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© Logic and Probability
@ Relational Probabilistic Models
@ Probabilistic Logic Programs

© Lifted Inference
e Undirected models, Directed models, and Weighted Formulae

@ Existence and Identity Uncertainty
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Why Logic?

Logic provides a semantics linking

@ the symbols in our language

o the (real or imaginary) world we are trying to characterise
Suppose K represents our knowledge of the world

o If
KFeg
then g must be true of the world.
o If
Kireg

there is a model of K in which g is false.

Thus logical consequence seems like the correct notion for
prediction.
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First-order Predicate Calculus

The world (we want to represent) is made up of
individuals (things) and relationships between things.

Classical (first order) logic lets us represent:
@ individuals in the world
@ relations amongst those individuals
@ conjunctions, disjunctions, negations of relations

@ quantification over individuals
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Why Probability?

@ There is lots of uncertainty about the world, but agents still
need to act.
@ Predictions are needed to decide what to do:
o definitive predictions: you will be run over tomorrow
e point probabilities: probability you will be run over tomorrow is
0.002
e probability ranges: you will be run over with probability in
range [0.001,0.34]
@ Acting is gambling: agents who don’t use probabilities will
lose to those who do — Dutch books.

@ Probabilities can be learned from data.
Bayes' rule specifies how to combine data and prior
knowledge.
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Bayes' Rule

Likelihood Prior

N

P(elh) P(h)

P(hle) = 0

Normalizing
constant

What if e is an electronic health record?
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Bayes' Rule

Likelihood Prior

N

P(elh) P(h)

P(hle) = 0

Normalizing
constant

What if e is an electronic health record?
What if e is all the electronic health records?
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Bayes' Rule

Likelihood Prior

N

P(elh) P(h
P(hle) = %
Normalizing

constant

What if e is an electronic health record?

What if e is all the electronic health records?

What if e is a description of everything known about the geology
of Earth?
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Logic and Probability

Example Observation, Geology
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Relational Probabilistic M s babilistic Logic P

Example Observation, Geology
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Outline

© Logic and Probability
@ Relational Probabilistic Models
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Relational Learning

@ Often the values of properties are not meaningful values but
names of individuals.

@ It is the properties of these individuals and their relationship
to other individuals that needs to be learned.

@ Relational learning has been studied under the umbrella of
“Inductive Logic Programming” as the representations are
often logic programs.
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Example: trading agent

What does Joe like?

Individual  Property Value
Jjoe likes resort_14
joe dislikes resort_35
resort 14  type resort
resort_14  near beach_18
beach 18 type beach
beach 18 covered_in ws

ws type sand

ws color white
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Example: trading agent

Possible theory that could be learned:
prop(joe, likes, R) +
prop(R, type, resort) A
prop(R, near, B)A\
prop(B, type, beach)\
prop(B, covered _in, S)\
prop(S, type, sand).
Joe likes resorts that are near sandy beaches.

@ But we want probabilistic predictions.

13 David Poole Logic, Probability and Computation
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Example: Predicting Relations

Student | Course | Grade
51 c1 A
So (5] C
51 Co B
So c3 B
S3 Co B
S4 c3 B
s3 Ca ?
S4 Cy4 ?

@ Students s3 and s; have the same averages, on courses with
the same averages.

@ Which student would you expect to better?
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From Relations to Belief Networks
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From Relations to Belief Networks

I(S) D(C) Gr(S, C)

A B C
ORI

true true

(Grisz o)) CD e fase |09 009 0.01
’ false true |0.01 0.09 0.9
@ false false | 0.1 0.4 0.5

P(I(5)) =05
o) P(D(C)) =05

“parameter sharing”
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Logic and Probability

Example: Predicting Relations

int(s1) diff(c1)

r(sl,cl
Obse?ved Vaﬂue: A <

r(s2,cl
=~ Obse?ved Val)ue: o

T 0.06 N
F 094

T 0.68
F 0.32

T 0.32
F 068

diff(c2)
T 0.78
F 0.22

T 0.22
F 0.78

diff(c4)
T 0.50
F 0.50
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Plate Notation

™

@ S, C logical variable representing students, courses
@ the set of individuals of a type is called a population
e I(S), Gr(S,C), D(C) are parametrized random variables
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Plate Notation

™

@ S, C logical variable representing students, courses
@ the set of individuals of a type is called a population
e I(S), Gr(S,C), D(C) are parametrized random variables

Grounding:
o for every student s, there is a random variable /(s)
e for every course c, there is a random variable D(c)
e for every s, ¢ pair there is a random variable Gr(s, c)
@ all instances share the same structure and parameters
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Plate Notation

™

o If there were 1000 students and 100 courses:
Grounding contains
e 1000 /(s) variables
e 100 D(C) variables
e 100000 Gr(s, c) variables
total: 101100 variables
@ Numbers to be specified to define the probabilities:
1 for I(s), 1 for D(C), 8 for Gr(S, C) = 10 parameters.
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Bayesian Networks

knows
addition

X2 X1
+ 2y
z3 22 2
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Bayesian Networks

knows
addition

X2 X1
+ n
z3 Z2 7

What if there were multiple digits
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Bayesian Networks

knows
addition

X2 X1
+ n
z3 Z2 7

What if there were multiple digits, problems
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Bayesian Networks

knows
addition

X2 X1
+ n
z3 Z2 7

What if there were multiple digits, problems, students
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Bayesian Networks

knows
addition

X2 X1
+ n
z3 Z2 7

What if there were multiple digits, problems, students, times?
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Bayesian Networks

knows
addition

X2 X1
+ 2y
z3 22 2

What if there were multiple digits, problems, students, times?
How can we build a model before we know the individuals?

19 David Poole Logic, Probability and Computation
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Multi-digit addition with parametrized BNs / plates

Student
Digit
Problem

Time '
knows
addition

)(J-X PR X2 Xl @
+ Y, 0 Y2en ®<

=)

Random Variables: x(D, P), y(D, P), knowsCarry(S, T),
knowsAddition(S, T), carry(D,P,S, T), z(D,P,S, T)
for each: digit D, problem P, student S, time T

@ parametrized random variables

20 David Poole Logic, Probability and Computation
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Relational Probabilistic Models

Often we want random variables for combinations of individual in
populations

@ build a probabilistic model before knowing the individuals

@ learn the model for one set of individuals

@ apply the model to new individuals

o allow complex relationships between individuals

21 David Poole Logic, Probability and Computation
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Exchangeability

@ Before we know anything about individuals, they are
indistinguishable, and so should be treated identically.

N
N

David Poole Logic, Probability and Computation
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Representing Conditional Probabilities

o P(grade(S, C) | intelligent(S), difficult(C)) — parameter
sharing — individuals share probability parameters.

e P(happy(X) | friend(X,Y), mean(Y)) — needs aggregation
— happy(a) depends on an unbounded number of parents.

@ There can be more structure about the individuals

o the carry of one digit depends on carry of the previous digit
e probability that two authors collaborate depends on whether
they have a paper authored together

23 David Poole Logic, Probability and Computation
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Example: Aggregation

Has_motive(x,y)

Has_opportunity(x,y)

v

Someone_shot(y)

24 David Poole Logic, Probability and Computation
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Example Plate Notation for Learning Parameters

tosses ty, to...t,

D S

T

T is a logical variable representing tosses of a thumb tack
H(t) is a Boolean variable that is true if toss t is heads.

0 is a random variable representing the probability of heads.
Range of ¢ is {0.0,0.01,0.02,...,0.99,1.0} or interval [0, 1].
P(H(t;)=true | 0=p) = p

H(t;) is independent of H(t;) (for i # j) given 6: i.i.d. or
independent and identically distributed.

25 David Poole Logic, Probability and Computation
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Outline

© Logic and Probability

@ Probabilistic Logic Programs
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Independent Choice Logic (ICL)

@ A language for relational probabilistic models.

o |dea: combine logic and probability, where all uncertainty in
handled in terms of Bayesian decision theory, and logic
specifies consequences of choices.

@ An ICL theory consists of a choice space with probabilities
over choices and a logic program that gives consequences of
choices.

@ History: parametrized Bayesian networks, abduction and
default reasoning — probabilistic Horn abduction
(IJCAI-91); richer language (negation as failure + choices by
other agents — independent choice logic (AlJ 1997).
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Independent Choice Logic

@ An atomic hypothesis is an atomic formula.
An alternative is a set of atomic hypotheses.
C, the choice space is a set of disjoint alternatives.

@ F, the facts is an acyclic logic program that gives
consequences of choices (can contain negation as failure).
No atomic hypothesis is the head of a rule.

@ Py a probability distribution over alternatives:

VAEC > Po(a)=1.

acA

28 David Poole Logic, Probability and Computation
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Meaningless Example

C={{a,c,c},{b1, b}}

.FZ{f(—Cl/\bl, f(—C3/\b2,
d <+ c, d<+ ~ oAby,
e%f‘, e < Nd}

Po(c1) =0.5 Po(c2) =0.3 Py(c3) =0.2
PO(bl) = 09 PO(bZ) = 0]_
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Semantics of ICL

@ There is a possible world for each selection of one element
from each alternative.

@ The logic program together with the selected atoms specifies
what is true in each possible world.

@ The elements of different alternatives are independent.

30 David Poole Logic, Probability and Computation
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Meaningless Example: Semantics

f:{f<—C1/\b1, f < c3 A by,
d<+ c, d+ ~ oAby,
e« f, e+ ~d}

Po(c1) =0.5 Po(c2) =0.3 Py(c3) =0.2
PO(b]_) = 09 PO(bZ) = 0]_

selection logic program

— ——
w1 ': C1 b1 f d e P(Wl) =0.45
wa | @ b ~f ~d e P(wy) =0.27
ws | g b1 ~f d  ~e P(w3) =0.18
we E a b ~f d ~ e P(ws) = 0.05
Whs ’: (] b2 ~f ~d e P(W5) =0.03
we = g b f  ~d e P(wg) = 0.02

P(e) = 0.45 + 0.27 + 0.03 + 0.02 = 0.77

David Poole Logic, Probability and Computation
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Belief Networks, Decision trees and ICL rules

@ There is a local mapping from belief networks into ICL.

prob ta: 0.02.
prob fire : 0.01.

@ alarm < ta A fire A\ atf.
alarm <+ ~ ta A fire A\ antf.
alarm < ta A ~ fire \ atnf.

@ @ alarm < ~ ta A\ ~ fire A\ antnf.
prob atf : 0.5.
prob antf : 0.99.
@ prob atnf : 0.85.
prob antnf : 0.0001.
smoke < fire A sf.
prob sf : 0.9.
smoke < ~ fire A\ snf.
prob snf : 0.01.

32 David Poole Logic, Probability and Computation
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Belief Networks, Decision trees and ICL rules

@ Rules can represent decision tree with probabilities:

A

/7 N

C B
. /\ e« aAbAh. Po(h1) = 0.7
0.3 /D\0-2 0.7 e: an ~bAh. Po(hy) = 0.2
0.5 0.9 e+ ~aANcAdAhs. Po(h3):0.9
e+ ~aAcA ~dAhy Po(hy)=0.5
PEIABCD) o ~an~cAhs  Po(hs)=03
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Predicting Grades

s ™

prob int(S) : 0.5.

prob diff(C) : 0.5.

gr(S, C, G) «+ int(S) A diff(C) N idg(S, C, G).

prob idg(S, C,a) : 0.5, idg(S, C,b) : 0.4, idg(S,C,c) :0.1.
gr(S,C,G) < int(S) A ~ diff(C) A indg(S, C, G).

prob indg(S, C,a) : 0.9, indg(S, C,b) : 0.09, indg(S, C,c):0.01.
gr(S,C, G) < ~ int(S) A diff(C) A nidg(S, C, G).

prob nidg(S, C, a) : 0.01, nidg(S, C, b) : 0.09, nidg(S,C,c):0.9.
gr(S,C,G) < ~int(S) N ~ diff(C) A nindg(S, C, G).

prob nindg(S, C,a) : 0.1, nindg(S, C, b) : 0.4, nindg(S, C,c) : 0.5.

34 David Poole Logic, Probability and Computation
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Multi-digit addition with parametrized BNs / plates

Student
Digit
Problem

Time '
knows
addition

)(J-X PR X2 Xl @
+ Y, 0 Y2en ®<

—0)

Random Variables: x(D, P), y(D, P), knowsCarry(S, T),
knowsAddition(S, T), carry(D,P,S, T), z(D,P,S, T)
for each: digit D, problem P, student S, time T

@ parametrized random variables

David Poole Logic, Probability and Computation
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ICL rules for multi-digit addition

2(D,P,S,T) =V « 2(D,P,S,T) =V «
x(D,P) = VxA knowsAddition(S, T)A
y(D,P) = VyA mistake(D, P, S, T)A
carry(D,P,S, T) = VcA selectDig(D,P,S, T) = V.
knowsAddition(S, T)A z(D,P,5, T)=V «
—mistake(D, P, S, T)A —knowsAddition(S, T)A
Vis (Vx + Vy + Vc) div 10. selectDig(D,P,S, T) = V.

Alternatives:
VDPST{noMistake(D, P, S, T), mistake(D, P,S, T)}
VDPST {selectDig(D,P,S, T)=V | V €{0.9}}

David Poole Logic, Probability and Computation
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Outline

© Lifted Inference
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Inference

Bayesian Network Inference
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Inference

Lifted Inference

Idea: treat those individuals about which you have the same
information as a block; just count them.

Use the ideas from lifted theorem proving - no need to ground.

Potential to be exponentially faster in the number of
non-differentialed individuals.

Relies on knowing the number of individuals (the population
size).

David Poole Logic, Probability and Computation



Inference
First-order probabilistic inference

Parametrized FOVE Parametrized
Belief Network Posterior
ground ground
VE .
Belief Network > Posterior

David Poole Logic, Probability and Computation



Inference
Theorem Proving and Unification

In 1965, Robinson showed how unification allows many ground
steps with one step:

f(X,2Z)V p(X,a) ~ p(b,Y)V g(Y,W)
f(b,2)V g(a, W)

Substitution {X/b, Y /a} is the most general unifier of p(X, a) and
p(b,Y).

41 David Poole Logic, Probability and Computation



Inference
Variable Elimination and Unification

o Multiplying parametrized factors:
[f(X,Z),p(X,a)] > [p(b,Y) g(Y,W)]
[£(b, Z), p(b, a), g(a, W)]

Doesn't work because the first parametrized factor can't
subsequently be used for X = b but can be used for other
instances of X.

o We split [f(X, Z), p(X, a)] into

[f(b,2), p(b, a)]
[f(X,Z),p(X,a)] with constraint X # b,

42 David Poole Logic, Probability and Computation



Inference

Parametric Factors

A parametric factor is a triple (C, V, t) where
@ C is a set of inequality constraints on parameters,
@ V is a set of parametrized random variables

@ t is a table representing a factor from the random variables to
the non-negative reals.

interested boring | Val

yes yes 0.001
yes no 0.01

<{X # sue}, {interested(X), boring },

43 David Poole Logic, Probability and Computation



Inference

Removing a parameter when summing

Y

interested(X)

ask_question(X

X:person

David Poole

n people
we observe no questions
Eliminate interested:
({},{boring, interested(X)}, t1)
({}, {interested(X)}, t2)
N
({}, {boring}, (t1 x t2)")

(t1 x t2)" is computed point-
wise; we can compute it in time

O(log n).

Logic, Probability and Computation



Inference

Counting Elimination

Eliminate boring:

@ VE: factor on {int(p1),...,int(pn)}

Size is O(d") where d is size of range of
interested.

QW(D Exchangeable: only the number of inter-

ested individuals matters.
Counting Formula:

Y #interested | Value
ask_question(X 0 Vo
1 Vi
X:person
|people| = n n vn

Complexity: O(n9~1).

[de Salvo Braz et al. 2007] and [Milch et al. 08]

) David Poole Logic, Probability and Computation



Inference

Potential of Lifted Inference

@ Reduce complexity:
polynomial — logarithmic

exponential —» polynomial

@ We can now do lifting for unary relations, but we know we
can't do all binary relations [Guy Van den Broeck, 2013]

@ An active research area.

46 David Poole Logic, Probability and Computation
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Outline

e Undirected models, Directed models, and Weighted Formulae
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Weighted

Logistic Regression

Logistic Regression, write R(a;) as R;:

1

P(Q|Rla R Rn) = 1 4 ewotwiRi++wnRn
If all of the R; are exchangeable wa, ..., w, must all be the same:
1
P(Q|Ry,...,Rn)

- 1 4+ ewotwi(Ri+-+Rn)

David Poole Logic, Probability and Computation



Weighted
Logistic Regression

Logistic Regression, write R(a;) as R;:

1

P(Q|Rla R Rn) = 1 4 ewotwiRi++wnRn
If all of the R; are exchangeable wa, ..., w, must all be the same:
1
P(Q|Ry,...,Rn)

- 1 4+ ewotwi(Ri+-+Rn)

If we learn the parameters for n = 10 the prediction for n =20
depends on how values R; are represented numerically:
o If True =1 and False = 0 then P(Q|Ry, ..., R,) depends on
the number of R; that are true.
o If True =1 and False = —1 then P(Q|Ry, ..., R,) depends
on how many more of R; are true than false.
o If True =0 and False = —1 then P(Q|Ry,..., R,) depends
on the number of R; that are false.

48 David Poole Logic, Probability and Computation



Weighted

Directed and Undirected models

e Weighted formula (WF): (L, F, w)
e L is a set of logical variables,
o Fis a logical formula: {free logical variables in F} C L
e w is a real-valued weight.

@ Instances of weighted formule obtained by assigning
individuals to variables in L.

49 David Poole Logic, Probability and Computation



Weighted

Directed and Undirected models

e Weighted formula (WF): (L, F, w)
e L is a set of logical variables,
o Fis a logical formula: {free logical variables in F} C L
e w is a real-valued weight.

@ Instances of weighted formule obtained by assigning
individuals to variables in L.

@ A world is an assignment of a value to each ground instance
of each atom.

e Markov logic network (MLN): “undirected model”
weighted formulae define measures on worlds.
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Weighted

Directed and Undirected models

Weighted formula (WF): (L, F, w)
e L is a set of logical variables,
o Fis a logical formula: {free logical variables in F} C L
e w is a real-valued weight.

@ Instances of weighted formule obtained by assigning
individuals to variables in L.

@ A world is an assignment of a value to each ground instance
of each atom.

e Markov logic network (MLN): “undirected model”
weighted formulae define measures on worlds.

@ Relational logistic regression (RLR): “directed model”

weighted formulae define conditional probabilities.

49 David Poole Logic, Probability and Computation



Weighted
Example

Weighted formulae:

({x}, funFor(x), —5)
{({x, y}, funFor(x) A knows(x, y) A social(y), 10)

If obs includes observations for all knows(x, y) and social(y):
P(funFor(x) | obs) = sigmoid(—5 + 10nT)

nt is the number of individuals y for which
knows(x,y) A social(y) is True in obs.

1

sigmoid(x) = T

50 David Poole Logic, Probability and Computation



Weighted
Abstract Example

(
<{X} q A -r(x),a1)
({x} anr(x), az)
({x}, r(x), az)

If r(x) for every individual x is observed:
P(q | obs) = sigmoid(ap + npaq + nrao)

nt is number of individuals for which r(x) is true
ng is number of individuals for which r(x) is false

1

sigmoid(x) = T
e

51 David Poole Logic, Probability and Computation



Weighted

Three Elementary Models

?

@

O

}Uf

(a) Naive Bayes

-®
Oand)

&

—

@
® @@
- S

)

g

©

(b) (Relational) Logistic Regression

(c) Markov network
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Weighted

Independence Assumptions

x

1 X X

T Ak
©

© ©

(@

o Naive Bayes and Markov network: R(x) and R(y) (for x # y)
e are independent given @
e are dependent not given Q.

@ Directed model with aggregation: R(x) and R(y) (for x # y)
e are dependent given Q,
e are independent not given Q.
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Weighted
What happens as Population size n Changes: Simplest case

({}, 9, a0)

({x}, g A —r(x), 1)
<{X}a qn r(x), 042>
({x}, r(x), o3)

PMLN(CI | n) = sigmoid( ag + n|0g(ea2 + ea1—a3) )

Prir(q | n) = <7> sigmoid(ag+ia+(n—i)az)(1—p,) p~'
i=0

Pmre(q | n) = sigmoid(ag + nprag + n(1 — py)az)
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Weighted

Population Growth: P(q | n)

1.0
0.8
0.6f
G
T
0.4}
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. )/ — relational logistic
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4
i’ - +« MLN
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Weighted

Population Growths: Pgrir(q | n)

Whereas this MLN is a sigmoid of n, RLR

needn't be monotonic:

0.5 T T T T T T T
— Relational Logistic
- - Mean Field
0.4 R
0.3F R
=
g
0.2 E
0.1~ |
N
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n
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Existence

Outline

@ Existence and Identity Uncertainty
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Existence

Correspondence Problem

Symbols Individuals

h3: The house with the green roof ---- - -----

h4: The house with the pink roof

¢ symbols and i individuals — ¢! correspondences
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Existence

Clarity Principle

Clarity principle: probabilities must be over well-defined
propositions.
@ What if an individual doesn't exist?
o house(h4) A roof _colour(h4, pink) A —exists(h4)
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Existence

Clarity Principle

Clarity principle: probabilities must be over well-defined
propositions.
@ What if an individual doesn't exist?
o house(h4) A roof _colour(h4, pink) A —exists(h4)

@ What if more than one individual exists? Which one are we
referring to?
—1In a house with three bedrooms, which is the second
bedroom?
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Existence

Clarity Principle

Clarity principle: probabilities must be over well-defined
propositions.
@ What if an individual doesn't exist?
o house(h4) A roof _colour(h4, pink) N\ —exists(h4)

@ What if more than one individual exists? Which one are we

referring to?
—In a house with three bedrooms, which is the second

bedroom?

@ Reified individuals are special:
— Non-existence means the relation is false.
— Well defined what doesn’t exist when existence is false.
— Reified individuals with the same description are the same
individual.
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Existence

Role assignments

Hypothesis about what apartment Mary would like.

Whether Mary likes an apartment depends on:

Whether there is a bedroom for daughter Sam
Whether Sam’s room is green

Whether there is a bedroom for Mary
Whether Mary's room is large

Whether they share
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Existence

Bayesian Network Representation

Which
room is
Mary's

Which
room is
Sam's

Sam's
room is
green

Mary's
room is
large

Sam
likes her
room

Mary
Likes her
room

Apartment
is suitable

How can we condition on the observation of the apartment?
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Existence

Naive Bayes representation

Apartment
Apartment

is suitable

[4 ] r3
Room1 Room2
is large Room?2 is green
Roomf1

How do we specify that Mary chooses a room?
What about the case where they (have to) share?
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Existence

Number and Existence Uncertainty

e PRMs (Pfeffer et al.), BLOG (Milch et al.): distribution over
the number of individuals. For each number, reason about the
correspondence.

e NP-BLOG (Carbonetto et al.): keep asking: is there one

more?
e.g., if you observe a radar blip, there are three hypotheses:

e the blip was produced by plane you already hypothesized
e the blip was produced by another plane
e the blip wasn't produced by a plane

63 David Poole Logic, Probability and Computation



Existence

Existence Example

false same  another )
another blip |

lane
p alarm  plane  plane

\\

y false false false 3

. . \
[ false alarm alarm alarm third blip \
1 1
: alarm same same same |
\ i
\ plane plane plane k
’

. plane another  another another

. /

plane plane plane.-”
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Existence

First-order Semantic Trees

Split on quantified first-order formulae:

“\

dx:t(x)
f t

X X
undefined )\ defined

@ The “true” sub-tree is in the scope of x

@ The “false” sub-tree is not in the scope of x

A logical generative model generates a first-order semantic tree.
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Existence

First-order Semantic Tree (cont)

da: apartment(a)

® EIrI.' bedroom(r])Am(r],a)
f

@ E|r2.' r00m(r2)Ain(rz,a)Agreen(r2)

f Ut
@/ @

@ there is no apartment

@ there is no bedroom in the apartment
® there is a bedroom but no green room
@ there is a bedroom and a green room
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Existence
Distributions over number

Hc].' chair(c])
f ~t
@ — 362: chair(cz) ACp#Cy
f \t

@ Acy: chair(cy) n ey E{cphen)
f |t
@ Elc4.' chair(cy) A cg ${c],c2,c3}

& / \t
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Existence

Roles and Identity (1)

EIx:rI(x)
£~ ~d
3z r2(z) Jy: r2(y)
£/ A\t 7 N
® @ ® AR
@ ®

@ there no individual filling either role

@ there is an individual filling role r» but none filling r;
® there is an individual filling role r; but none filling r
@ only different individuals fill roles r; and r,

® some individual fills both roles r; and r»
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Existence

Roles and Identity (2)

dx: r(x)
£~ ¢
dz: r2(z) Jy: r2(y)
i/ A\t .
@ @ ® @f /\t

@ there no individual filling either role

@ there is an individual filling role r» but none filling r;
® there is an individual filling role r; but none filling r
@ only the same individual fill roles r; and r

® there are different individuals that fill roles r; and r»
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Existence

Observation Protocols

AL A A\

AN O

Observe a triangle and a circle touching. What is the probability
the triangle is green?

P(green(x)
|triangle(x) A 3y circle(y) A touching(x,y))

The answer depends on how the x and y were chosen!
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Existence
Protocol for Observing

WA‘Q@

P(green(x)
| triangle(x) A y circle(y) A touching(x,y))

select(x) select(y) select(x, y)
| | |
select(y) select(x)
| |
3/4 2/3 4/5
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Existence

Conclusion

@ To decide what to do an agent should take into account its
uncertainty and it preferences (utility).

@ The field of “statistical relational Al” looks at how to combine
first-order logic and probabilistic reasoning.

@ We need models that can condition on observations that
follow some protocol

Challenges

@ Representation: heuristically and epistemologically adequate
representations for probabilistic models + observations (4
actions + utilities + ontologies)

@ Inference: compute posterior probabilities (or optimal actions)
quickly enough to be useful

@ Learning: get best hypotheses conditioned on all observations
possible
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Existence

Al: computational agents that act intelligently

Inputs

Tasks

Ontologies
Prior Knowledge
Observations

Data

What should Relations
Hypotheses

?
an agent do* Preferences/Utilities

/ / VN}ilities
Dynamical Systems
Decision Theory \ Computation

gic
it Knowledge Representation
wausncs Game theory el /

Foundations
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