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Example: Predicting Relations

Student Course Grade

s1 c1 A
s2 c1 C
s1 c2 B
s2 c3 B
s3 c2 B
s4 c3 B
s3 c4 ?
s4 c4 ?

I Students s3 and s4 have the same averages, on courses with
the same averages. Why should we make different predictions?

I How can we make predictions when the values of properties
Student and Course are individuals?
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From Relations to Belief Networks

Gr(s1, c1)
I(s1)

I(s2)

I(s3)

Gr(s2, c1)

Gr(s1, c2)

Gr(s2, c3)

D(c1)

D(c2)

I(s4)

D(c3)

D(c4)

Gr(s3, c2)

Gr(s4, c3)

Gr(s4, c4)

Gr(s3, c4)

I (S) D(C ) Gr(S ,C )
A B C

true true 0.5 0.4 0.1
true false 0.9 0.09 0.01
false true 0.01 0.1 0.9
false false 0.1 0.4 0.5

P(I (S)) = 0.5
P(D(C )) = 0.5

“parameter sharing”
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Plate Notation

C

S

Gr(S,C)

I(S) D(C)

I S is a logical variable representing students
I C is a logical variable representing courses
I the set of individuals of a type is called a population
I I (S), Gr(S ,C ), D(C ) are parametrized random variables

I for every student s, there is a random variable I (s)
I for every course c , there is a random variable D(c)
I for every student s and course c pair there is a random

variable Gr(s, c)
I all instances share the same structure and parameters

Poole, Buchman, Kazemi, Kersting, Natarajan Population Size Extrapolation in Relational Probabilistic Modelling



Plate Notation

C

S

Gr(S,C)

I(S) D(C)

I S is a logical variable representing students
I C is a logical variable representing courses
I the set of individuals of a type is called a population
I I (S), Gr(S ,C ), D(C ) are parametrized random variables
I for every student s, there is a random variable I (s)
I for every course c , there is a random variable D(c)
I for every student s and course c pair there is a random

variable Gr(s, c)
I all instances share the same structure and parameters

Poole, Buchman, Kazemi, Kersting, Natarajan Population Size Extrapolation in Relational Probabilistic Modelling



Outline

Relational Probabilistic Models

Markov Logic Networks and Relational Logistic Regression

Varying Populations

Poole, Buchman, Kazemi, Kersting, Natarajan Population Size Extrapolation in Relational Probabilistic Modelling



Directed and Undirected models

I Weighted formula (WF): 〈L,F ,w〉
I L is a set of logical variables,
I F is a logical formula: {free logical variables in F} ⊆ L
I w is a real-valued weight.

I Instances of weighted formule obtained by assigning
individuals to variables in L.

I A world is an assignment of a value to each ground instance
of each atom.

I Markov logic network (MLN): “undirected model”
weighted formulae define measures on worlds:
Probability of a world is proportional to the exponent of the
sum of the instances of the formulae true in the world.

I Relational logistic regression (RLR): “directed model”
weighted formulae define conditional probabilities:
Probability of a variable assignment given a parent assignment
is proportional to the exponent of the sum of the weights the
instances of the formulae true in the assignment.
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Example

Weighted formulae:

〈{x}, funFor(x),−5〉
〈{x , y}, funFor(x) ∧ knows(x , y) ∧ social(y), 10〉

If Π includes observations for all knows(x , y) and social(y):

P(funFor(x) | Π) = sigmoid(−5 + 10nT )

nT is the number of individuals y for which
knows(x , y) ∧ social(y) is True in Π.

sigmoid(x) =
1

1 + e−x
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Abstract Example

〈{}, q, α0〉
〈{x}, q ∧ ¬r(x), α1〉
〈{x}, q ∧ r(x), α2〉
〈{x}, r(x), α3〉

If r(x) for every individual x is observed:

P(q | obs) = sigmoid(α0 + nFα1 + nTα2)

nT is number of individuals for which r(x) is true
nF is number of individuals for which r(x) is false

sigmoid(x) =
1

1 + e−x
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Three Elementary Models

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

(b) (c)(a)

(a) Näıve Bayes

(b) (Relational) Logistic Regression

(c) Markov network
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Independence Assumptions

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

(b) (c)(a)

I Näıve Bayes and Markov network: R(x) and R(y) (for x 6= y)
I are independent given Q
I are dependent not given Q.

I Directed model with aggregation: R(x) and R(y) (for x 6= y)
I are dependent given Q,
I are independent not given Q.
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What happens as Population size n Changes: Simplest case

〈{}, q, α0〉
〈{x}, q ∧ ¬r(x), α1〉
〈{x}, q ∧ r(x), α2〉
〈{x}, r(x), α3〉

PMLN(q | n) = sigmoid( α0 + n log(eα2 + eα1−α3) )

PRLR(q | n) =
n∑

i=0

(
n
i

)
sigmoid(α0+iα1+(n−i)α2)(1−pr )ipn−ir

PMF (q | n) = sigmoid(α0 + nprα1 + n(1− pr )α2)
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Population Growth: P(q | n)
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Population Growths: PRLR(q | n)

Whereas this MLN is a sigmoid of n, RLR needn’t be monotonic:
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n
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Dependence of R(x) on population size

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

(b) (c)(a)

I In (b), the directed model with aggregation, P(R(x)) is not
affected by the population size.

I In (c), PMLN(R(x)) is unaffected by population size if and
only if the MLN is equivalent to a Näıve Bayes model (a).

I For other MLNs...
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PMLN(q | α3) for various n
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PMLN(r(A1) | α3) for various n
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Results on population growth

I For RLR the probability of child given the parents is aways the
sigmoid of a polynomial of the counts of the parents.
All polynomials can be represented.

I In an MLN without infinite weights, if V is not in a formula
with a logical variable of a population, then P(V | n) is
bounded away from 0 and 1 as population n→∞.

I In an MLN without infinite weights, if V is in a formula with
some R(X ), where X does not appear in V and R(X ) doesn’t
unify with other formulae:
then either P(r) is independent of the population size n or
limn→∞ PMLN(r) is either 1 or 0.
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Real Data
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Observed P(25 < Age(p) < 45 | n), where n is number of movies
watched from the Movielens dataset.
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Example of polynomial dependence of population

〈{}, q, α0〉
〈{x}, q ∧ true(x), α1〉
〈{x}, q ∧ r(x), α2〉
〈{x}, true(x), α3〉
〈{x}, r(x), α4〉
〈{x , y}, q ∧ true(x) ∧ true(y), α5〉
〈{x , y}, q ∧ r(x) ∧ true(y), α6〉
〈{x , y}, q ∧ r(x) ∧ r(y), α7〉

In RLR and in MLN, if all R(Ai ) are observed:

P(q | obs) = sigmoid(α0 + nα1 + nTα2 + n2α5 + nTnα6 + n2Tα7)

R(x) is true for nT individuals out of a population of n.
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Danger of fitting to data without understanding the model

I RLR can fit sigmoid of any polynomial.

I Consider a polynomial of degree 2:
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Conclusions

I The form of the formulae used gives prior information about
the dependence on population.

I The model should fit with our prior knowledge.

I We are beginning to understand this dependence, but there is
a lot we don’t know.

I MLNs and RLR provide different modelling assumptions,
which are applicable in different circumstances.
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