals it is true for, and determine
appropriate probabilities.

Always exponentially better in the number of undifferentiated
individuals than grounding everything.

Open problem: finding a dichotomy of those problems we
know we can lift and those we know it is impossible to lift.
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Potential of Lifted Inference

Lifting reduces complexity:

polynomial −→ logarithmic

exponential −→ polynomial

in the population size of undifferentiated individuals compared
to grounding

We can now lift all unary relations, but we know we can’t do
all binary relations [Guy Van den Broeck, 2013].
Always exponentially faster.

Current most efficient algorithm compile to secondary
representations. (E.g. Mehran Kazemi compiles to C++).

Great potential for approximate inference
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Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Logic Programs

2 Lifted Inference
Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning

3 Undirected models, Directed models, and Weighted Formulae

4 Existence and Identity Uncertainty
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Three Elementary Models

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

(a) (b) (c)

(a) Näıve Bayes

(b) (Relational) Logistic Regression

(c) Markov network
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Independence Assumptions

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

(a) (b) (c)

Näıve Bayes (a) and Markov network (c): R(Ai ) and R(Aj)
are independent given Q
are dependent not given Q.

Directed model with aggregation (b): R(Ai ) and R(Aj)
are dependent given Q,
are independent not given Q.
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Logistic Regression

Logistic Regression, write R(ai ) as Ri :

P(Q|R1, . . . ,Rn) = sigmoid(w0 + w1R1 + · · ·+ wnRn)

sigmoid(x) =
1

1 + e−x

If all of the Ri are exchangeable w1, . . . ,wn must all be the same:

P(Q|R1, . . . ,Rn) = sigmoid(w0 + w1

∑
i

Ri ))

If we learn the parameters for n = 10 the prediction for n = 20
depends on how values Ri are represented numerically:

If True = 1 and False = 0 then P(Q|R1, . . . ,Rn) depends on
the number of Ri that are true.
If True = 1 and False = −1 then P(Q|R1, . . . ,Rn) depends
on how many more of Ri are true than false.
If True = 0 and False = −1 then P(Q|R1, . . . ,Rn) depends
on the number of Ri that are false.
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Directed and Undirected models

Weighted formula (WF): 〈L,F ,w〉
L is a set of logical variables,
F is a logical formula: {free logical variables in F} ⊆ L
w is a real-valued weight.

Instances of weighted formule obtained by assigning
individuals to variables in L.

A world is an assignment of a value to each ground instance
of each atom.

Markov logic network (MLN): “undirected model”
weighted formulae define measures on worlds.

Relational logistic regression (RLR): “directed model”
weighted formulae define conditional probabilities.
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Weighted formulae for conditionals → logistic regression

Weighted formulae:

〈{x}, funFor(x),−5〉
〈{x , y}, funFor(x) ∧ friends(x , y) ∧ social(y), 10〉
〈{x , y}, funFor(x) ∧ friends(x , y) ∧ ¬social(y),−3〉

If obs includes observations for all friends(x , y) and social(y):

P(funFor(x) | obs) = sigmoid(−5 + 10ns(x)− 3na(x))

ns(x) = |{y | friends(x , y) ∧ social(y)}|

na(x) = |{y | friends(x , y) ∧ ¬social(y)}|

Weighted formulae give arbitrary polynomials of counts.
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Representation Issues

Probabilities of directed model can be interpreted locally

Directed models are modular — e.g., adding a dependent
variable without side effects is straightforward, but impossible
for MLNs
[Buchman and Poole, AAAI 2015]

Directed models allow for pruning in inference.

Directed models require the structure of the conditional
probabilities to be acyclic. Or maybe not...

Noisy-or aggregation corresponds to logic programs.
With layered relational logistic regression, can we get
relational neural networks?
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Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Logic Programs

2 Lifted Inference
Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning

3 Undirected models, Directed models, and Weighted Formulae

4 Existence and Identity Uncertainty
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Correspondence Problem

Symbols Individuals

h2: The tall house

h1: The house with the brown roof

h3: The house with the green roof

h4: The house with the pink roof

c symbols and i individuals −→ c i+1 correspondences
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Clarity Principle

Clarity principle: probabilities must be over well-defined
propositions.

What if an individual doesn’t exist?

house(h4) ∧ roof colour(h4, pink) ∧ ¬exists(h4)

What if more than one individual exists? Which one are we
referring to?
—In a house with three bedrooms, which is the second
bedroom?
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Role assignments

Hypothesis about what apartment Mary would like.

Whether Mary likes an apartment depends on:

Whether there is a bedroom for daughter Sam

Whether Sam’s room is green

Whether there is a bedroom for Mary

Whether Mary’s room is large

Whether they share
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Bayesian Belief Network Representation

Which 
room is 
Mary's

Which 
room is 
Sam's

Mary's 
room is 
large

Sam's 
room is 
green

Mary 
Likes her 

room

Sam 
likes her 

room

Need 
to 

share

Apartment 
is suitable

r1 r2

r3

How can we condition on the observation of the apartment?
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Naive Bayes representation

Mary 
Likes

Room1

Sam
Likes

Room2

Room1 
is large

Room2 
is green

Apartment 
is suitable

r1 r2

r3

Apartment

Room1
Room2

How do we specify that Mary chooses a room?
What about the case where they (have to) share?
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Number and Existence Uncertainty

PRMs (Pfeffer et al.), BLOG (Milch et al.): distribution over
the number of individuals. For each number, reason about the
correspondence.

NP-BLOG (Carbonetto et al.): keep asking: is there one
more?
e.g., if you observe a radar blip, there are three hypotheses:

the blip was produced by plane you already hypothesized
the blip was produced by another plane
the blip wasn’t produced by a plane
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Existence Example

false
alarm

plane

false
alarm plane

observe blip

false
alarm

same
plane

another
plane

false
alarm

plane

another blip

third blip
false
alarm

same
plane

another
plane

false
alarm

same
plane

another
plane

false
alarm

same
plane

another
plane

false
alarm

first
plane

another
plane

second
plane
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Observation Protocols

Observe a triangle and a circle touching. What is the probability
the triangle is green?

P(green(x)

|triangle(x) ∧ ∃y circle(y) ∧ touching(x , y))

The answer depends on how the x and y were chosen!
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Protocol for Observing

P(green(x)

| triangle(x) ∧ ∃y circle(y) ∧ touching(x , y))

| | |
select(x) select(y) select(x , y)
| | |

select(y) select(x)
| |

3/4 2/3 4/5
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Other Issues

Probabilistic programming

Much data is being published with respect to formal
ontologies.
How can probabilistic models interact with such data?

We’d like to publish hypotheses that make probabilistic
predictions so they interoperate with data.

Identity uncertainty. Probability of equality.
Do these citations refer to the same publication?

To make decisions, probabilistic models need to interact with
utility models.

Representing actions, time,...
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Conclusion

The field of “statistical relational AI” studies how to combine
first-order logic and probabilistic reasoning.

Challenges

Representation: heuristically and epistemologically adequate
representations for probabilistic models + observations (+
causation + actions + utilities + ontologies)

Inference: exploit structure + exchangeability
compute posterior probabilities (or optimal actions) quickly
enough to be useful

Learning: find best hypotheses conditioned on all observations
....just inference?
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Age of Relations (100 years later)

What is now required is to give the greatest possible
development to mathematical logic, to allow to the full
the importance of relations, and then to found upon this
secure basis a new philosophical logic, which may hope to
borrow some of the exactitude and certainty of its
mathematical foundation. If this can be successfully
accomplished, there is every reason to hope that the near
future will be as great an epoch in pure philosophy as the
immediate past has been in the principles of
mathematics. Great triumphs inspire great hopes; and
pure thought may achieve, within our generation, such
results as will place our time, in this respect, on a level
with the greatest age of Greece.

– Bertrand Russell [1917]
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AI: computational agents that act intelligently

What should 
an agent do?

Logic Probability

Ontologies

Knowledge Representation

Learning

Relations

Preferences/Utilities

Decision Theory

Inference
Knowledge Aquisition

Perceiving

Game theory

Acting

Modelling

Data

Foundations

Prior Knowledge

InputsTasks

Hypotheses

Computation

Diagnosis
Observations

Dynamical Systems

Abilities

Statistics

Design

106 David Poole Logic, Probability and Computation


	Logic and Probability
	Relational Probabilistic Models
	Probabilistic Logic Programs

	Lifted Inference
	Lifted Inference
	Recursive Conditioning
	Lifted Recursive Conditioning

	Undirected models, Directed models, and Weighted Formulae
	Existence and Identity Uncertainty

