
Variables in Hypotheses

David Poole
Logic Programming and Artificial Intelligence Group,

Department of Computer Science,
University of Waterloo,

Waterloo, Ontario, Canada, N2L3G1
dlpoole@waterloo.csnet

Abstract

In many applications we want to build systems which
must test the consistency of some theory (or set of
axioms). This problem is general to many applica-
tions, for example abduction, learning, default reason-
ing, diagnosis, and is examined here in the context
of theory formation from a fixed set of possible hy-
potheses [PGA87, Poole86]. There is a problem which
arises when we are generating theories that contain
variables. Two solutions are examined, the first where
we are only allowed to have ground instances in the-
ories formed, and the second where we may have uni-
versally quantified variables in the theory. It is shown
that for the second case that the solution of reverse
Skolemisation is not adequate to solve the problem,
nor is any naive pattern matcher. A solution for both
cases is outlined.

1 Introduction

We consider here the problem of checking the consis-
tency of a theory generated by a program. We con-
sider the problem in terms of a theory formation sys-
tem which has a fixed set of possible hypotheses (i.e.,
we are assuming some other system is supplying the
general forms we can to assume. This study is in-
dependent of how the possible hypotheses are gener-
ated). This is a problem because variables in a gener-
ated theory somehow need to have their quantification
reversed when checking consistency. This paper shows
that some proposed solutions do not work, and pro-
vides a solution to the problems where we don’t allow
variables in our hypotheses, and the general case where
we allow arbitrary instances of defaults.

2 Formal Semantics

We use the standard syntax of the first order predicate
calculus, with variables in upper case. We assume we
have the following two sets of formulae:

F is a set of closed formulae (called facts), which we
are given as true

∆ is a set of formulae, each instance of which can be
used as a possible hypothesis

We say formula g is explainable if there is some D, a
set of instances of elements of ∆, such that

F ∪D |= g

F ∪D is consistent

D is said to be the theory that explains g.
Without loss of generality, we assume that g is vari-

able free, and is an atom. We also assume that el-
ements of ∆ are atomic and do not contain bound
variables. These assumptions do not restrict the ex-
pressiveness of the system, but make analysis simpler.

N.B. w ∈ ∆ is equivalent to [Reiter80]’s normal de-
fault : Mw/w [Poole86]

3 Implementation

The obvious way to implement
explainability [Reiter80, PGA87] is to note that both
proving the observations, and testing consistency are
the role of a theorem prover. Intuitively, the idea is
to try to prove the goal from F and ∆, and make D
the set of instances of ∆ used in the proof. A complete
theorem prover is an appropriate tool to check whether
F ∪D is consistent (by failing to prove inconsistency).
Checking consistency corresponds to showing that the
theory does not predict anything known to be false.

In this paper I assume that we are using some
sort of complete resolution theorem prover (see eg.
[Chang73]) to generate the instances of hypotheses
which imply the goal. The results, however, do not
seem to be restricted to such systems.

There is a problem which arises when there are vari-
ables in the D generated. Consider the following ex-
ample:



Example 1 Let ∆ = {p(X)}. That is, any in-
stance of p can be used if it is consistent. Let F =
{∀Y (p(Y ) ⇒ g),¬p(a)}, that is g is true if there is
some Y for which p(Y ) is true.

g is explainable with the theory {p(b)}, which is
consistent with F (consider the interpretation I =
{¬p(a), p(b)} on the domain {a, b}), and implies g. So
according to our semantics above, g is explainable.

However, if we try to prove g, we generate D =
{p(Y )} where Y is free (implicitly a universally quan-
tified variable). The existence of the fact ¬p(a) should
not make it inconsistent, as we want g to be explain-
able.

Theorem 1 In proving explainability, it is not ade-
quate to only consider interpretations in the Herbrand
universe of some set of formulae.

Proof consider the example above; the Herbrand uni-
verse is just the set {a}. Within this domain there is
no consistent theory to explain g. 2

This shows that Herbrand’s theorem is not applica-
ble to the whole system. It is, however, applicable to
each of the deduction steps [Chang73].

4 Ground Instances of Defaults

Consider first the case where we only allow ground in-
stances of possible hypotheses in a theory. A ground
instance is defined to be one without variables or
Skolem constants.

The procedure1 to compute explainability, when we
only allow ground instances of defaults in theories, is

1. Skolemise F , forming Fsk (free variables are uni-
versally quantified);

2. try to prove g using elements of Fsk and ∆ as
axioms. Make D0 the set of instances of ∆ used
in the proof;

3. reject D0 if it contains a Skolem function (that is
try to find another proof of g);

4. Form D1 by replacing free variables in D0 with
unique constants;

5. add D1 to F and try to prove an inconsistency. If
complete search for a proof fails, g is explainable.

Example 2 consider F and ∆ as in example 1 above.
If we try to prove g, we use the hypothesis instance

1This problem is, in general, undecidable; this proce-
dure has the property that if it halts, it has computed a
correct answer, and if a provable answer exists this (non-
deterministic) procedure can compute it.

p(Y ). This means that g is provable from any instance
of p(Y ). To show g cannot be explained, we must show
that all of the instances are inconsistent. The above
algorithm says we replace Y with a constant β. p(β)
is consistent with the facts, so that we can show g is
explainable.

Let us first try to justify this procedure.
If g is explainable, there is a ground theory D which

explains g. Some more general set D0 of instances
of defaults can be generated in the manner described
above such that D = D0θ for some θ (this is a direct
corollary of the lifting lemma [Chang73, page 84]).

The third step of the procedure enforces the ground-
ness of defaults found. The fourth and fifth steps fol-
low from checking if ∃XD0 is consistent by Skolemising
the X (the free variables in D0).

5 Arbitrary Instances of Defaults

Sometimes we don’t want to be restricted to just
ground instances of defaults. Consider the following
examples:

Example 3 Consider the blocks world, where we only
want positive knowledge about which blocks are on
each other, and we want the closed world assumption
for “on”. This is done by having the defaults: ∆ =
{¬on(X, Y )}.

If we have

F = { ∀X((¬∃Y on(Y, X)) ⇒ cleartop(X)),
on(a, b)}

This says that a block has a clear top if there is nothing
on it, and that block a is on block b. We want to
conclude that b does not have a clear top, and all other
blocks have a clear top.

Example 4 Let ∆ = {ontable(X)}. That is, we may
assume that any block is on the table. Let

F = { (∃Y red(Y ) ∧ ontable(Y )) ⇒ g
∃X red(X)}

We want to say that g is explainable as there is a red
thing on the table, namely the object that we know is
red (but do not know its name). The ground procedure
would reject such an answer, as it must know the name
of the individual said to exist.

We extend the definition of explainability to allow
arbitrary instances of the possible hypotheses in our
theories. In particular we want to be able to assume a
default for all individuals we can.

If we want to expand the procedure given in the
previous section, we have to consider how to handle



existentially quantified variables. The standard way
to do this is to give names to the individuals said to
exist (i.e. Skolemisation, [Chang73]). If we Skolemise
it allows us to use normal resolution theorem provers.
However, we must consider the Skolem functions in the
theories generated.

It has been suggested [Bledsoe78, Cox84] that we
“reverse Skolemise” the generated hypotheses. If we
can prove their negation, we have shown the theory in-
consistent; if a complete theorem prover fails to prove
their negation the theory is consistent. This is equiva-
lent to unifying the reverse Skolemised form with prov-
ably inconsistent instances of possible hypotheses.

Unfortunately, no such pattern matching program
will work in general.

Theorem 2 There can be no algorithm which does
pattern matching on the instances which lead to the
goal to be explained, and the instances which are in-
consistent such that the goal is explained if and only if
the pattern matcher fails.

Proof: To prove this it is adequate to show two exam-
ples which have identical inconsistent hypotheses and
syntactically identical instances which can prove the
goal, but have opposite answers.

The examples we use are based on having just one
simple default, namely that any individual is in the
table: Consider ∆ = {ontable(X)} and

F = { ¬ontable(a),
red(a),
(∀X ontable(X)) ⇒ g1,
(∀X red(X) ∨ ontable(X)) ⇒ g2}

That is, there is one block (a) that is not on the table,
and is red. g1 is explainable if everything is on the
table. g2 is explainable if all non-red things are on the
table. According to our semantics g1 should not be
explainable (as we can’t assume a is on the table), but
g2 should be explainable (assuming that everything
except a is on the table).

When attempting to compute their explanations, we
note that exactly the same instances of hypotheses lead
to each goal, and exactly the same instances are incon-
sistent. Put into Skolem normal form this becomes:

Fsk = { ¬ontable(a),
red(a),
ontable(c1) ⇒ g1,
ontable(c2) ⇒ g2,
red(c2) ⇒ g2}

To prove each gi we generate the theory
{ontable(ci)}, and the only inconsistent instance of

hypotheses is ontable(a). Note that the last clause
is not used in either the proof of g2 nor in proof of
inconsistency. 2

6 Building the Knowledge Base

The problem we have is that we have lost the context
of what the Skolem constants represent. In this section
we show how Hilbert’s ε-symbol can be used to keep
track of which functions the Skolem functions denote.

Hilbert’s ε-symbol is a notational device to implic-
itly describe an individual said to exist. εx.P (x)
means, intuitively “an x such that P (x) is true”. This
was designed to eliminate existential variables through
the equivalence:

∃X w[X] ≡ w[εX.w[X]]

where w[X] is any well formed formula parameterised
by X. See [Leisenring69] for a detailed description of
Hilbert’s ε-symbol.

When Skolemising (see [Chang73]), we replace

∀X1...∀Xn∃y w[X1, ..., Xn, Y ]

(where w[X1, ..., Xn, Y ] is a well formed formula with
free variables X1, ..., Xn, Y ) with

∀X1...∀Xn w[X1, ..., Xn, f(X1, ..., Xn)]

We should also define what f is. We can use Hilbert’s
ε-symbol to define f :

f = λX1, ..., λXn.εY.w[X1, ..., Xn, Y ]

that is

f(X1, ..., Xn) = εY.w[X1, ..., Xn, Y ]

To build the knowledge base, Skolemise all existen-
tially quantified variables, and record the definitions of
all Skolem functions and constants. In the Skolemised
form all variables are universally quantified and so ex-
plicit quantification can be removed.

7 The General Explanation Procedure

The procedure outlined here is an extension of the one
presented in section 4. See [Poole87] for more details.

We are trying to solve the problem of given some
g, to decide whether it is explainable or not. That is,
if there are assumptions from ∆ which can be consis-
tently added to F to imply g.

The following describes the algorithm:
Let Fsk be the Skolemised form of facts F . We as-

sume we have recorded the definitions of all Skolem
functions.



Try to prove g from Fsk and ∆. Let D0 be the set
of instances of elements of ∆ used in the proof.

Let D1 be a grounding of D0. That is, we replace
free variables in D0 with unique constant symbols. We
then know

Fsk ∪D1 |= g

by construction (given our proof procedure is sound).
Form D2 by replacing

each instance of a Skolem function fi(t1, ..., tn) (where
fi = λv1...λvnεy.wi[v1, ..., vn, y]) in D1 with a unique
variable xi. We know (∀x1, ...,∀xm D2[x1, ..., xm]) im-
plies D1 and does not contain any Skolem functions,
and so

F ∪ (∀x1, ...,∀xm D2[x1, ..., xm]) |= g

We now find out which instances of D2[x1, ..., xm]
we cannot assume. To do this, we try to prove
¬D2[x1, ..., xm] from Fsk. We collect up the instances
of the xi proven [Green69].

Suppose we find the answer2:

∀(x1 = c1 ∧ x2 = c2 ∧ ... ∧ xm = cm)

We know that we cannot assume any instance of
D2[c1, ..., cm].

For those instances which we need in the above proof
that we cannot use (because they are inconsistent),
we must find an alternate explanation. The instances
we need for the proof of g are xi = fi(t1, ..., tn) =
εy.wi[t1, ..., tn, y] The ones we must reexplain are
where xi=ci (for every instance of ci). That is, for the
case wi[t1, ..., tn, ci] we must find an alternate proof to
that found initially (for all instances of the ci).

For each inconsistency of the above form found, we
must try to reexplain g from the case

F ′ = F ∧ ∃
m∧

i=1

wi[t1, ..., tn, ci]

If F ′ is consistent, then we can explain g only if we can
explain g (using a different set of instances of elements
of ∆) from F ′. If F ′ is inconsistent, then inconsistency
found is irrelevant to the theory needed to explain g.

In this description, we have ignored the problems
of Skolem functions appearing in the ci and the ti, as
well as disjunctive answers from the proof of ¬D2. See
[Poole87] for full details.

2If w is a formula, ∀w is the universal closure of w. That
is if w has free variables v1, ..., vk then ∀w is defined to be
∀v1...∀vk w. Similarly ∃w is defined to be the existential
closure of w.

Example 5 Consider the blocks world of example 3.
Let
∆ = {¬on(X, Y )}
F = { ∀X(¬∃Y on(Y, X)) ⇒ cleartop(X),

on(a, b),
cleartop(b) ⇒ gb,
cleartop(c) ⇒ gc}

That is, we can explain gb if b has a clear top, and
explain gc if c has a clear top.

Skolemising the facts gives,
Fsk = { ¬on(f(X), X) ⇒ cleartop(X),

on(a, b),
cleartop(b) ⇒ gb,
cleartop(c) ⇒ gc}

where f(X) = εY.¬on(Y, X) ⇒ cleartop(X).
We can prove gb, generating the theory D0 =

{¬on(f(b), b)}. D1 = D0. The corresponding D2 =
{¬on(Y, b)}. We then try to generate all answers to
on(Y, b), which is provable (Y = a).

We then try to reexplain gb making

a = f(b) = εY.¬on(Y, b) ⇒ cleartop(b)

That is, we try to explain gb (using an alternate proof
to above) from

F ∧ ¬on(a, b) ⇒ cleartop(b)

which cannot be done.
We can explain gc as we cannot prove the negation

of the corresponding D2. That is, we cannot prove
∃Y on(Y, c).

Example 6 Consider the example in theorem 2
above. The Skolem constants, ci have different defi-
nitions,

c1 = εX.ontable(X) ⇒ g1

c2 = εX.(red(X) ∨ ontable(X)) ⇒ g2

In each case the generated theory is D0 =
{ontable(ci)}. So for each of these we have D2 =
{ontable(X)}. We try to prove

¬ontable(X)

This can be proven, in each case, for X = a.
In the first case, we then have to explain g1 from

F ∧ (ontable(a) ⇒ g1)

which cannot be done (using a different theory). Hence
g1 cannot be explained.

To prove the second case inconsistent, we have to
explain g2 from

F ∧ ((red(a) ∨ ontable(a)) ⇒ g2)



that is, we have to try to explain g2 from

F ∧ (red(a) ⇒ g2) ∧ (ontable(a)) ⇒ g2)

This can be done (as red(a) is in F ). Thus g2 can be
explained.

Example 7 Consider example 4. ∆ = {ontable(X)}.

F = { (∃Y red(Y ) ∧ ontable(Y )) ⇒ g
∃X red(X)}

Skolemised, the facts become,

Fsk = { (red(Y ) ∧ ontable(Y )) ⇒ g
red(c)}

where c = εX.red(X). We can explain g, generating
D0 = {ontable(c)} which gives D2 = {ontable(X)}.
We cannot prove ¬ontable(X) for any X, so that g is
explained.

Example 7A Let F1 = F ∪ {red(a),¬ontable(a)}.
g should not be explainable from F1, as there is no rea-
son to assume that there is another individual which
is also red. We can prove, ¬ontable(X) for X = a and
cannot explain g from F ∧ red(a).

Example 7B Let F2 = F∪{¬red(a),¬ontable(a)}.
g should be explainable from F2, as we know there is
another individual which is red which we can assume
it is on the table. We can explain g with the same
theory. We can prove ¬ontable(X) for X = a, but
F ′ = F ∧ red(a) is inconsistent, and so the inconsis-
tency is irrelevant to the theory needed.

8 Conclusion

There are many areas in which this problem arises.
Some people have assumed that it is sufficient to con-
sider the Herbrand Universe [Reiter80]. Others have
tried to define a “reverse Skolemisation” algorithm
which can be applied to the hypotheses generated, and
unified with the instances leading to inconsistencies
[Cox84, Bledsoe78]. We have shown that both of these
ideas cannot work.

We have shown that we need to keep track of the
context in which Skolem functions are defined, and
have shown how this can be done by using Hilbert’s
ε-symbol. A procedure is outlined which solves this
problem for the case of no Skolem functions in the
inconsistencies found. [Poole87] gives the general so-
lution to the problem.

Acknowledgements

This research was supported under NSERC grant
A6260. Thanks to Eric Neufeld, Paul Van Arragon,

Denis Gagné, Bruce Kirby and Randy Goebel for valu-
able discussions, arguments and comments on an ear-
lier draft of this paper.

References

[Bledsoe78] Bledsoe,W.W. and Ballantyne,A.M., Un-
skolemizing, University of Texas at Austin, Math
Dept Memo ATP-41A, July 1978.

[Cox84] Cox,P.T. and Pietrzykowski,T., “A Complete,
Nonredundant Algorithm for Reverse Skolemisa-
tion”, Theoretical Computer Science, 28 , pp. 239-
261.

[Chang73] C. Chang and R. Lee, Symbolic Logic and
Mechanical Theorem Proving, Academic Press,
1973.

[Green69] C. Green, “Application of Theorem Proving
to Problem Solving”, Proc. 1st International Joint
Conference of Artificial Intelligence, pp. 219-239.

[Leisenring69] A. C. Leisenring, Mathematical Logic
and Hilbert’s ε-symbol, MacDonald Technical and
Scientific, London, 1969.

[Poole86] D. Poole, Default Reasoning and Diagno-
sis as Theory Formation, Technical Report CS-86-
08, Department of Computer Science, University
of Waterloo, March 1986, 19 pages.

[Poole87] D. Poole, Building Consistent Theories,
Technical Report, Department of Computer Sci-
ence, University of Waterloo, May 1987.

[PGA87] D. Poole, R. Goebel and R. Aleluinas, “The-
orist: a logical reasoning system for defaults and
diagnosis”, in N.Cercone and G.McCalla (Eds.)
The Knowledge Frontier: Essays in the Represen-
tation of Knowledge, Springer Varlag, New York,
1987, pp. 331-352.

[Reiter80] R. Reiter, “A Logic for Default Reasoning”,
Artificial Intelligence, Vol 13, pp. 81–132.


