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For when I am presented with a false theorem, I
do not need to examine or even to know the
demonstration, since I shall discover its falsity a
posteriori by means of an easy experiment, that is,
by a calculation, costing no more than paper and
ink, which will show the error no matter how small it
is. . .

And if someone would doubt my results, I should
say to him: ”Let us calculate, Sir,” and thus by
taking to pen and ink, we should soon settle the
question.

—Gottfried Wilhelm Leibniz [1677]
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Questions considered

[Grad student:] All of the easy problems have been
solved; how do I choose a what to work on?

Search engines give results of my query, but why should I
believe the answers?

The semantic web is supposed to make human knowledge
accessible to computers, but how can we evaluate that
knowledge and go beyond the sum of human knowledge?

How is (probabilistic) inductive logic programming central
to the semantic web?

What will AI and the web look like in 2025?
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History of AI — a perspective from 2025

Semantic web has evolved into the world-wide mind
(WWM) — a distributed repository of all knowledge,
backed up by the best science available.

The world-wide mind doesn’t just accept new knowledge
but critically evaluates it and generates new knowledge.

Scientists freed from mundane data analysis, develop new
hypotheses, interesting questions, and observational data.

World-wide mind is the expert on all questions of truth
and makes the best predictions. (Using hypotheses
provided by a mix of humans and machine learning).

Public discourse on values (utilities) to determine the best
course of actions for individuals, organizations and society.
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Finding information; e.g. diagnosis from symptoms

2010 2025
• need to guess keywords;
re-guess until exhaustion

• keywords + context + ontologies
→ unambiguous query

• what information found is
based on popularity and/or
appeal to authority

• information based on best
evidence available in world

• verify information based
on other sites (with different
wording)

• information justified by
presenting the evidence for and
against it

• extract information from
text and graphics to make
decisions

• decisions based on evidence and
utilities
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Believing information

2010 2025
• skeptics throw doubt on
science and scientists say
“trust us”

• data is available for all to view;
all alternative hypotheses can be
evaluated

• politicians campaign on
what is true and what they
will do

• politicians campaign on their
values

• food shopping is based on
price and brands

• food shopping based on
optimizing health and well-being
(users goals and values, and known
risks)
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AI Research

2010 2025
• separation of uncertainty
and KR issues
— ML ignores ontologies
— rich representations
ignore uncertainty

• uncertainty and ontologies are
integral parts of world-wide mind

• semantic web in its infancy • world wide mind being used
• relational representations
starting to be used in ML

• rich representations with
uncertainty ubiquitous

• learning based on one or
few homogeneous data sets

• learning from all data in world

• data sets usable only by
specialists

• data sets published, available,
persistent and interoperable
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Outline

1 Semantic Science Overview
Ontologies
Data
Hypotheses and Theories
Models

2 Feature-based model construction

3 Lifted Inference in Relational Domains

4 Existence and Identity Uncertainty
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Notational Minefield

Variable (probability, logic, programming languages)

Model (science, probability, logic, fashion)

Parameter (mathematics, statistics)

Domain (science, logic, probability, mathematics)

Object/class (object-oriented programming, ontologies)

= (probability, logic)

First-order (logic, dynamical systems)
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Science is the foundation of belief

If a KR system makes a prediction, we should ask: what
evidence is there? The system should be able to provide
such evidence.

A knowledge-based system should believe based on
evidence. Not all beliefs are equally valid.

The mechanism that has been developed for judging
knowledge is called science. We trust scientific
conclusions because they are based on evidence.

The semantic web is an endeavor to make all of the
world’s knowledge accessible to computers.

We have used to term semantic science, in an anaolgous
way to the semantic web.

Claim: semantic science will form the foundation of the
world-wide mind.

10 David Poole Probabilistic Relational Learning



Semantic Science Features Relations Existence Ontologies Data Hypotheses and Theories Models

Science is the foundation of belief

If a KR system makes a prediction, we should ask: what
evidence is there? The system should be able to provide
such evidence.

A knowledge-based system should believe based on
evidence. Not all beliefs are equally valid.

The mechanism that has been developed for judging
knowledge is called science. We trust scientific
conclusions because they are based on evidence.

The semantic web is an endeavor to make all of the
world’s knowledge accessible to computers.

We have used to term semantic science, in an anaolgous
way to the semantic web.

Claim: semantic science will form the foundation of the
world-wide mind.

10 David Poole Probabilistic Relational Learning



Semantic Science Features Relations Existence Ontologies Data Hypotheses and Theories Models

Science as the foundation of world-wide mind

Science can be about anything:

where and when landslides occur

where to find gold

what errors students make

disease symptoms, prognosis and treatment

what companies will be good to invest in

what apartment Mary would like

which celebrities are having affairs
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Semantic Science

Data

World Ontologies

Training
Data Hypotheses/

Theories
New 

Cases Models → 
Predictions

Ontologies represent the
meaning of symbols.

Data that adheres to
ontologies are published.

Hypotheses that make
(probabilistic) predictions
on data are published.

Data used to evaluate
hypotheses; the best
hypotheses are theories.

Hypotheses form models
for predictions on new
cases.

All evolve in time.
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Ontologies

In philosophy, ontology the study of existence.

In CS, an ontology is a (formal) specification of the
meaning of the vocabulary used in an information system.

Ontologies are needed so that information sources can
inter-operate at a semantic level.
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Ontologies
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Main Components of an Ontology

Individuals: the objects in the world (not usually specified
as part of the ontology)

Classes: sets of (potential) individuals

Properties: between individuals and their values

〈Individual ,Property ,Value〉 triples are universal
representations of relations.
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Semantic Web Ontology Languages

URI — universal resource identifier; everything is a
resource

RDF — language for triples in XML

RDF Schema — define resources in terms of each other:
class, type, subClassOf, subPropertyOf, collections. . .

OWL — defines vocabulary for individuals, properties and
classes: equality, restricting domains and ranges of
properties, transitivity, cardinality. . .
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Aristotelian definitions

Aristotle [350 B.C.] suggested the definition if a class C in
terms of:

Genus: the super-class

Differentia: the attributes that make members of the
class C different from other members of the super-class

“If genera are different and co-ordinate, their differentiae are
themselves different in kind. Take as an instance the genus
’animal’ and the genus ’knowledge’. ’With feet’, ’two-footed’,
’winged’, ’aquatic’, are differentiae of ’animal’; the species of
knowledge are not distinguished by the same differentiae. One
species of knowledge does not differ from another in being
’two-footed’.”

Aristotle, Categories, 350 B.C.
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An Aristotelian definition

An apartment building is a residential building with
multiple units and units are rented.

ApartmentBuilding ≡ ResidentialBuilding&

NumUnits = many&

Ownership = rental

NumUnits is a property with domain ResidentialBuilding
and range {one, two,many}
Ownership is a property with domain Building and range
{owned , rental , coop}.
All classes are defined in terms of properties.
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Data

Real data is messy!

Multiple levels of abstraction

Multiple levels of detail

Uses the vocabulary from many ontologies: rocks,
minerals, top-level ontology,. . .

Rich meta-data:

Who collected each datum? (identity and credentials)
Who transcribed the information?
What was the protocol used to collect the data?
(Chosen at random or chosen because interesting?)
What were the controls — what was manipulated, when?
What sensors were used? What is their reliability and
operating range?
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Example Data, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Slope
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Example Data, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Structure
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http://www.vsto.org/

VSTO Home

 

●     Home
●     Data

●     Communities
●     About Us

●     Login

 

 

Welcome to the Virtual Solar Terrestrial Observatory

The Virtual Solar Terrestrial Observatory (VSTO) is a unified semantic environment serving data 
from diverse data archives in the fields of solar, solar-terrestrial, and space physics (SSTSP), 
currently: 

●     Upper atmosphere data from the CEDAR (Coupling, Energetics and Dynamics of 
Atmospheric Regions) archive

●     Solar corona data from the MLSO (Mauna Loa Solar Observatory) archive 

The VSTO portal uses an underlying ontology (i.e. an organized knowledge base of the SSTSP 
domain) to present a general interface that allows selection and retrieval of products (ascii and 
binary data files, images, plots) from heterogenous external data services. 

 VSTO Data Access 

 

 

Acknowledgments VSTO is a collaboration of the ESSL/HAO (High Altitude Observatory) and 
CISL/SCD (Scientific Computing Division) divisions at NCAR with McGuinness Associates, funded 
by the National Science Foundation. This study made use of the CEDAR Database at the National 

Center for Atmospheric Research which is supported by the National Science Foundation. This 
study made use of data from the Mauna Loa Solar Observatory operated by the High Altitude 

Observatory at the National Center for Atmospheric Research which is supported by the National 
Science Foundation. 

User: guest | VSTO Home | VSTO Project Web Site | Contact Us 

VSTO Portal Software version 1.0 © UCAR, all rights reserved.

Virtual Solar Terrestrial Observatory, funded by the National Science Fundation 

http://www.vsto.org/home/home.htm;jsessionid=ABC9FF32C1AE65F712EFD6D08A82D0C811/21/2007 7:47:05 AM
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Data is theory-laden

Sapir-Whorf Hypothesis [Sapir 1929, Whorf 1940]:
people’s perception and thought are determined by what
can be described in their language. (Controversial in
linguistics!)

A stronger version for information systems:

What is stored and communicated by an information
system is constrained by the representation and the
ontology used by the information system.

Ontologies come logically prior to the data.

Data can’t make distinctions that can’t be expressed in
the ontology.

Different ontologies result in different data.
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Hypotheses make predictions on data

Hypotheses are procedures that make prediction on data.
Theories are hypotheses that best fit the observational data.

Hypotheses can make various predictions about data:
definitive predictions
point probabilities
probability ranges
ranges with confidence intervals
qualitative predictions

For each prediction type, we need ways to judge
predictions on data
Users can use whatever criteria they like to evaluate
hypotheses (e.g., taking into account simplicity and
elegance)
Semantic science search engine: extract theories from
published hypotheses.
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Example Prediction from a Hypothesis

WWW.GEOREFERENCEONLINE.COM

 Test Results: Model SoilSlide02
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Applying hypotheses to new cases

Hypotheses are often narrow, e.g., prognosis of people
with a lung cancer.

Hypotheses are general in the sense that they can be
adapted to different cases.

A model is a set of hypotheses applied to a particular
case.

Judge hypotheses by how well they fit into models.
Models can be judged by simplicity.
Hypothesis designers don’t need to game the system by
manipulating the generality of hypotheses
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Dynamics of Semantic Science

New data and hypotheses are continually added.

Anyone can design their own ontologies.
— People vote with their feet what ontology they use.
— Need for semantic interoperability leads to ontologies
with mappings between them.

Hypotheses engineered + learned (e.g., using ILP)

Ontologies evolve with hypotheses:
A hypothesis learns useful unobserved features
−→ add these to an ontology
−→ other researchers can refer to them
−→ reinterpretation of data

Ontologies can be judged by the predictions of the
hypotheses that use them
— role of a vocabulary is to describe useful distinctions.
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Levels of Semantic Science

0. Deterministic semantic science where all of the
hypotheses make definitive predictions.

1. Feature-based semantic science, with non-deterministic
predictions about feature values of data.

2. Relational semantic science, with predictions about the
properties of objects and relationships among objects.

3. First-order semantic science, with predictions about the
existence of objects, universally quantified statements and
relations.
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Outline

1 Semantic Science Overview
Ontologies
Data
Hypotheses and Theories
Models

2 Feature-based model construction

3 Lifted Inference in Relational Domains
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Feature-Based Semantic Science

World is described in terms of features and values.

Random variables / features correspond to properties.

Random variables / features are not defined in all
contexts.

Aristotelian definitions: each class is defined in terms of

genus (superclass) and
differentia (property restrictions that distinguish this
class).

Conditioning on a class means observing its differentia are
true
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Example Ontology

Property Domain Range
Age person integer
Sex person {male,female}
HasLump person boolean
LumpShape personWithLump {circular, oblong, irregular}
LumpLocn personWithLump {leg,torso,arm,head}
CancLump personWithLump boolean
LumpColour personWithLump {red,pink,brown,. . . }
HasCancer person boolean
HasLungCancer personWithCancer boolean
OutcomeAtYear person {well,sick,dead}
Class Genus Differentia
person thing IsPerson=true
personWithLump person HasLump=true
personWithCancer person HasCancer=true
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Partial Ontology in OWL

FunctionalDataProperty(HasLump)

DataPropertyDomain(HasLump person)

DataPropertyRange(HasLump xsd:boolean)

EquivalentClasses(personWithLump

DataHasValue(HasLump true))

FunctionalDataProperty(CancLump)

DataPropertyDomain(CancLump personWithLump)

DataPropertyRange(CancLump xsd:boolean)

ObjectPropertyDomain(LumpShape personWithLump)

ObjectPropertyRange(LumpShape

ObjectOneOf(circular oblong irregular))

SubClassOf(DataHasValue(CancLump true)

personWithCancer)
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Observational Data

A data set refers to a set of imported ontologies and consists
of a set of 〈c ,O, t〉 triples, where:

the context c in which the data was collected

the features O that were observed

a table t on O

The symbols used in the data set are defined in the ontologies.
[This talk will ignore interventions.]
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Example Data

person:

Age Sex Coughs HasLump
23 male true true
. . . . . . . . . . . .

personWithLump:

LumpLocn LumpShape LumpColour CancLump
leg oblong red false
. . . . . . . . . . . .

personWithCancer:

HasLungCancer TakenHerb Age OutcomeAtYear
true true 77 dead
. . . . . . . . . . . .
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Hypotheses

A hypothesis makes predictions about some feature values.
A hypothesis h is 〈c , I ,O,P〉 where:

c , a context, is a proposition that specifies when h can be
applied.

I is a set of input features about which h does not make
predictions

O is a set output features to predict
(as a function of the input features).

P is a program to compute the output from the input
(e.g., in ProbLog or Figaro)

Represents:

P(O|c , I )
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Example Hypotheses

H1 predicts the prognosis of people with lung cancer as a
function of treatment:

〈personWithCancer ∧ HasLungCancer ,

{Treatment}, {OutcomeAtYear},P1〉
H2 predicts the prognosis of people with cancer.

〈personWithCancer , {}, {OutcomeAtYear},P2〉

H3 is a null hypothesis for the prognosis of people:

〈person, {}, {OutcomeAtYear},P3〉

H4 predicts the prognosis of people with cancer, as a
function of their income and age:

〈personWithCancer , {Income,Age}, {OutcomeAtYear},P4〉
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Example Hypotheses (cont.)

H5 predicts whether people with cancer have lung cancer,
as a function of coughing.

〈personWithCancer , {Coughs}, {HasLungCancer},P5〉

H6 predicts whether people have cancer.

〈person, {}, {HasCancer},P6〉

H7 and H8 predict the shape of lumps as a function of
whether they have cancer.

〈person, {HasCancer}, {HasLump},P7〉

〈personWithLump, {HasCancer}, {LumpShape},P8〉
What should be used to predict the prognosis of a patient with
observed coughing?
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Models

To make a prediction given a query for a particular case,
multiple hypotheses are used together in a model.
Each hypothesis in the model is used to predict a subset of its
output features given its inputs.
A model M needs to satisfy the following properties:

M is coherent: it does not rely on the value of a feature
in a context where the feature is not defined

M is consistent: it does not make different predictions for
any feature in any context.

M is predictive: it predicts the input of each hypothesis
and predicts the query in every context that is possible.

M is minimal.
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Prototype Feature-based Model

A hypothesis instance is a tuple of the form 〈t, c , I ,O〉 such
that:

t is a hypothesis,

c a context in which the hypothesis is used

I a set of inputs used by the hypothesis

O a set of outputs the hypothesis is used to predict.

A model is a set of hypothesis instances that is coherent,
consistent, predictive and minimal.
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Example

H1 predicts the prognosis of people with lung cancer as a
function of treatment.

H2 predicts the prognosis of people with cancer.

H3, a null hypothesis, predicts the prognosis of people.

H5 predicts whether people with cancer have lung cancer,
as a function of coughing.

H6 predicts whether people have cancer.

A possible model for
P(OutcomeAtYear |person ∧ coughs ∧ treatment = none):
〈H3, person ∧ ¬hasCancer , {}, {OutcomeAtYear}〉
〈H1, person ∧ hasLungCancer , {Treatment}, {OutcomeAtYear}〉
〈H2, person ∧ hasCancer ∧ ¬hlc , {}, {OutcomeAtYear}〉
〈H6, person, {}, {HasCancer}〉
〈H5, person ∧ hasCancer , {Coughs}, {HasLungCancer}〉
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Feature-based predictions

Multiple competing and complementary hypotheses

Hypotheses can be judged and learned using all existing
data sets

A semantic science search engine would find best
hypotheses (the theories) for any predictions.

For a specific case, multiple hypotheses are combined to
form a model.

Each prediction relies on multiple hypotheses; each
hypothesis is judged by multiple data sets.

44 David Poole Probabilistic Relational Learning



Semantic Science Features Relations Existence

Outline

1 Semantic Science Overview
Ontologies
Data
Hypotheses and Theories
Models

2 Feature-based model construction

3 Lifted Inference in Relational Domains

4 Existence and Identity Uncertainty
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Relational Learning

Often the values of properties are not meaningful values
but names of individuals.

It is the properties of these individuals and their
relationship to other individuals that needs to be learned.

Relational learning has been studied under the umbrella of
“Inductive Logic Programming” as the representations are
often logic programs.
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Example: trading agent

What does Joe like?

Individual Property Value
joe likes resort 14
joe dislikes resort 35
. . . . . . . . .
resort 14 type resort
resort 14 near beach 18
beach 18 type beach
beach 18 covered in ws
ws type sand
ws color white
. . . . . . . . .

Values of properties may be meaningless names.
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Example: trading agent

Possible theory that could be learned:

prop(joe, likes,R)←
prop(R , type, resort)∧
prop(R , near ,B)∧
prop(B , type, beach)∧
prop(B , covered in, S)∧
prop(S , type, sand).

Joe likes resorts that are near sandy beaches.

But we want probabilistic predictions.
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Example Predicting students errors

x2 x1
+ y2 y1

z3 z2 z1

x2

x1

y2
y1

z1z2z3

carry2carry3

knows 
addition

knows 
carry

What if there were multiple digits, problems, students, times?
How can we build a model before we know the individuals?
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Multi-digit addition with parametrized BNs / plates

xjx · · · x2 x1
+ yjz · · · y2 y1

zjz · · · z2 z1

Student
Time

Digit
Problem

x

y
z

carry

knows 
addition

knows 
carry

Random Variables: x(D,P), y(D,P), knowsCarry(S ,T ),
knowsAddition(S ,T ), carry(D,P , S ,T ), z(D,P , S ,T )
for each: digit D, problem P , student S , time T
* parametrized random variables
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Exchangeability

Before we know anything about individuals, they are
indistinguishable, and so should be treated identically.
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Independent Choice Logic (ICL)

A language for relational probabilistic models.

Idea: combine logic and probability, where all uncertainty
in handled in terms of Bayesian decision theory, and logic
specifies consequences of choices.

An ICL theory consists of a choice space with probabilities
over choices and a logic program that gives consequences
of choices.
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ICL rules for multi-digit addition

z(D,P , S ,T ) = V ←
x(D,P) = Vx∧
y(D,P) = Vy∧
carry(D,P , S ,T ) = Vc∧
knowsAddition(S ,T )∧
¬mistake(D,P , S ,T )∧
V is (Vx + Vy + Vc) div 10.

z(D,P , S ,T ) = V ←
knowsAddition(S ,T )∧
mistake(D,P , S ,T )∧
selectDig(D,P , S ,T ) = V .

z(D,P , S ,T ) = V ←
¬knowsAddition(S ,T )∧
selectDig(D,P , S ,T ) = V .

Alternatives:
∀DPST{noMistake(D,P , S ,T ),mistake(D,P , S ,T )}
∀DPST{selectDig(D,P , S ,T ) = V | V ∈ {0..9}}
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Bayesian Network Inference

A C

B D

E

F G

P(E |g) =
P(E ∧ g)

p(g)

P(E ∧ g) =
∑
F

∑
B

∑
C

∑
A

∑
D

P(A)P(B |AC )

P(C )P(D|C )P(E |B)P(F |E )P(g |ED)

=

(∑
F

P(F |E )

)
∑
B

P(e|B)
∑
C

P(C )

(∑
A

P(A)P(B |AC )

)
(∑

D

P(D|C )P(g |ED)

)
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Lifted Inference

Idea: treat those individuals about which you have the
same information as a block; just count them.

Use the ideas from lifted theorem proving - no need to
ground.

Potential to be exponentially faster in the number of
non-differentialed individuals.

Relies on knowing the number of individuals (the
population size).
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Parametrized belief networks

Allow random variables to be parametrized. interested(X )

Parameters correspond to logical variables. X

Each parameter is typed with a population. X : person

Each population has a size. |person| = 1000000

Parametrized belief network means its grounding: for
each combination of parameters, an instance of each
random variable for each member of parameters’
population. interested(p1) . . . interested(p1000000)

Instances are independent (but can have common
ancestors and descendants).
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Example parametrized belief network

interested(X)

ask_question(X)

boring

X:person

P(boring)
∀X P(interested(X )|boring)
∀X P(ask question(X )|interested(X ))

57 David Poole Probabilistic Relational Learning



Semantic Science Features Relations Existence

First-order probabilistic inference

Parametrized
Belief Network

Belief Network

Parametrized
Posterior

Posterior

FOVE

VE

ground ground
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Theorem Proving and Unification

In 1965, Robinson showed how unification allows many ground
steps with one step:

f (X ,Z ) ∨ p(X , a) ¬p(b,Y ) ∨ g(Y ,W )︸ ︷︷ ︸
f (b,Z ) ∨ g(a,W )

Substitution {X/b,Y /a} is the most general unifier of p(X , a)
and p(b,Y ).
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Variable Elimination and Unification

Multiplying parametrized factors:

[f (X ,Z ), p(X , a)] × [p(b,Y ), g(Y ,W )]︸ ︷︷ ︸
[f (b,Z ), p(b, a), g(a,W )]

Doesn’t work because the first parametrized factor can’t
subsequently be used for X = b but can be used for other
instances of X .

We split [f (X ,Z ), p(X , a)] into

[f (b,Z ), p(b, a)]

[f (X ,Z ), p(X , a)] with constraint X 6= b,

60 David Poole Probabilistic Relational Learning



Semantic Science Features Relations Existence

Parametric Factors

A parametric factor is a triple 〈C ,V , t〉 where

C is a set of inequality constraints on parameters,

V is a set of parametrized random variables

t is a table representing a factor from the random
variables to the non-negative reals.〈

{X 6= sue}, {interested(X ), boring},

interested boring Val
yes yes 0.001
yes no 0.01

· · ·

〉

61 David Poole Probabilistic Relational Learning



Semantic Science Features Relations Existence

Removing a parameter when summing

interested(X)

ask_question(X)

boring

X:person

n people
we observe no questions

Eliminate interested :
〈{}, {boring , interested(X )}, t1〉
〈{}, {interested(X )}, t2〉

↓
〈{}, {boring}, (t1 × t2)n〉

(t1 × t2)n is computed point-
wise; we can compute it in time
O(log n).
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Counting Elimination

       int(X)

ask_question(X)

boring

X:person

|people| = n

Eliminate boring :
VE: factor on {int(p1), . . . , int(pn)}
Size is O(dn) where d is size of range
of interested.

Exchangeable: only the number of in-
terested individuals matters.
Counting Formula:

#interested Value
0 v0
1 v1

. . . . . .
n vn

Complexity: O(nd−1).
[de Salvo Braz et al. 2007] and [Milch et al. 08]
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Potential of Lifted Inference

Reduce complexity:

polynomial −→ logarithmic

exponential −→ polynomial

We need a representation for the intermediate (lifted)
factors that is closed under multiplication and summing
out (lifted) variables.

Still an open research problem.
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Outline

1 Semantic Science Overview
Ontologies
Data
Hypotheses and Theories
Models

2 Feature-based model construction

3 Lifted Inference in Relational Domains

4 Existence and Identity Uncertainty
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Existence and Identity

h2: The tall house

h1: The house with the brown roof

h3: The house with the green roof

h4: The house with the pink roof
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Clarity Principle

Clarity principle: probabilities must be over well-defined
propositions.

What if an individual doesn’t exist?

house(h4) ∧ roof colour(h4, pink) ∧ ¬exists(h4)

What if more than one individual exists? Which one are
we referring to?
—In a house with three bedrooms, which is the second
bedroom?

Reified individuals are special:
— Non-existence means the relation is false.
— Well defined what doesn’t exist when existence is false.
— Reified individuals with the same description are the
same individual.
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Correspondence Problem

Symbols Individuals

h2: The tall house

h1: The house with the brown roof

h3: The house with the green roof

h4: The house with the pink roof

c symbols and i individuals −→ c i+1 correspondences
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Role assignments

Hypothesis about what apartment Mary would like.

Whether Mary likes an apartment depends on:

Whether there is a bedroom for daughter Sam

Whether Sam’s room is green

Whether there is a bedroom for Mary

Whether Mary’s room is large

Whether they share
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BN Representation

Which 
room is 
Mary's

Which 
room is 
Sam's

Mary's 
room is 
large

Sam's 
room is 
green

Mary 
Likes her 

room

Sam 
likes her 

room

Need 
to 

share

Apartment 
is suitable

r1 r2

r3

How can we condition on the observation of the apartment?
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Naive Bayes representation

Mary 
Likes

Room1

Sam
Likes

Room2

Room1 
is large

Room2 
is green

Apartment 
is suitable

r1 r2

r3

Apartment

Room1
Room2

How do we specify that Mary chooses a room?
What about the case where they (have to) share?
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Causal representation

Mary 
Likes

Room1
Sam
Likes

Room2

Room1 
is large Room2 

is green

Apartment 
is suitable

r1 r2

r3

Apartment

Room1 Room2

Mary 
Chooses
Room1

Room1 in 
Apartment

Sam 
Chooses
Room2

Room2 in 
Apartment

=

How do we specify that Sam and Mary choose one room each,
but they can like many rooms?
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Observation Protocols

Observe a triangle and a rectangle touching. What is the
probability the triangle is green?

P(green(x)

|∃x triangle(x) ∧ ∃y circle(y) ∧ touching(x , y))

The answer depends on how the x and y were chosen!
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Protocol for Observing

P(green(x)

|∃x triangle(x) ∧ ∃y circle(y) ∧ touching(x , y))

| | |
select(x) select(y) select(x , y)
| | |

select(y) select(x)
| |

3/4 2/3 4/5
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Conclusion

Semantic science is a way to develop and deploy
knowledge about how the world works.

Scientists (and others) develop hypotheses that refer to
standardized ontologies and predict for new cases.

For each prediction: what hypotheses it is based on?

For each hypothesis: what evidence it is based on?

Three subproblems:

Making predictions in a specific case.
Efficient inference in relational domains
Existence uncertainty and roles

(Probabilistic) inductive logic programming is a core
technology in constructing hypotheses.
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To Do

Theories of combining hypotheses.

Representing, reasoning with, and learning complex
(probabilistic) hypotheses.

Build infrastructure to allow publishing and interaction of
ontologies, data, hypotheses, theories, models, evaluation
criteria, meta-data.

Build inverse semantic science web:
Given a hypothesis, find relevant data to learn from
Given data, generate models that make predictions on
the data
Given a new case, build relevant models with
explanations

More complex models, e.g., for relational reinforcement
learning where individuals are created and destroyed
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