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Abstract

This paper considers the representation problem: namely how to
go from an abstract problem to a formal representation of the prob-
lem. We consider this for two conceptions of logic-based diagnosis,
namely abductive and consistency-based diagnosis. We show how to
represent diagnostic problems that can be conceptualised causally in
each of the frameworks, and show that both representations of the
same problems give the same answers. This is a local transformation
that allows for an expressive (albeit propositional) language for giving
the constraints on what symptoms and causes can coexist, including
non-strict causation. This non-strict causation can be represented in
each framework without adding special reasoning constructs to either
framework. This is presented as a starting point for a study of the
representation problem in diagnosis, rather than as an end in itself.

1 Introduction

This paper defines an abstract “knowledge representation” problem and con-
siders the problem of representing knowledge in the context of diagnostic
systems. We consider two diagnostic formalisms and compare how we can



represent a domain in each so that each representation produces the same
answer.

This paper contains many of the results of [14], recast in light of latter
developments. We take a different perspective from subsequent (to [14])
papers [2, 3, 9], in that we consider the problem of going from an abstract
problem to a representation of the problem rather than the problem of just
going from one representation to another. While the local transformation
methods may work for simple theories, there is still much to be learnt about
what needs to go into any axiomatisation [16], and the mappings are not so
straight forward.

One of the ideas that we are tackling is to represent subtle distinctions
in the domain with rather weak representation languages. One of the main
reasons for pushing weak representation languages is that we can see what
they can and cannot represent, and only complicate the representations when
necessary. In this paper we consider how to represent causal relations that
are not strict implications (e.g., a cold may cause sneezing, but it does not
imply sneezing). There are no new non-strict implications in either represen-
tation language we consider, but they can both represent strict and non-strict
causes.

Like Console et. al., [2, 3] and unlike Konolige [9] we consider acyclic
causal structures (some ¢ cannot cause itself). Acyclicity allows us to have
a local transformation from the domain knowledge to the representations
unlike the global transformations of Konolige (see [9, section 5.2]).

This paper does not contain the final answer to this problem; there is still
much that has to be understood about representing more complex problems
than that considered here [16].

1.1 The Knowledge Representation Problem

Definition 1.1 Given a formalism (formal language plus an inference rela-
tion), the knowledge representation problem is the problem of going
from a problem P to a representation REp of P in the formal language so that
the use of the inference relation for the representation will yield a solution
to the problem.

In this definition, a problem is “a question raised for inquiry, consider-
ation, or solution” (definition from Webster’s Ninth New Collegiate Dictio-
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Figure 1: The knowledge representation problem.

nary). This is not a formal representation of the problem. Many problems
can be conceptualized in different ways, and these different conceptualiza-
tions may have different representations (even for the same formalism) and
may have very different computational and ergonomic properties.

Definition 1.1 is depicted in Figure 1. We want to define the knowledge
representation (KR), the inference relation and the interpretation for the
answers so that this diagram commutes?.

This notion of knowledge representation should be contrasted with the
view of knowledge representation (KR) research as defining and analysing
formalisms, without the knowledge representation (as defined here) being
explicit (see e.g., much of the work on nonmonotonic reasoning [8]). The
knowledge representation problem is often implicit, defined in terms of a few
examples of how to represent a particular problem?.

As, by “the problem”, we mean the problem itself and not a representa-
tion of the problem, it may seem that the knowledge representation problem

'A diagram commutes if each directed path to the same point produces that same
answer. In this case, the solution to the problem obtained by going via the representation
and computation is the same as the solution obtained going directly from the problem to
the solution.

21 do not want to imply that I am defining a new KR problem; I am trying to be explicit
about what I consider the KR problem to be. There are many instances of this view of
KR from foundational papers (e.g., [12]) to textbooks based on this view (e.g., [5]).



cannot be formalised, or that there is nothing precise that can be said about
the knowledge representation problem (until it itself is formalised and rep-
resented). I believe that that this view is mistaken. For example, one sort
of things that can be said about the KR-problem is “if the problem can be
conceptualized in some particular way, then it can be represented in some
particular way”. There may be many different representations of the same
conceptualization, and many possible conceptualizations of the same prob-
lem. The different resulting representations can be compared in terms of
efficiency (both computational efficiency and conceptual efficiency), and nat-
uralness of the resulting representations.

This enterprise seems much more important when we realize that any
logic that incorporates definite clauses, and for which logical consequence
is allowed as part of the inference relation, is Turing equivalent and so can
represent any problem (any computable problem can be encoded in definite
clauses). For such (quite weak) representational formalisms, the question of
representational adequacy [12] seems moot without explicitly considering the

KR problem.

1.2 KR for diagnosis

Diagnosis

/ KB A abduction , explanation \
Diagnosis
Problem \ /

Figure 2: Diagnostic problem representations.

KBcB -~ CBD 5 CB-diagnosis

When considering KR for diagnosis, we consider two different formalisms
(they have the same language, but have a different notion of what an answer
is and thus need different “inference” mechanisms). This is shown in Figure
2. The two formalisms are (see Section 2 for formal definitions):
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Abductive diagnosis — the answer is an explanation of the observations
using abduction from an abductive KB (K By) (see Figure 2).

Consistency-based diagnosis (based on the model of Reiter [23]) — an an-
swer is a consistency based diagnosis (CB-diagnosis in Figure 2), from
a knowledge base (K Bep in Figure 2), using some way of computing

CD-diagnoses (CBD in Figure 2)°.

The main result of this paper is to show that, for a certain class of prob-
lems, the two representation schemes will compute the same answer (i.e., the
diagram of Figure 2 commutes?).

1.3 Abstract Problem of Diagnosis

Diagnosis is the problem of trying to find what is wrong with some sys-
tem based on knowledge about the design/structure of the system, possible
malfunctions that can occur in the system and observations (symptoms, ev-
idence) made of the behaviour of an artifact.

The proposals to formalise the notion of diagnostic reasoning have gen-
erally considered two extremes of the diagnosis problem:

1. There is knowledge about how components are structured and work
normally. There is no knowledge as to how malfunctions occur and
manifest themselves. Diagnosis consists of isolating deviations from
normal behaviour. This has normally been the preserve of consistency-
based® approaches [7, 6].

2. There is knowledge about faults (diseases) and their symptoms, and
we want to account for abnormal observations. This has traditionally
been the preserve of abductive approaches [21, 22, 19, 4, 15].

3In the consistency-based diagnosis literature the result and the process are both called
“diagnosis”. Here, by “diagnosis” we mean the solution to the abstract diagnosis problem,
not a representation of the problem or a representation of the solution.

“Here I only mean the solid lines. Of course, whether they compute what we really want
to compute (i.e., whether the diagram with the light arrow also commutes) is a matter of
argument, not of mathematics (see e.g., [20]).

>This term and “abduction” are used as technical terms defined in section 2.



In this paper, we consider fault based systems (as do [14, 2, 9]). In [16]
we consider how the two logic-based models of diagnosis can use each sort of
knowledge, and the continuum of cases between the two extremes.

Any diagnosis system requires knowledge about the domain of diagnosis
and observations of the actual artifact we are diagnosing.

2 Two Models of Diagnosis

In this paper we cast two models of diagnosis into the Theorist framework of
hypothetical reasoning [19, 15]. This formalism is well suited to the task as
both paradigms can be naturally represented in the simple formal framework.

Theorist [15] is defined as follows. A knowledge base K B is a pair (F, H),
such that F is a set of closed formulae® (called the facts) and H is a set of
open formulae (called the possible hypotheses). A scenario of (F, H) is a
set D U F' where D is a set of ground instances of elements of H such that
DU F is consistent. An explanation of formula ¢ from (F, H) is a scenario
of (F, H) that logically implies g. An extension of (F, H) is the set of logical
consequences of a maximal (with respect to set inclusion) scenario of (F, H).
Where the K B is understood from context we omit the phrases “of (F, H)”,
etc.

Definition 2.1 (Consistency-Based Diagnosis) A consistency-based
diagnosis is minimal set of abnormalities such that the observations are
consistent with all other components acting normally [23].

In terms of the Theorist framework,
F' is the domain model together with the observations.
H is the set of normality assumptions.

A consistency-based diagnosis corresponds to an extension (in particu-
lar, it is the set of abnormalities in an extension) [23, theorem 6.1].

SWe assume the underlying logic is the first order predicate calculus. We follow the
Prolog convention of variables being in upper case. A set of formulae represents the
conjunction of the formulae.



Definition 2.2 (Abductive Diagnosis) An abductive diagnosis is a min-
imal set of assumptions which, with a set of background knowledge implies
the observations [19, 15], and is consistent with the observations.

In terms of the Theorist framework,
F' is the domain model.
H is a set of normality and fault assumptions.
An abductive diagnosis is a minimal explanation of the observations.

The main difference is that, in abduction the diagnoses entail the ob-
servations, whereas in consistency based models the observations entail the
(disjunct of the) diagnoses. As one would expect the sort of knowledge that
has to be specified for each is different.

3 KR for Each Diagnostic Formalism

3.1 Causes and Symptoms

As part of the terminology for talking about domains, I will use the terms
“causes” and “symptoms”. Causes can be seen as reasons why the symptom
occurred. In this paper we are not assuming any theory of causality; a theory
of causality is imposed by the builder of the knowledge base (the person who
models the system being diagnosed). We want to allow as much flexibility as
possible in the interpretation of these terms. As far as the KR framework is
concerned, we want a domain that can be described in terms of causes and
symptoms.

Note that the terms “cause” and “symptom” are internal and local terms.
It is quite conceivable (and indeed very common) that something is seen as
both a cause for some symptom, and something that needs to be explained
as a symptom. For example, we may see someone coughing (a symptom)
and have as a cause, that the person has a sore throat. We may then have a
viral infection as the cause for the symptom of sore throat.

A “base cause” is a cause which don’t need any further explanation (it
is up to the user to determine what these are). An “observed symptom”



(or just “observation”) is a symptom that we actually have observed. In
particular base causes do not have further causes.

I also assume that there are no causal cycles. That is there is no causal
chain from one proposition that goes back to itself. For example, it is never
the case that a causes b and b causes a. This is reasonable if we consider that
the propositions represent particular events rather than event types. For ex-
ample, consider a causal chain that “being stressed” causes one to “not work
efficiently”, which in turn causes one to “be stressed”. We represent being
stressed at different stages as different propositions that refer to different
times. Being stressed in the past causes us to not work well at the moment
which causes us to be stressed in the future. In terms of Lin’s [10] causal
dichotomy, we are talking about token causation, rather than type causation.

[ mean something very different to Konolige’s causal theories [9]. I do
not mean a representation of causation but [ mean causation itself. Whether
or not causation can be represented in the way presented here (or even if
causation is a property of the world) is an open question; it is not something
that can be considered mathematically, but needs to be studies empirically
by trying to represent (what purports to be) causation.

3.2 Fault Models

Consistency-based diagnosis is defined in terms of normality assumptions
rather than in terms of fault (cause/symptom) models. Abductive diagnosis
is conceptualised in terms of fault models. Before we can offer a detailed
comparison, we have to consider how we could incorporate fault models into
consistency-based diagnosis.”

To add fault models to consistency-based diagnosis, we need to address
the question of what should be minimised (its negation assumed) and max-
imised (assumed). There seems to be two alternatives:

1. to maximise normality and minimise abnormality and to let fault as-
sumptions be minimised as a side effect of minimising abnormality.
Faults in this model are just incidental to the diagnosis, and can only

It should be emphasised here that what I mean as an abnormality is a statement that
some component is not working correctly. One reading of Reiter’s paper [23] is that an
abnormality 1s whatever we are minimising.



be used to rule out abnormalities as there may be no cause for that
abnormality.

2. to assume the negation of a fault assumption as a possible hypothesis.
This is, in fact what is done in [23] to model the generalised set covering
model of [22]. In this paper I assume that this is the approach taken.

The diagnoses become the faults that can be proven from the assumption
that other faults are absent [23, Proposition 3.3].

3.3 Representing Causes

First let us examine how we can represent and reason about fault models in
each of the systems. Fault models are closely related to finding out what is
causing the problems being manifested.

We first want to consider the question what sort of knowledge is required?
At the top level of abstraction, to determine what sort of knowledge is re-
quired, we examine the definitions of the diagnostic paradigms to see what
has to be proven.

1. In consistency-based diagnosis, we have to prove a fault® (maybe based
on other assumptions) from an observation. Thus the sort of knowledge
we need is of the form --- O fault.

2. In abductive diagnosis, the sort of knowledge we need is that from some
explanation we can prove the observations. Thus the sort of knowledge
we need is of the form fault D symptoms.

If ¢1,---, ¢, are the possible causes of symptom s, then for each of the
paradigms we need to provide the following knowledge.

1. For consistency-based diagnosis we have as a fact s D ey V--- Ve, If
the artifact exhibits symptom s then one of the causes of s must be
present. If ¢; always produces symptom s, then s being false should
rule out ¢;; we should thus add the fact ¢; D s to the facts.

80r equivalently, what follows from the negation of a fault. Note that the negation of
a fault is the normality condition.



2. In abductive diagnosis, we have to be able to prove the symptoms from
the causes. Thus the sort of knowledge is of the form ¢; D s. If s is
always present when ¢; is present then ¢; O s should be a fact (the
absence of s can rule out ¢;), otherwise ¢; D s should be a possible
hypothesis (it can be used in an explanation, but not to rule out ¢;).

Example 3.1 Consider representing the following about how aching elbows
and aching hands could be caused:

tennis-elbow always causes aching-elbow.
dishpan-hands sometimes causes aching-hands.
arthritis sometimes causes aching-elbow and always causes aching-

hands.

Consider how such knowledge can be expressed so that it can be used by
each of the diagnostic systems:

1. For consistency-based diagnosis, we can represent the above situation
as

H ={ -tennis-elbow, ~dishpan-hands, —arthritis}
F = { tennis-elbow D aching-elbow,

arthritis O aching-hands

aching-elbow D tennis-elbow V arthritis,

aching-hands O dishpan-hands vV arthritis}

2. For abductive diagnosis, we can represent the above situation as

H ={ tennis-elbow, dishpan-hands, arthritis
dishpan-hands O aching-hands,
arthritis O aching-elbow}

F = { tennis-elbow D aching-elbow,
arthritis O aching-hands}

Suppose we observe aching-elbow; consider what we conclude from each
of the diagnosis systems:

10



1. For the consistency-based diagnosis, there are two extensions, one con-
taining
{—tennis-elbow, ~dishpan-hands, arthritis}

and one containing

{tennis-elbow, ~dishpan-hands, —arthritis}

2. For the abductive diagnosis, there are two minimal explanations of
aching-elbow:

{tennis-elbow}

{arthritis O aching-elbow, arthritis}

Consider observing aching-elbowAaching-hands.

1. For the consistency-based diagnosis, there are two extensions, one con-
taining
{—tennis-elbow, ~dishpan-hands, arthritis}

and one containing

{tennis-elbow, dishpan-hands, —arthritis}

2. For the abductive diagnosis there are two minimal explanations of
aching-hands/\aching-elbow:

{tennis-elbow, dishpan-hands, dishpan-hands O aching-hands}
{arthritis O aching-elbow, arthritis}

This example can be very instructive on the differences between the di-
agnostic systems. The extensions of consistency-based diagnosis and the
explanations of abductive diagnosis seem to be very similar (in Section 3.5
this equivalence is spelled out in greater detail).
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3.4 Ruling out Causes

What sort of knowledge do we need to rule out consideration of particular
causes? For example the knowledge that allows us to rule out sulphuric acid
as a pollutant of a stream because there is no sulphates in the water samples.

To have this sort of knowledge in any of the systems we need to have
knowledge (facts or defaults) of the form

evidence D —cause

These are “causal rules” because they give the implication of the symptoms
from the causes. This is the sort of knowledge that abductive diagnosis
needed in the first place, but is the opposite sort of implication than was
claimed before to be needed in consistency-based diagnosis. Thus it seems
as though in a system for consistency-based diagnosis one needs both causal
rules and evidential rules.

Thus if ¢1,-- -, ¢, are the possible causes of s, then abductive diagnosis
needs knowledge of the form

€1 DS, ,Cp DS

(those implications that are always true should be in F" and those causes that
are not strict should be in H). Consistency-based diagnosis needs the strict
implications as well as knowledge of the form

sOc V-V,

Of course, there is much more subtlety in the sort of knowledge used by each
system. It is however instructive to consider an idealised “standard” case,
and then to consider how each diagnostic paradigm can deviate from the
standard case.

3.5 Standard Propositional case

The standard case we will consider places restrictions on the diagnostic prob-
lems we can represent:

1. The domain can be thought of in terms of causes and effects.

2. The domain can be described propositionally.

12



3. There is an acyclic causal structure. That is, if we write ¢; < s to mean
atom ¢; is one of the causes for atom s, then the transitive closure of
the binary relation < is irreflexive.

From an understanding of this simple case, we can then learn about more
complex cases. The first two assumptions are given up in [16]; the last
assumption is given up in [9].

The base causes are those causes that themselves have no other causes.
Unlike Konolige [9] we do not allow other causes of these base causes. If ¢;
is some proposition that we would like to include as part of a diagnosis, but
has some other cause, we cannot make ¢; into a base cause. One reason that
we may want to make ¢; a base cause is if ¢; sometimes has other (known)
causes, and sometimes ¢; may have no apparent (or represented) causes, and
may just happen to be true. Instead of making ¢; a base cause, we create a
new atom c;_happens_to_be_true and make it a base cause, and a cause for ¢;.
With this construction I argue that we would never want to make something
imply what would otherwise be a base cause.

Suppose that for possible symptom (that is not a base cause) s, we have
causes ¢1,- -+, ¢, (each of these can be a conjunction of base causes or even
other non-base causes, which themselves have to be explained). If these
causes are not covering we invent a new base cause s_occurred_for_another_reason,
and add it to the set of possible causes. These new causes are now cover-
ing. We can thus assume, without loss of generality, that our set of causes is
covering.

We also allow for integrity constraints of a quite general form. ' is a
set of arbitrary propositional formulae such that if for some symptom s, we
can derive C' = w D s, where = w D s and ¢; are the causes of s then
C E w D V,;¢. That is, if something non-trivially implies s then it must
imply some of the causes. This is a restriction on what we allow as the causes
rather than what we allow as constraints.

We also assume that (' contains all implications of the form ¢; D s where
¢; always causes s (and so the absence of symptom s can be used to rule out
Ci)-

Let B be the set of base causes, i.e., the causes that have no other causes.
By the constraints on C', this means that there is no non-trivial formula w
such that C' |=w D bfor b € B.

We are now ready to define the corresponding knowledge bases.

13



Let the abductive knowledge base K B4 be defined as
KBs=(C,BU{¢; Ds:c¢ causes s, and ¢; D s is not in C'})

Let the consistency-based knowledge base K Bop be defined as
KBep = <C U{s D\ e :{c} are the causes of s}, {-b: b€ B}>

Thus if ¢1, - - -, ¢, are the possible causes of symptom s, then consistency-
based diagnosis would represent this as s D ¢; V --- V ¢,, and for each ¢;
for which s is a necessary symptom, we have ¢; D s as a fact. Abductive
diagnosis would represent this as ¢; D s being a fact if s is a necessary
symptom of ¢;, and ¢; D s as a possible hypothesis otherwise. Any other
relationship between the two (e.g., a cause implying a disjunct of symptoms)
would be added as facts to each of these.

Theorem 3.2 Given a set of symptoms, the base causes in the diagnoses
using abductive diagnosis from K B, are identical to the diagnoses using
consistency-based diagnosis from K Bep.

Proof: We first prove this theorem for conjunctive queries (i.e.,
queries that are conjunctions of literals). We also assume that the
knowledge base (the facts and each hypothesis) is in clausal form.
As we can translate any formula into clausal form this places no
restriction on the theory.

The causal structure is acyclic and so forms a partial order. De-
fine a total order consistent with this partial order, by assigning
a natural number (called the index) to each atom such that the
base causes have index zero and if atom a is a cause of atom b,
then the index of a is less than the index of b. This can always be
done as the causal structure forms a partial order with the base
causes as the minimal elements.

The theorem is proven by induction on the pair (i,n) where ¢ is
an index and n is the number of atoms in the observation that
has index ¢, such that no atoms in the observation have an index
greater than ¢. Each query can be associated with a pair.

The base case for the induction is where either
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1. n = 0, in which case the empty diagnosis is a diagnosis for
each system, or

2. the maximum index of the observation is zero. In this latter
case the observation is a conjunction of base causes. Suppose
itisb=>0by A---Nb,. If CU{b} is inconsistent there are no
diagnoses in either system. Otherwise, in both systems the
diagnosis is b.

For the inductive case, suppose that sy A---As,, are our symptoms
to be explained, with s; being an atom of maximal index. If s;
is a base cause the induction can stop, as above. If it is not a
base cause, there will be a (possibly empty) set of rules ¢; D s
in KB4 (facts or hypotheses). Consider the explanations of the
“observation” ¢; A s3 A -+ A s, for each 7. This is a query that is
less in our inductive ordering, thus by the inductive assumption,
the diagnoses from K B4 and K Bopg are identical. Suppose, that
for each 1, these are Di,---, Di,..

To make D; into an abductive diagnosis for sy, -- -, s, from K By,
we have to

1. add ¢; D s; to D; (if ¢; D sy not in C),
2. check for consistency, and

3. check for minimality.

For the consistency based diagnosis we have
KBep E s1D\Va
.. KBcg |= 81/\---/\8713\/02'/\32/\---/\571

L KBeg E siA-As, DV VD,
]

The diagnoses of sy A --- A s, from K Bgp consist of the subset
of these that are consistent (as each diagnosis must prove all of
the goals), and minimal. The important thing to notice is that
exactly the same facts (i.e., those in (') are used to prune the
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consistency-based diagnoses and the abductive diagnoses. The set
of the D; that forms the set of preliminary diagnoses are pruned
in exactly the same way for the abductive and consistency-based
diagnoses, to form the same set of diagnoses.

a

It is important to note how the standard case works when there is no
possible causes of a symptom. In the analysis above, for abductive diagnosis,
this means that we cannot explain the symptom; for the representation for
consistency-based diagnosis we have stated that the symptom could not occur
(it implies the empty disjunction, which is false).

Example 3.3 This example illustrates how the D; in the above proof need
not be explanations of the observation. Suppose ¢ is a possible cause for s
and ¢, and c3 are each possible base causes for ¢;, and we have the constraint
¢y D —s. For this example

KBa = ({cz D s}, {ca 3,00 Derye3 Dy, Ds))

KBepg = <{CQ D 8,8 D¢, DV 03}, {_'CQ,_'03}>

There are two diagnoses of ¢1, namely {c3} and {c3}. There is however
only one diagnosis of s, namely {c3}.

Example 3.4 Differences still arises if the knowledge is not of the form of
our standard case. For example suppose the knowledge base contains ¢y V ¢3,
where ¢, and ¢y are base causes’ and there are no observations. In abductive
diagnosis, if there are no observations, then there is always the empty diag-
nosis if the knowledge base is consistent. For consistency-based diagnosis,
there is no distinction between the general knowledge and the observations,
and so there is nothing special about the relationship between the observations
of the artifact being diagnosed and the diagnoses. In the case with ¢1 V ¢y as
the knowledge base, there are two diagnoses ({¢1} and {c3}), even with no
observations. Why and how one may want to exploit such distinctions is still
an open question.

9This violates our notion that nothing should imply a base cause. Here —¢; D co.
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3.6 Relationship to Clark’s completion

It all causes are necessary causes, the sort of knowledge we need for abductive
diagnosis is of the form

(c1 DS)A---A(cn D s)

The sort of knowledge that we need for consistency-based diagnosis is of
the form s D ¢; V- -+ V ¢, in order to conclude a cause, together with ¢; D s
for each ¢ in order to rule out possible causes. Thus, it is of the form

s=c V-V,

Notice that the second looks just like the completion (in terms of Clark
[1]) of the first. In fact, it is closely related, but there are three important
differences

1. If cis a basic cause, then we don’t want to complete it. There may not
be any formulae which imply ¢, but we do not want to then say that ¢
is false (as we would in the full completion).

2. In general, the completion is with respect to our facts and hypotheses.
We add the completion formulaa D ¢, V- --Ve,, ignoring the distinction
of whether each ¢; always causes a or whether ¢; sometimes causes a.
Thus we have to consider the implications in both the facts and the
hypotheses. The causal implications in the hypotheses do not remain
in the completion. We typically do not end up with a biconditional.

3. We are not only working with what [11] calls “program statements”;
we want to be able to say that someone does not have some symptom,
this can then be used to prune our set of explanations. We thus have
explicit negation and not just negation as failure.

3.7 Pearl’s example

Example 3.5 (Pearl) Pearl [13, p. 371] gives the following example to ar-
gue that there should be a distinction between causal rules and evidential
rules. Here we show how the problems he was trying to solve do not arise in
consistency-based diagnosis and abductive diagnosis.

The situation we want to represent is of the form

17



rained-last-night causes grass-is-wet.
sprinkler-was-on causes grass-is-wet.
grass-is-wet causes grass-is-cold-and-shiny.
grass-is-wet causes shoes-are-wet.

For consistency-based diagnosis, we would represent this situation as:

_ . _ sprinkler-was-on
Io={ grass-is-wet = Vrained-last-night,
grass-is-wet = grass-is-cold-and-shiny,
grass-is-wet = shoes-are-wet}

H ={ -rained-last-night, —sprinkler-was-on}
For abductive diagnosis, we would represent the same situation as

F ={ rained-last-night O grass-is-wet,
sprinkler-was-on D grass-is-wet,
grass-is-cold-and-shiny

grass-ls-wet D) /\Shoes-are-wet}

H ={ rained-last-night, sprinkler-was-on}

Suppose that we observe that it rained last night.
For the consistency-bead diagnosis, there is one extension containing

{rained-last-night,—sprinkler-was-on}

For the abductive diagnosis, there is one explanation of rained-last-night,

namely
{rained-last-night}

From each of these we can prove that the grass is wet, that the grass is cold
and shiny and that my shoes are wet.

In Pearl’s rule-based system [13], he can explain everything, including
that the sprinkler was on last night. Pearl attributes this problem to not
distinguishing between evidential and causal rules. I would claim that it is a
flaw in the idea of rule-based diagnosis used by Pearl.

Suppose we had instead observed that the grass is cold and shiny.
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For the consistency-bead diagnosis, there are two extensions,
{rained-last-night, —sprinkler-was-on}

{=rained-last-night, sprinkler-was-on}

For the abductive diagnosis, there are two explanations
{rained-last-night}

{sprinkler-was-on}

From each of these we can predict that my shoes are wet.
The following example shows that can represent more than definite clauses:

Example 3.6 Suppose we have three causes ¢, ¢y and ¢3 and symptoms s;
and s, such that:
¢1 always produces symptom si.
¢y always produces either symptom s; or s,.
c3 sometimes produces symptom s;.
¢1 and sy cannot co-occur.
For the abductive framework this is represented as:

F ={ ¢ Ds,

€1 O TS89,

¢ D81V s}
H ={ ¢ D sy,

Cy D Sa,

c3 D Sa,

C1,

Ca,

cs}

For the consistency-based diagnosis this is written as

F :{ 01381,

(8] D) 1S9,
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Co 381\/82,
S1 DCl\/CQ,
S9 DCQ\/C3}

H = { —C1, T1C2, _‘03}
These two theories have the same diagnoses.

Note that we do not use negation as failure for explanation. If we had
observed —sy, then either we would have to have causes for —sy, or it would
have to be a base cause in order for there to be diagnoses for an observation
including —sy. This can be done in the framework presented here, and is, for
example, systematically done in [18].

Conclusion

In this paper we have presented an abstract knowledge representation prob-
lem applied to diagnosis. To understand the technical results of this paper, it
is important to understand them in the context of the knowledge representa-
tion problem presented in Section 1.1. This is important in that there may be
many different ways to represent a problem. Some restrictions placed on the
results in this paper are restrictions in the knowledge base and not in what
can be represented (e.g., the fact that base causes have no other causes),
whereas other restrictions are restrictions in what can be represented (e.g.,
acyclicity of the causal structure).

This paper should be seen as a starting point for understanding the knowl-
edge representation issues in diagnosis. For example, in understanding more

complex diagnostic domains [16, 17], and representing uncertainty in diag-
nosis [18].
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