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Abstract

We consider the problem of building relational probabilistic
models with an underlying ontology that defines the classes
and properties used in the model. Properties in the ontology
form random variables when applied to individuals. When an
individual is not in the domain of a property, the correspond-
ing random variable is undefined. If we are uncertain about
the types of individuals, we may be uncertain about whether
random variables are defined. We discuss how to extend a re-
cent result on reasoning with potentially undefined random
variables to the relational case. Object properties may have
classes of individuals as their ranges, giving rise to random
variables whose ranges vary with populations. We identify
and discuss some of the issues that arise when constructing
relational probabilistic models using the vocabulary and con-
straints from an ontology, and we outline possible solutions
to certain problems.

Introduction
In many domains, we want ontologies to define the vocabu-
lary and probabilistic models to make predictions. For exam-
ple, in geology, the need to define standardized vocabularies
becomes clear when one looks at detailed geological maps,
which do not match at political boundaries because jurisdic-
tions use incompatible vocabularies. There has been much
recent effort to define ontologies for geology and use them to
describe data (e.g., http://www.onegeology.org/).
Geologists need to make decisions under uncertainty, and
so need probabilistic models that use ontologies. Similarly,
in the biomedical domain, huge ontologies (e.g., http:
//obofoundry.org/) are being developed and need to
be integrated into decision making under uncertainty.

We adopt the approach of Poole, Smyth, and Sharma
[2008], where ontologies form logical constraints which
come logically prior to data and to probabilistic models. For
example, as we know (as part of our ontology) that humans
are mammals, we do not expect any dataset to say explicitly
that some person is a human and a mammal (and if a per-
son is said to be an animal, it is a different sense of animal).
The data and the models are written taking into account the
underlying ontology.
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In an ontology, the domain of a property specifies the indi-
viduals for which the property is defined. Properties applied
to individuals correspond to random variables in the proba-
bilistic model. One problem in the integration of ontologies
and reasoning under uncertainty arises when properties have
non-trivial domains and thus the corresponding random vari-
ables are not always defined. For instance, the property edu-
cation may be applicable to people but not to dogs or rocks.
However, we may not know if an individual is a person, and
performance on some task may depend on his/her education
level if the individual is a person, such as when some dam-
age may have been caused by a crafty person (depending on
his/her education level) or by a natural phenomenon. Simi-
larly, hardness measure (in Mohs scale) may be applicable to
rocks but not to people. When modelling and learning, we do
not want to think about undefined values, and we will never
observe an undefined value in a dataset that obeys the ontol-
ogy; e.g., we do not want to consider the education level of
rocks, and no data would contain such information.

We first describe the result of Kuo et al. [2013], where
probabilistic reasoning is carried out without using an un-
defined value by leveraging the logical dependencies in an
ontology. Then we discuss the issues that arise when ex-
tending the modelling approach to the relational setting. For
instance, suppose the property friend is defined for humans,
and a friend of a human is another human. For different indi-
viduals, we may have varying beliefs about whether they are
humans. A probabilistic model needs to take into account
every pair of individuals that might be humans.

Another source of problems is when functional properties
have classes (defining types of individuals) as their ranges,
and we may be unsure about the types of individuals. When a
functional property such as bestFriend has some population
of individuals as its range, the probability that some particu-
lar person’s bestFriend is a particular person may depend on
th population size, about which we may be uncertain. Never-
theless, we want to build a probabilistic model that is useful
for different populations of individuals. Probabilities must
be specified in a way that varies with the population size for
the range of the property.

For random variables whose ranges are parametrized by
some population that is not known when constructing the
model, we cannot specify actual individual probabilities,
which would vary with the population size. We describe two



approaches to specifying these probabilities: (i) specify ag-
gregate probabilities for groups of individuals and (ii) spec-
ify the relative proportions of individual probabilities.

Ontologies
An ontology is a formal specification of the meanings of the
symbols in an information system [Smith, 2003]. Ontologies
provide researchers and practitioners in a common commu-
nity with standardized vocabulary in which to describe the
world. An ontology defines any terminology that needs to be
shared among datasets.

Modern ontologies, such as those in the Web Ontol-
ogy Language (OWL) [Grau et al., 2008; Motik, Patel-
Schneider, and Parsia, 2012], are defined in terms of classes,
properties, and individuals. The semantics of OWL is de-
fined in terms of sets [Motik, Patel-Schneider, and Grau,
2012] – a class is the set of all possible individuals in it,
and a property is a binary relation R, which is the set of all
(ordered) pairs for which the property holds. We write xRy
if x is related to y by the property R (i.e., 〈x,y〉 ∈ R).

Properties have domains and ranges. The domain of a
property is the class of individuals for which the property
is defined. Thus, a property is only defined for individuals in
its domain; for other individuals, it is not defined. The range
of a property is the set of possible values for the property.
The range of a property may be a set of pre-specified values
or some class of individuals.

Properties may be functional – each individual in the do-
main of a functional property is related to at most one value
in its range (i.e., if xRy and xRy′, then y = y′). OWL also de-
fines other kinds of properties such as transitive, symmetric,
and other meta properties.

It has been advocated that ontologies be written in terms
of Aristotelian definitions [Aristotle, 350 BC; Berg, 1982;
Poole, Smyth, and Sharma, 2009], where each explicitly
specified class is defined in terms of a super-class, the genus,
and restrictions on properties (e.g., that the property has a
particular value), the differentia, that distinguish this class
from other subclasses of the genus. This is not a restrictive
assumption, as we can always define a property that is true
of members of a class. It allows us to just model properties,
with classes being defined in terms of property restrictions.

Thing is the single top-level class, of which every other
class is a subclass, and it contains all possible individuals.
Example 1. Suppose education is a functional property only
defined for humans, and its range is {low,high}. This can be
specified in the OWL-2 functional syntax:
Declaration(ObjectProperty(:education))
FunctionalObjectProperty(:education)
ObjectPropertyDomain(:education :Human)
ObjectPropertyRange(:education

ObjectUnionOf(:Low :High))

A human is an individual in the class Animal for which
the property isHuman is true:
Declaration(Class(:Human))
EquivalentClasses(

:Human
ObjectIntersectionOf(
DataHasValue(:isHuman "true"^^xsd:boolean)

:Animal))
Declaration(DataProperty(:isHuman))
FunctionalDataProperty(:isHuman)
DataPropertyDomain(:isHuman :Animal)
DataPropertyRange(:isHuman xsd:boolean)

Here, we assume that isHuman is only defined for an-
imals. An animal is an individual for which the property
isAnimal is true and can be defined in a similar way. The do-
main of isAnimal is Thing and its range is a Boolean value.
xsd in the above OWL-2 specification stands for the

XML Schema Definition and refers to the schema where
boolean is defined.

In Example 1, all the properties are functional, and their
ranges are pre-specified sets of values. The genus and dif-
ferentia of Animal are Thing and isAnimal = true, respec-
tively, whereas those of the class Human are Animal and
isHuman = true. The property education has Human as its
domain, and is thus undefined when applied to an individual
for which isHuman is not true. Likewise, isHuman has do-
main Animal and so is only defined for individuals of class
Animal.
Example 2. The property friend is defined for humans, and
the friend of a human is another human. Hence, both the
domain and range of friend are Human:
Declaration(ObjectProperty(:friend))
ObjectPropertyDomain(:friend :Human)
ObjectPropertyRange(:friend :Human)

In Example 2, friend is a non-functional property whose
range is a class of individuals. The elements of the set may
vary; for example, the number of humans may be different
in different problem settings. Example 3 gives the OWL-2
syntax for specifying a functional property with a class of
individuals as its range.
Example 3. Similar to friend, the property bestFriend has
Human as both its domain and range. However, a person can
have at most one bestFriend.
Declaration(ObjectProperty(:bestFriend))
FunctionalObjectProperty(:bestFriend)
ObjectPropertyDomain(:bestFriend :Human)
ObjectPropertyRange(:bestFriend :Human)

Definition 1. An ontology O contains a set of logical asser-
tions about a set C of classes, a set P of properties, and a
set I of individuals. Each property p ∈ P has a domain and
a range. In addition, we assume O does not contain cyclic
definitions of property domains in the sense that any class
that defines the domain of a property cannot be defined in
terms of that property.

An Aristotelian ontology is an ontology where every
class C ∈ C is either Thing or is defined as C′ ∈ C conjoined
with a set of property restrictions (such as p1 = v1 ∧ ·· · ∧
pk = vk, where pi ∈ P, vi ∈ range(pi), and pi is defined for
individuals in C′ for which p1 = v1∧ ·· ·∧ pi−1 = vi−1). We
can always reduce a class C to a conjunction of property re-
strictions, which we refer to as the primitive form of class
C. Let dom(p) be the primitive form of the domain of prop-
erty p. The ontology induces a partial ordering of the prop-
erties: for every property p ∈ P, any property p′ appearing



in dom(p) precedes p, written as p′ ≺ p. Aristotelian defi-
nitions give rise to a class hierarchy and reduce class defini-
tions to property restrictions.

The acyclic restriction avoids the possibility of defining
two classes in terms of each other. It ensures that to deter-
mine whether a property is defined for an individual cannot
involve applying the property to that individual.

A formula, i.e., logical sentence written in the language
(e.g., OWL) used for an ontology, is entailed by the ontol-
ogy if the formula is always true given the set of logical as-
sertions in the ontology. As a simple example, if an ontology
specifies that Student is a subclass of Human and Human is a
subclass of Animal, then the ontology entails that Student is
a subclass of Animal (i.e., any individual in the class Student
is also in the class Animal). There exist ontology reasoners
for OWL (e.g., Pellet1 and HermiT2) that determine such
entailments.

Ontologically-Based Probabilistic Models
Graphical models [Pearl, 1988; Lauritzen, 1996] represent
factorizations of joint probability distributions in terms of
graphs that encode conditional (in)dependencies amongst
random variables. A belief network is a directed acyclic
graphical model where the factorization represents condi-
tional probability distributions (CPDs) of the random vari-
ables. A relational probabilistic model [Getoor and Taskar,
2007; De Raedt et al., 2008], also referred to as a template-
based model [Koller and Friedman, 2009], extends a graph-
ical model with the relational (or first-order) component.
Such models can be defined in terms of parametrized ran-
dom variables [Poole, 2003], which given a population of
individuals, can be grounded into standard graphical mod-
els. A parametrized random variable (PRV) is of the form
F(t1, . . . , tk), where F is a function symbol and each term ti is
either a logical variable associated with some population or
a constant that corresponds to an individual. A parametrized
random variable represents a collection of ground random
variables, one for each assignment of an individual to a log-
ical variable. Our work mainly concerns directed relational
graphical models [Heckerman, Meek, and Koller, 2004; Ker-
sting and De Raedt, 2007; Laskey, 2008] because the notion
of definedness is inherently conditional.

We will build on the integration of ontologies and proba-
bilistic models of Poole, Smyth, and Sharma [2009], where
PRVs are constructed from properties and individuals. When
modelling uncertainty, properties form PRVs, where the
property becomes the function symbol of the PRV.

A non-functional property R is modelled as a PRV of
the form R(X ,Y ) with two arguments. When we are unsure
about the types of individuals, the grounding contains all
pairs of individuals which are possibly in the domain and
range of R, and the range of the PRV is {true, f alse,⊥},
where ⊥ represents undefined. We call a (parametrized)
random variable with such range an extended Boolean
(parametrized) random variable. The main result of Kuo et
al. [2013] is how (for the non-relational case) to do inference

1http://clarkparsia.com/pellet
2http://hermit-reasoner.com/

when random variables are only defined in some contexts
without explicitly reasoning about the value undefined.
Example 4. The non-functional property friend in Exam-
ples 2 has a range whose size can vary. We construct a PRV
friend(X ,Y ), where both X and Y are logical variables. The
population for the grounding is all of the individuals who
could possibly be human.

A functional property with a fixed range becomes a multi-
valued PRV of the form R(X), which is parametrized by the
domain of the property, and the range of the PRV is the range
of the property extended with ⊥.
Example 5. To model the property education in Example 1,
we construct a parametrized random variable education(X),
whose range is the range of the property extended with ⊥,
i.e., {high, low,⊥}.

It is more complicated to model functional properties
whose ranges are classes of individuals which are not fixed.
A functional property whose range may vary is still mod-
elled as a parametrized random variable of the form R(X).
However, in addition to being parametrized by the logical
variable X , the range of such random variable is also im-
plicitly parametrized by the population associated with the
range of the corresponding property.
Example 6. Consider modelling the functional property
bestFriend in Example 3. We construct a parametrized ran-
dom variable bestFriend(X). The range of bestFriend(X) in-
cludes the set of all humans and so is also parametrized by
the population of Human.

Functional properties add an additional layer of com-
plexity over non-functional properties. If we had cho-
sen to treat bestFriend(X ,Y ) as an extended Boolean
PRV similar to friend(X ,Y ), then the ground instances
bestFriend(x,y1),bestFriend(x,y2), . . . would have to be
fully connected because only one of them can be true. We
can arrange PRVs into a DAG, which specifies (conditional)
dependencies, forming a relational probabilistic model de-
fined in terms of PRVs.

Modelling Undefined Properties
One of the problems in building (relational) probabilistic
models with an underlying ontology is that the property as-
sociated with a random variable is undefined for individu-
als not in its domain. A random variable is only defined in
the contexts when its corresponding property is applied to
an individual in the domain of that property. When building
a model, we only want to use a random variable in a con-
text where the random variable is defined. As Poole, Smyth,
and Sharma [2009] noticed, the idea of using a random vari-
able only in a context in which it is defined is reminiscent of
context-specific independence [Boutilier et al., 1996; Poole
and Zhang, 2003]. Instead of context-specific independence,
here a random variable is simply not defined in some con-
texts. We need a way of representing and reasoning with po-
tentially undefined random variables.

A straightforward approach is to simply add an extra value
“⊥” to the range of each random variable. However, when
combined with the restriction that a random variable is only



used in a context where it is defined, Kuo et al. [2013] pro-
pose to separate ontological dependencies from probabilistic
dependencies in an ontologically-based probabilistic model,
showing how to avoid explicit modelling of undefined values
in the random variables.

The central idea is straightforward. We avoid probabilis-
tic dependencies of a random variable on those random vari-
ables that can render it undefined. When querying the pos-
terior distribution of a random variable Q, we first query
whether the ontology entails that the observed evidence im-
plies the definedness of Q, and, if not, we then separately
query (i) the probability that Q is defined and (ii) the distri-
bution of Q as if we knew it was defined. Neither of these
two queries uses the extra value⊥. In particular, if the query
variable Q is defined, we do not need to care about whether
the other random variables are defined during inference. By
exploiting the determinism in the ontology, we can avoid
modelling “⊥” the in the range of the random variables and
also largely reduce the probabilistic network structure. Prob-
abilistic reasoning can thus be greatly sped up.

In the following sections, we discuss some of the issues
that arise when extending this modelling approach to the re-
lational setting.

Type Uncertainty about Individuals
In an ontologically-based probabilistic model, random vari-
ables are parametrized over populations, each of which rep-
resents some class (i.e., type) of individuals. Most work in
combining logic and probability addresses situations where
the types of the individuals in a population are known, but
the population sizes or individual identities may be uncer-
tain. When modelling real-world scenarios, we often have
type uncertainty about the individuals [Koller, Levy, and Pf-
effer, 1997; Poole and Smyth, 2005; Poole, 2007]; it is com-
mon that we have different levels of knowledge about the
types of different individuals. Such type uncertainty needs
to be taken into consideration when reasoning.
Example 7. We may have a population of 100 individuals
and know 80 of them are animals, 30 of these animals are
humans, but have no knowledge about the type(s) of the
remaining 20 individuals. Each of the 50 individuals, for
whom all we know is that they are animals, could either
be human or non-human. Similarly, the 20 individual whose
types are unknown to us could be animals or non-animals.

A non-functional property whose range is some class
gives rise to a random variable parametrized by both the do-
main and range of the property. When we do not know the
number of individuals in the class for the range of a property,
we may not even know the number of ground instances of
the parametrized random variable we need to reason about.
Example 8. Let friendliness be a functional property whose
domain is Human and range is {true, false}. Consider the
property friend in Example 2, and suppose that whether two
people are friends depends on the education and friendli-
ness of both of them. Figure 1 depicts the part of a relational
probabilistic model that specifies the dependency of friend
on other properties, where these properties correspond to
parametrized random variables in the model.

education(X)

education(Y)

friendliness(X)

friendliness(Y)

friend(X, Y)
X

Y

Figure 1: Part of an ontologically-based relational model
containing the extended Boolean PRV friend(X ,Y ) and its
dependency on other variables. The plates indicate replicates
for each instantiation of the logical variable(s).

The result from Kuo et al. [2013] suggests that we could,
in principle, consider every pair of individuals (even though
we may be uncertain about whether properties education,
friendliness, or friend are defined for the individuals), as
long as the model in Example 8 specifies the probability
that an individual is a human. This approach can be very
inefficient when there are a vast number of individuals, and
some individuals are known to be non-human from some
other properties. When reasoning, we want to only consider
the ground instances of the PRVs for which the pair of indi-
viduals have a non-zero probability of being humans.

Functional Properties with Varying Ranges
Modelling and reasoning become more complicated when
we consider functional properties whose ranges are
classes of individuals, as the ranges of the corresponding
(parametrized) random variables vary with the population.

Example 9. Consider the PRV bestFriend(X) in Exam-
ple 6. Suppose that, for two humans x and y, whether the
bestFriend of x is y depends on the education of both x
and y, as well as the number of lowly and highly humans
in the domain. (For notational brevity, friendliness(X) and
friendliness(Y ) are dropped for this example.) See Figure 2
for a graphical model representation.

In Example 9, bestFriend(X) is parametrized by Y in a
way different from the parametrization by X . For any indi-
vidual x, the possible values in the range of bestFriend(x)
includes the individuals that can fill the role of Y . This
parametrization of the range of a random variable is, in some
sense, similar to the latent Dirichlet allocation [Blei, Ng, and
Jordan, 2003] for topic modelling, where the topic variable’s
range would be parametrized by the topics when the set of
topics were not known a priori.

Instead, we could have chosen to model bestFriend(X ,Y )
as an extended Boolean PRV. The graphical model repre-
sentation would look very similar to that shown in Figure 1.
However, we would need a way to enforce the constraint that



education(X)

education(Y)

bestFriend(X)=Y

numLowlyEducated

numHighlyEducated X

Y

Figure 2: Part of an ontologically-based relational model
specifying bestFriend(X)’s dependency on other variables.

for any instantiation x, there is at most one individual y such
that bestFriend(x,y) is true. This constraint requires that all
ground instances bestFriend(x,y1),bestFriend(x,y2) . . . be
fully connected and is not easily captured in the graphical
model representation.

In Example 9, the parents of bestFriend(X) are
parametrized by logical variables that are associated with
the range of bestFriend(X). As such, the probabilities that
bestFriend(X) = y, for some given human y, depends not
only on education(y), but also on the number of individu-
als that can fill the role of Y . We describe two different ap-
proaches to specifying probabilities in such situation.

In the first approach, conditional probabilities are spec-
ified in a usual way with a probability for each combina-
tion of assignments to the parent variables such that these
probabilities sum to 1. However, these probabilities are ag-
gregate probability masses for groups of individuals. When
reasoning about any single individual, we need to uniformly
distribute these probability masses to the individuals in the
population, as these individuals are indistinguishable a priori
(if we are not given specific information about any particular
individual).
Example 10. Following Example 9, we have a model that
specifies that for X 6= Y ,

PΣY (bestFriend(X) = Y |
education(X) = high,education(Y ) = high) = 0.36,

and similarly for each of the other joint assignments to
education(X) and education(Y ) such that these numbers
sum to 1. The subscript ΣY indicates that the specified num-
ber is actually the sum of probabilities for all the instances
of Y .

The number 0.36 represents an aggregate probability – for
some highly educated human, the probability that his best-
Friend is a highly educated human is 0.36. To obtain individ-
ual probabilities, we divide the aggregate probability by the
number of highly educated humans. Suppose that Chris is a
highly educated human and that the population contains 100
highly educated humans. The probability that Chris’ best-
Friend is some other highly educated human (e.g., Mary),
for whom we have no specific beliefs, is 0.36

99 = 0.0036.
In the case where we do not know the number of indi-

viduals in the class for the range of the property (i.e., when

there is type uncertainty about individuals), we need to cal-
culate the expected individual probability over the number
of individuals to obtain the probability for any single indi-
vidual. This, however, may result in values that do not have
a closed form. One heuristic is to simply divide the proba-
bility masses by the expected number of individuals in the
class.
Example 11. Continuing Example 10, but assume we do
not know the number of humans. Let there be 100 individ-
uals. Suppose the model specifies that an individual is an
animal with probability 0.9, that an animal is a human with
probability 0.7, and that a human is highly educated with
probability 0.3. Then the probability that an individual is a
highly educated human is q = 0.9×0.7×0.3. The expected
size of the animal population is 90, that of the human pop-
ulation is 72, and the expected number of highly educated
humans is 21.6.

The probability that Chris’ bestFriend is Mary is calcu-
lated as an expectation over the population size of highly
educated humans:

1
Z

100

∑
i=2

0.36
i

(
100

i

)
qi(1−q)100−i ≈ 0.01996

where Z = ∑
100
j=2

(100
j

)
q j(1−q)100− j = 1−∑

1
j=0

(100
j

)
q j(1−

q)100− j is the normalizing term, and we have assumed that
the aggregate probability is positive implies there are at
least two highly educated humans. A heuristic to calcu-
late the probability that Chris’ bestFriend is Mary can be
0.36
20.6 ≈ 0.01748.

If we have different beliefs for certain specific individuals,
we need to adjust these probabilities so that they add up to
the remaining probability mass.

An alternative and what we believe more sensible ap-
proach to is use weights, similar to those used for undirected
graphical models. Instead of aggregate probability mass, for
each combination of assignments to the parent variables, we
specify a weight that represents the relative portion of an
individual probability.
Example 12. Consider Example 9 again. Our model now
specifies, for X 6= Y , the following weights:

φ(bestFriend(X) = Y |
education(X) = high,education(Y ) = high) = 3

and
φ(bestFriend(X) = Y |

education(X) = high,education(Y ) = low) = 1

as well as a weight 2 for any other possible combination of
assignments to the parent variables.

A key difference between these weights and those used
for undirected models is that the weights here can be in-
terpreted locally. They give the odds ratio between proba-
bilities for single individuals in different groups. In Exam-
ple 12, the first two weights indicate that for two highly ed-
ucated humans x and y1 and some lowly educated human



y2, bestFriend(x) is 3 times more likely to be y1 than y2.
Given the relevant population sizes or the distributions of
those population sizes, individual conditional probabilities
can be calculated locally.
Example 13. Continuing Example 12, suppose that the pop-
ulation size is 50 for highly educated humans and 500 for
lowly educated humans. We can calculate the probability
that Chris’ bestFriend is Mary as

3
2+3× (50−1)+1×500

≈ 0.00462.

Compared with the first approach, which specifies ag-
gregate probabilities at the population level, this alternative
specifies weights that contribute at the individual level. The
aggregate probability for a particular group (e.g., highly edu-
cated) of humans will change with the (distribution of) group
size. In most scenarios, we believe this is the more realistic
modelling approach.

Symmetric and Transitive Properties
In this section, we briefly mention some other kinds of
properties in an ontology, how we can model them as
(parametrized) random variables in an ontologically-based
probabilistic model, and what issues they may raise.

A symmetric property represents a binary relation whose
elements are unordered pairs. Formally, property R is sym-
metric if it is true that xRy if and only if yRx (i.e., 〈x,y〉 ∈
R⇔ 〈y,x〉 ∈ R).
Example 14. Suppose the non-functional property fbFriend
represents a friendship relation on Facebook. To establish
such relationship requires confirmations from both people,
so that each person agrees the other is his/her friend. There-
fore, fbFriend is symmetric.

Unlike for friend, the set of ground instances represented
by the PRV fbFriend(X ,Y ), constructed from the prop-
erty fbFriend in Example 14, should include only one in-
stance for each unordered pair of individuals. For two in-
dividuals h1 and h2, we want to only reason about one
of the two ground random variables, fbFriend(h1,h2) and
fbFriend(h2,h1).

A transitive property R satisfies that if xRy and yRz, then
xRz (i.e., 〈x,y〉 ∈ R∧〈y,z〉 ∈ R⇒ 〈x,z〉 ∈ R).
Example 15. Let above be a non-functional property whose
domain and range are Block. For two blocks X and Y ,
above(X ,Y ) means Y is above X . It is natural (and realis-
tic) to model this above relationship as a transitive property.

To model the property above in Example 15 as an ex-
tended Boolean PRV above(X ,Y ), we need to make sure
that transitivity holds amongst all ground instances. To do
so, however, will make the ground instances densely con-
nected with each other in the probabilistic model.

One approach to modelling a transitive property R is to
model another property R′ such that R is the transitive clo-
sure of R′. In Example 15, instead of using above, we could
model the property immediatelyAbove. By doing so, we re-
move the issue of transitivity, and immediatelyAbove is just
a non-functional property as discussed before.

Conclusion
This paper discusses some of the issues that pertain to in-
tegrating ontologies with reasoning under uncertainty. In
particular, it concerns building relational probabilistic mod-
els that use properties from an ontology. Different kinds
of properties in an ontology have been considered, and we
have described how we might construct parametrized ran-
dom variables from these properties to build a relational
probabilistic model.

We also described and explained two different approaches
to specifying conditional probabilities for random variables
whose range is a class of individuals such that the population
may vary. Certain related problems have also been identified
and discussed.
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