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Logic and Probability

There is a real world with real structure. The
program of mind has been trained on vast interaction
with this world and so contains code that reflects the
structure of the world and knows how to exploit it. This
code contains representations of real objects in the world
and represents the interactions of real objects. . . .

You exploit the structure of the world to make
decisions and take actions. Where you draw the line on
categories, what constitutes a single object or a single
class of objects for you, is determined by the program of
your mind, which does the classification. This
classification is not random but reflects a compact
description of the world, and in particular a description
useful for exploiting the structure of the world.

Eric Baum, What is Thought?, 2004, pages 169-170
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Logic and Probability

AI: computational agents that act intelligently

What should 
an agent do?

Logic Probability

Ontologies

Knowledge Representation

Learning

Relations

Preferences/Utilities

Decision Theory

Inference
Knowledge Aquisition

Perceiving

Game theory

Acting

Modelling

Data

Foundations

Prior Knowledge

InputsTasks

Hypotheses

Computation

Diagnosis
Observations

Dynamical Systems

Abilities

Statistics

Design
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Logic and Probability Relational Probabilistic Models

Outline
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Logic and Probability Relational Probabilistic Models

First-order Predicate Calculus

The world (we want to represent) is made up of
individuals (things) with relationships among them.

There isn’t anything else!

Classical (first order) logic lets us represent:

individuals in the world

relations amongst those individuals

conjunctions, disjunctions, negations of relations

quantification over individuals
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Logic and Probability Relational Probabilistic Models

Why Probability?

There is lots of uncertainty about the world, but agents still
need to act.

Predictions are needed to decide what to do:

definitive predictions: you will be run over tomorrow
point probabilities: probability you will be run over tomorrow is
0.002 if you are not careful and 0.000001 if you are careful.
probability ranges: you will be run over with probability in
range [0.001,0.34]

Acting is gambling: agents who don’t use probabilities will
lose to those who do — Dutch books.

Probabilities can be learned from data.
Bayes’ rule specifies how to combine data and prior
knowledge.
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Logic and Probability Relational Probabilistic Models

Statistical Relational AI

Propositional
Logic

Predicate
Calculus Probability

Relational
Probabilistic

Models Measures over 
possible worlds+

Conditioning

Logical Variables +
Quantification
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Logic and Probability Relational Probabilistic Models

Bayes’ Rule

Probability provides a calculus for how knowledge (observations)
affects belief.

P(h|e) = P(e|h)  P(h)
P(e)

Likelihood Prior

Normalizing
constant

What if e is a patient’s electronic health record and h is the
effect of a particular treatment on a particular patient?
What if e is the electronic health records for all of the people
in the province?
What if e is a collection of student records in a university?
What if e is everything known about the geology of Earth?
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Logic and Probability Relational Probabilistic Models

Example Observation, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Slope

[Clinton Smyth, Georeference Online.]
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Logic and Probability Relational Probabilistic Models

Example Observation, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Structure

[Clinton Smyth, Georeference Online.]
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Logic and Probability Relational Probabilistic Models

Outline
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Logic and Probability Relational Probabilistic Models

Relational Learning

Machine learning typically assumes informative feature values.
But often the values are names of individuals.

It is the properties of these individuals and their relationship
to other individuals that needs to be learned.

Relational learning has been studied under the umbrella of
“Inductive Logic Programming” as the representations were
traditionally logic programs.
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Logic and Probability Relational Probabilistic Models

Example: trading agent

What does Joe like?

Individual Property Value

joe likes resort 14
joe dislikes resort 35
. . . . . . . . .
resort 14 type resort
resort 14 near beach 18
beach 18 type beach
beach 18 covered in ws
ws type sand
ws color white
. . . . . . . . .
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Logic and Probability Relational Probabilistic Models

Example: trading agent

Possible hypothesis that could be learned:
“Joe likes resorts that are near sandy beaches.”

prop(joe, likes,R)←
prop(R, type, resort) ∧
prop(R, near ,B) ∧
prop(B, type, beach) ∧
prop(B, covered in, S) ∧
prop(S , type, sand).

But we want probabilistic predictions.
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Logic and Probability Relational Probabilistic Models

Example: Predicting Relations

Student Course Grade

s1 c1 A
s2 c1 C
s1 c2 B
s2 c3 B
s3 c2 B
s4 c3 B
s3 c4 ?
s4 c4 ?

Students s3 and s4 have the same averages, on courses with
the same averages.

Which student would you expect to better?
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Logic and Probability Relational Probabilistic Models

From Relations to Bayesian Belief Networks

Gr(s1, c1)
I(s1)

I(s2)

I(s3)

Gr(s2, c1)

Gr(s1, c2)

Gr(s2, c3)

D(c1)

D(c2)

I(s4)

D(c3)

D(c4)

Gr(s3, c2)

Gr(s4, c3)

Gr(s4, c4)

Gr(s3, c4)

I (S) D(C ) Gr(S ,C )
A B C

true true 0.5 0.4 0.1
true false 0.9 0.09 0.01
false true 0.01 0.09 0.9
false false 0.1 0.4 0.5

P(I (S)) = 0.5
P(D(C )) = 0.5

“parameter sharing”

http://artint.info/code/aispace/grades.xml
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Logic and Probability Relational Probabilistic Models

Example: Predicting Relations

17 David Poole Logic, Probability and Computation



Logic and Probability Relational Probabilistic Models

Plate Notation

C

S

Gr(S,C)

I(S) D(C)

S , C logical variable representing students, courses

the set of individuals of a type is called a population

I (S), Gr(S ,C ), D(C ) are parametrized random variables

Grounding:

for every student s, there is a random variable I (s)

for every course c , there is a random variable D(c)

for every s, c pair there is a random variable Gr(s, c)

all instances share the same structure and parameters
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Logic and Probability Relational Probabilistic Models

Plate Notation

C

S

Gr(S,C)

I(S) D(C)

If there were 1000 students and 100 courses:
Grounding contains

1000 I (s) variables
100 D(c) variables
100000 Gr(s, c) variables

total: 101100 variables

Numbers to be specified to define the probabilities:
1 for I (S), 1 for D(C ), 8 for Gr(S ,C ) = 10 parameters.
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Logic and Probability Relational Probabilistic Models

Exchangeability

Before we know anything about individuals, they are
indistinguishable, and so should be treated identically.
exchangeability — names can be exchanged and the model
doesn’t change.

We model uncertainty about:

Properties of individuals

Relationships among individuals

How properties and relations interrelate

Identity (equality) of individuals

Existence (and number) of individuals
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Logic and Probability Relational Probabilistic Models

Plate Notation for Learning Parameters

T

H(T)

!

H(t1)

!

H(t2) H(tn)...

tosses t1, t2…tn

T is a logical variable representing tosses of a thumb tack

H(t) is a Boolean variable that is true if toss t is heads.

θ is a random variable representing the probability of heads.

Range of θ is {0.0, 0.01, 0.02, . . . , 0.99, 1.0} or interval [0, 1].

P(H(ti )=true|θ=p) = p

Independence: for i 6= j , H(ti ) is independent of H(tj) given
θ: i.i.d. or independent and identically distributed.
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Logic and Probability Relational Probabilistic Models

Parametrized belief networks

Allow random variables to be parametrized. interested(X )

Parameters correspond to logical variables. X
logical variables can be drawn as plates.

Each logical variable is typed with a population. X : person

A population is a set of individuals.

Each population has a size. |person| = 1000000

Parametrized belief network means its grounding: an instance
of each random variable for each assignment of an individual
to a logical variable. interested(p1) . . . interested(p1000000)

Instances are independent (but can have common ancestors
and descendants).
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Logic and Probability Relational Probabilistic Models

Parametrized Bayesian networks / Plates

X

r(X)

Individuals:
i1,...,ik

r(i1) r(ik)...+

Parametrized Bayes Net:

Bayes Net
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Logic and Probability Relational Probabilistic Models

Parametrized Bayesian networks / Plates (2)

X

r(X)

Individuals:
i1,...,ik

s(i1) s(ik)...s(X)

t

q

r(i1) r(ik)...
q

t
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Logic and Probability Relational Probabilistic Models

Creating Dependencies

Instances of plates are independent, except by common parents or
children.

X
r(X)

q

r(i1) r(ik)....
q

Common
Parents

X
r(X)

q

r(i1) r(ik)....
q

Observed
Children
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Logic and Probability Relational Probabilistic Models

Overlapping plates

Person

likes

young
genre

Movie

l(s,r)

y(s)

y(c)

y(k) l(c,r)

l(k,r)

l(s,t)

l(c,t)

l(k,t)

g(r) g(t)

Relations: likes(P,M), young(P), genre(M)
likes is Boolean, young is Boolean,
genre has range {action, romance, family}
Three people: sam (s), chris (c), kim (k)
Two movies: rango (r), terminator (t)
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Logic and Probability Relational Probabilistic Models

Overlapping plates

Person

likes

young
genre

Movie

Relations: likes(P,M), young(P), genre(M)

likes is Boolean, young is Boolean, genre has range
{action, romance, family}
If there are 1000 people and 100 movies,
Grounding contains: 100,000 likes + 1,000 age + 100 genre
= 101,100 random variables

How many numbers need to be specified to define the
probabilities required?
1 for young , 2 for genre, 6 for likes = 9 total.
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Logic and Probability Relational Probabilistic Models

Representing Conditional Probabilities

P(likes(P,M)|young(P), genre(M)) — parameter sharing —
individuals share probability parameters.

P(happy(X )|friend(X ,Y ),mean(Y )) — needs aggregation —
happy(a) depends on an unbounded number of parents.

There can be more structure about the individuals. . .
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Logic and Probability Relational Probabilistic Models

Example: Aggregation

x

Shot(x,y)

Has_motive(x,y)

Someone_shot(y) y

Has_opportunity(x,y)

Has_gun(x)
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Logic and Probability Relational Probabilistic Models

Exercise #1

For the relational probabilistic model:

X

cb

a

Suppose the the population of X is n and all variables are Boolean.

(a) How many random variables are in the grounding?

(b) How many numbers need to be specified for a tabular
representation of the conditional probabilities?
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Logic and Probability Relational Probabilistic Models

Exercise #2

For the relational probabilistic model:

X

bc

a

d

Suppose the the population of X is n and all variables are Boolean.

(a) Which of the conditional probabilities cannot be defined as a
table?

(b) How many random variables are in the grounding?

(c) How many numbers need to be specified for a tabular
representation of those conditional probabilities that can be
defined using a table? (Assume an aggregator is an “or”
which uses no numbers).
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Logic and Probability Relational Probabilistic Models

Exercise #3

For the relational probabilistic model:

Movie

Person

saw
urban

alt

profit

Suppose the population of Person is n and the population of
Movie is m, and all variables are Boolean.

(a) How many random variables are in the grounding?

(b) How many numbers are required to specify the conditional
probabilities? (Assume an “or” is the aggregator and the rest
are defined by tables).
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Logic and Probability Relational Probabilistic Models

Hierarchical Bayesian Model

Example: SXH is true when patient X is sick in hospital H.
We want to learn the probability of Sick for each hospital.
Where do the prior probabilities for the hospitals come from?

φH

α1

X H

SXH

α2

φ1 φ2 φk

α1

...

α2

S11 S12

...

S21 S22

...

S1k

...

(a) (b)
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Logic and Probability Relational Probabilistic Models

Example: Language Models

Unigram Model:

D
I

W(D,I)

D is the document

I is the index of a word in the document. I ranges from 1 to
the number of words in document D.

W (D, I ) is the I ’th word in document D. The range of W is
the set of all words.
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Logic and Probability Relational Probabilistic Models

Example: Language Models

Topic Mixture:

D
I

W(D,I)T(D)

D is the document

I is the index of a word in the document. I ranges from 1 to
the number of words in document D.

W (d , i) is the i ’th word in document d . The range of W is
the set of all words.

T (d) is the topic of document d . The range of T is the set of
all topics.
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Logic and Probability Relational Probabilistic Models

Example: Language Models

Mixture of topics, bag of words (unigram):

D
T I

W(D,I)S(T,D)

D is the set of all documents
I is the set of indexes of words in the document. I ranges
from 1 to the number of words in the document.
T is the set of all topics
W (d , i) is the i ’th word in document d . The range of W is
the set of all words.
S(t, d) is true if topic t is a subject of document d . S is
Boolean.
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Logic and Probability Relational Probabilistic Models

Example:Latent Dirichlet Allocation

D
T I

to(D,I)pr(D,T) w(D,I)

D is the document
I is the index of a word in the document. I ranges from 1 to
the number of words in document D.
T is the topic
w(d , i) is the i ’th word in document d . The range of w is the
set of all words.
to(d , i) is the topic of the ith-word of document d . The
range of to is the set of all topics.
pr(d , t) is is the proportion of document d that is about topic
t. The range of pr is the reals.
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Logic and Probability Relational Probabilistic Models

Example: Language Models

Mixture of topics, set of words:

D
T W

A(W,D)S(T,D)

D is the set of all documents

W is the set of all words.

T is the set of all topics

Boolean A(w , d) is true if word w appears in document d .

Boolean S(t, d) is true if topic t is a subject of document d .

Rephil (Google) has 900,000 topics, 12,000,000 “words”,
350,000,000 links.
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Logic and Probability Relational Probabilistic Models

Creating Dependencies: Exploit Domain Structure

....
X

r(X)
r(i1) r(i4)

s(X)

r(i2) r(i3)

s(i1) s(i2) s(i3)
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