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Abstract
This paper concerns building probabilistic models
with an underlying ontology that defines the classes
and properties used in the model. In particular,
it considers the problem of reasoning with prop-
erties that may not always be defined. Further-
more, we may even be uncertain about whether a
property is defined for a given individual. One ap-
proach is to explicitly add a value “undefined” to
the range of random variables, forming extended
belief networks; however, adding an extra value to a
random variable’s range has a large computational
overhead. In this paper, we propose an alterna-
tive, ontologically-based belief networks, where all
properties are only used when they are defined, and
we show how probabilistic reasoning can be car-
ried out without explicitly using the value “unde-
fined” during inference. We prove this is equiva-
lent to reasoning with the corresponding extended
belief network and empirically demonstrate that in-
ference becomes more efficient.

1 Introduction
In many fields, we want ontologies to define the vocabulary
and probabilistic models to make predictions. For exam-
ple, in geology, the need to define standardized vocabularies
becomes clear when one looks at detailed geological maps,
which do not match at political boundaries because jurisdic-
tions use incompatible vocabularies. There has been much
recent effort to define ontologies for geology and use them to
describe data (e.g., http://onegeology.org/). Geologists need
to make decisions under uncertainty, and so need probabilis-
tic models that use ontologies. Similarly, in the biomedical
domain, huge ontologies (e.g., http://obofoundry.org/) are be-
ing developed and need to be integrated into decision making
under uncertainty.

In an ontology, the domain of a property specifies the in-
dividuals for which the property is defined. One of the prob-
lems in the integration of ontologies and reasoning under un-
certainty arises when properties have non-trivial domains and
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thus are not always defined. Properties applied to individuals
correspond to random variables in the probabilistic model,
giving rise to random variables that are not always defined.
For example, the property education may be applicable to
people but not to dogs or rocks. However, we may not know
if an individual is a person, and performance on some task
may depend on his/her education level if the individual is a
person, such as when some damage may have been caused by
a crafty person (depending on his/her education level) or by a
natural phenomenon. Similarly, hardness measure (in Mohs
scale) may be applicable to rocks but not to people. When
modelling and learning, we do not want to think about unde-
fined values, and we will never observe an undefined value
in a dataset that obeys the ontology; for instance, we do not
want to consider the education level of rocks, and no data
would contain such information.

We propose a simple framework, ontologically-based be-
lief networks (OBBNs), which integrates belief networks
[Pearl, 1988] with ontologies. OBBNs do not explicitly use
an undefined value in the construction of random variables,
but by leveraging the ontology, we can compute the posterior
distribution of any random variable, including the possibil-
ity of it being undefined. We define three inference meth-
ods for computing the posterior distribution of a random vari-
able. The first method explicitly includes an extra value “un-
defined” in the range of the random variables that are poten-
tially undefined. The second does not include “undefined”,
but involves two separate inference steps: (i) determining the
probability that the query is well-defined and (ii) querying a
random variable as if the well-definedness of the query were
observed evidence. The third only adds “undefined” to the
range of the target variable at query time.

2 Ontologies
An ontology is a formal specification of the meanings of the
symbols in an information system [Smith, 2003]. Ontologies
provide researchers and practitioners with standardized vo-
cabulary in which to describe the world. An ontology defines
any terminology that needs to be shared among datasets.

Modern ontologies, such as those in the Web Ontology
Language (OWL) [Grau et al., 2008; Motik et al., 2012b],
are defined in terms of classes, properties, and individuals.
The semantics of OWL is defined in terms of sets [Motik et
al., 2012a] – a class characterizes the set of all possible in-
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dividuals it may contain, and a property is a binary relation,
which is the set of all ordered pairs for which the property
holds.

Properties have domains and ranges. The domain of a
property is the class of individuals for which the property is
defined. Thus, a property is only defined for individuals in
its domain; for other individuals, the property is not defined.
The range of a property specifies the set of possible values for
the property.

It has been advocated that ontologies be written in terms
of Aristotelian definitions [Aristotle, 350 BC; Berg, 1982;
Poole et al., 2009], where each explicitly specified class is de-
fined in terms of a super-class, the genus, and restrictions on
properties (e.g., that some property has a particular value), the
differentia, that distinguish this class from other subclasses of
the genus. This is not a restrictive assumption, as we can al-
ways define a property that is true of members of a class. It
allows us to just model properties, with classes being defined
in terms of property restrictions. So, we can model uncer-
tainty in relationship to properties.

Thing is the single top-level class, which every other class
is a subclass of, and that contains all possible individuals.
Example 1. The functional property education is defined for
humans, and its range is {low,high}. This can be specified in
OWL-2 functional syntax:
Declaration(ObjectProperty(:education))
FunctionalObjectProperty(:education)
ObjectPropertyDomain(:education :Human)
ObjectPropertyRange(:education

ObjectUnionOf(:Low :High))

A human is any individual in the class Animal for which
the property isHuman is true:
Declaration(Class(:Human))
EquivalentClasses(

:Human
ObjectIntersectionOf(
DataHasValue(:isHuman "true"^^xsd:boolean)
:Animal))

Declaration(DataProperty(:isHuman))
FunctionalDataProperty(:isHuman)
DataPropertyDomain(:isHuman owl:Animal)
DataPropertyRange(:isHuman xsd:boolean)

Here, we stated that isHuman is only defined for animals.
This makes the example later more interesting. An animal is
an individual for which the property isAnimal is true and can
be defined in a similar way. The domain of isAnimal is Thing
and its range is a Boolean value.

In Example 1, the genus and differentia of Animal are
Thing and isAnimal = true, respectively, whereas those of
the class Human are Animal and isHuman = true. The prop-
erty education has Human as its domain and is thus undefined
when applied to an individual for which isHuman is not true.
Likewise, isHuman has domain Animal and so is only defined
for individuals of the class Animal.
Definition 1. An ontology O contains a set of logical asser-
tions about a set C of classes, a set Prop of properties, and
a set I of individuals. Each property p 2 Prop has a domain
and a range. In addition, O does not contain cyclic definitions

of property domains in the sense that any class that defines
the domain of a property cannot be defined in terms of that
property.

We use O.C and O.Prop to refer to the classes and proper-
ties, respectively, of ontology O.

An Aristotelian ontology is an ontology where every class
C 2 C is either Thing or is defined as C0 2 C conjoined with
a set of property restrictions (such as p1 = v1^ · · ·^ pk = vk,
where pi 2 Prop, vi 2 range(pi), and pi is defined for indi-
viduals in C0 for which p1 = v1 ^ · · ·^ pi�1 = vi�1). We can
always reduce a class C to a conjunction of property restric-
tions (with Thing omitted), which we refer to as the primitive
form of class C. We denote by dom(p) the primitive form
of the domain of p. The ontology induces a partial order-
ing of the properties: for every property p 2 Prop, any prop-
erty p0 appearing in dom(p) precedes p, written as p0 � p.
Aristotelian definitions give rise to a class hierarchy and re-
duce class definitions to property restrictions. In Example 1,
dom(education)⌘ isAnimal = true^ isHuman = true.

The acyclic restriction avoids the possibility of defining
two classes in terms of each other. It ensures that to deter-
mine whether a property is defined for an individual cannot
involve applying the property to that individual.

A formula, i.e., logical sentence written in the language
(e.g., OWL) used for an ontology, is entailed by the ontology
if the formula is always true given the set of logical assertions
in the ontology. As a simple example, if an ontology specifies
that Student is a subclass of Human and Human is a subclass
of Animal, then the ontology entails that Student is a subclass
of Animal, i.e., any individual in the class Student is also in
the class Animal. There exist ontology reasoners for OWL,
(e.g., Pellet1 and HermiT2), that determine such entailments.
We write O |= a if formula a is entailed by ontology O.

3 Integration of Ontologies with Probabilistic
Models

Graphical models [Pearl, 1988] represent factorizations of
joint probability distributions in terms of graphs that encode
conditional (in)dependencies amongst random variables. A
belief network is a directed graphical model where the
factorization represents conditional probability distributions
(CPDs) of the random variables. A relational probabilistic
model [Getoor and Taskar, 2007; De Raedt et al., 2008], also
referred to as a template-based model [Koller and Friedman,
2009], extends a graphical model with the relational (or first-
order) component and can be defined in terms of parametrized
random variables. Given a population of individuals, such
models can be grounded into standard graphical models. Our
work concerns directed graphical models.

We will follow the integration of ontologies and proba-
bilistic models of Poole et al. [2008; 2009], where ran-
dom variables are constructed from properties and individ-
uals. When modelling uncertainty, a functional property ap-
plied to an individual becomes a random variable, where the
range of the random variable is the range of the property. A

1http://clarkparsia.com/pellet
2http://hermit-reasoner.com/
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non-functional property applied to an individual becomes a
Boolean random variable for each value in the range of the
property. We can arrange these random variables into a DAG
which specifies (conditional) dependencies.

The underlying property of a random variable is undefined
for individuals not in its domain. We need a way to repre-
sent that a random variable is defined only in some contexts.
As Poole et al. [2009] noticed, the idea of using a random
variable only in a context in which it is defined is reminis-
cent of context-specific independence [Boutilier et al., 1996;
Zhang and Poole, 1999]. Here, instead of context-specific in-
dependence, a random variable is simply not defined in some
contexts.

While an ontologically-based probabilistic model is inher-
ently relational (as the ontology is about properties of individ-
uals), the issues considered do not depend on the relational
structure. For the rest of the paper, we discuss the proposi-
tional version, which can be considered as either being about
a single distinguished individual or about the grounding of a
relational network, with the individuals implicit.

Definition 2. For each random variable X , the extended
variant of X is a random variable X+ with range(X+) =
range(X) [ {?}, where X+ = X when X is defined, and
X+ =? when X is undefined.

A straightforward approach to dealing with undefined
properties is to do inference using extended random variables
and standard inference methods. In this paper, we explore
representing and reasoning in terms of the non-extended ran-
dom variables. Exact inference methods such as variable
elimination [Zhang and Poole, 1994; Dechter, 1996] or re-
cursive conditioning [Darwiche, 2001; 2009] have complex-
ity O(|variables’ range|T ), where T is the network treewidth.
Reducing the ranges of random variables can have a dramatic
impact on inference speed.

The alternatives are best given in terms of a motivating ex-
ample:

Example 2. Continuing Example 1, suppose the ontology
contains the property causeDamage, whose domain is Thing
and range is {true, false}, which specifies whether an individ-
ual is capable of causing some particular damage.

Suppose we have the following conditional probabilities
for causeDamage. For non-animals, there is a small probabil-
ity (e.g., 0.1) that causeDamage = true. For animals that are
not human, the probability of causeDamage = true is higher
(e.g., 0.3). For humans, the distribution of causeDamage de-
pends on education. When education is high, the probability
of causeDamage = true is 0.9, and when education is low,
the probability of causeDamage = true is 0.5. A tree rep-
resentation of the CPDs for causeDamage given its parents
isAnimal, isHuman, and education is given in Figure 1.

Note that the conditional probabilities in Example 2 obey
the constraint that a property is only used in a context where
it is defined.

One way of encoding the possibility of a property being
undefined is to build a model using the extended random vari-

isAnimal

isHuman

education

(0.1, 0.9)

(0.9, 0.1) (0.5, 0.5)

(0.3, 0.7)

true false

true false

high low

Figure 1: A tree-structured representation for
P(causeDamage | isAnimal, isHuman,education). The leaf
nodes specify probability distributions over {true, f alse} for
causeDamage.

ables. The ontology implies the probabilities:

P(isHuman+ =? | isAnimal+ = v) = 1, v 2 { f alse,?}
P(education+ =? | isHuman+ = v) = 1, v 2 { f alse,?}

To define the distribution over all random variables, we also
need the probabilities: P(isAnimal+ = true), P(isHuman+ =
true | isAnimal+ = true), and P(education+ = high |
isHuman+ = true). A belief network using the extended ran-
dom variables is shown in Figure 2, where causeDamage+
depends on all three other random variables. A tabular ver-

isAnimal+

isHuman+

education+

causeDamage+

Figure 2: A belief network using the extended variants of the
random variables in Example 2.

sion of the CPDs for causeDamage+ would define the prob-
ability distribution of causeDamage+ in 27 contexts (33).
A tree-structured version of the CPDs of causeDamage+ is
more complicated than that in Figure 1, because it needs to
model the undefined cases that are implied by the ontology.

A simpler representation is to build a model with the non-
extended random variables as in Figure 3. In this model, the
constraints of the ontology are not represented. In particular,
there is no arc from isHuman to education – the probability of
education does not depend on isHuman; only the definedness
of education does, and that is represented by the ontology.
Not only do the random variables have smaller ranges, but
the network is smaller (with fewer arcs).

In this paper, we address two questions: (i) how to build
a model and specify probabilities and (conditional) indepen-
dencies that obey the constraints implied by the underlying

2534



isAnimal

isHuman

education

causeDamage

Figure 3: The graph structure of an ontologically-based belief
network for Example 2.

ontology, and (ii) how to carry out probabilistic inference, by
leveraging the ontology, so that undefined values do not need
to be explicitly modelled in the random variables.

4 Ontologically-Based Belief Networks
In this section, we define ontologically-based belief networks
(OBBNs), which represent probabilistic dependencies sepa-
rately from the logical dependencies of an ontology.

4.1 Representation
Preliminary Definitions and Notation
In an OBBN, random variables are constructed from proper-
ties in the ontology3. For a random variable, the domain of
its corresponding property signifies when the random variable
is defined. The range of a random variable is the range of the
corresponding property in the ontology.

Propositions are built from variable-value assignments
with logical connectives. We need to be concerned with unde-
fined values. Here, we assume pre-emptive operators, which
are evaluated from left-to-right4:

Definition 3. A proposition is of one of the following forms:

• X = x where X is a random variable and x 2 range(X),
which is true if X has value x.

• a ^b where a and b are propositions, which is false if
a is false or if a is true and b is false, and is true if both
a and b are true. It is undefined if a is undefined or if
a is true and b is undefined.

• ¬a where a is a proposition, which is true if a is false,
is false if a is true, and is undefined if a is undefined.

• a _ b where a and b are propositions, which has the
same value as ¬(¬a ^¬b ).

3Since every random variable corresponds to a property in the
ontology, we use the same symbol to refer to both the variable and
the property. Thus, the individuals are left implicit. The context will
make clear to which of the two constructs the symbol is referring.

4These should be familiar to programmers, as most programming
languages have non-commutative logical operations, allowing x 6=
0^ y = 1/x to be false when x = 0, as opposed to y = 1/x^ x 6= 0,
which is undefined (giving an error) when x = 0.

These operators strictly extend the standard definitions. It
is straightforward to check that, while non-commutative, the
defined logical conjunction and disjunction operators remain
associative. In the rest of this paper, when dealing with non-
extended random variables, the notations^, ¬, and_ are used
to represent the non-commutative logic, instead of the com-
monly used operators in classical logic.
Definition 4. A proposition is well-defined in context Con,
where Con is a proposition, with respect to an ontology if

• the proposition is of the form X = x, and the ontology
entails that Con implies dom(X); or

• the proposition is of the form a^b , a is well-defined in
Con, and b is well-defined in Con^a; or

• the proposition is of the form ¬a , and a is well-defined
in Con; or

• the proposition is of the form a_b , a is well-defined in
Con, and b is well-defined in Con^¬a .

A well-defined proposition (in some context Con) is never
evaluated to undefined. When a context is not specified, we
assume the context True.

We use the notation vars(a), for some proposition a , to
denote the set of random variables that appear in a . Further-
more, for any proposition a of variable assignments, we use
a+ to denote the corresponding proposition with variables
Xi 2 vars(a) replaced by their extended variants X+

i but as-
signed the same value as Xi in a .

Structural and Probabilistic Constraints
An OBBN, like a belief network, is specified in terms of con-
ditional probability distributions (CPDs) of random variables.
We start with a total ordering of random variables X1, . . . ,Xn
that is consistent with the partial order of the properties in the
ontology. For each random variable Xi, a set of CPDs given
the values of its parent variables, Pa(Xi)✓ {X1, . . . ,Xi�1}, are
specified such that P(Xi | X1, . . . ,Xi�1) = P(Xi | Pa(Xi)).

A parent context [Poole and Zhang, 2003] for a random
variable X is a proposition c such that vars(c) ✓ Pa(X) and
c is well-defined in the context dom(X). For every random
variable X , assume there is a covering set of parent contexts
PX , such that the parent contexts in PX are mutually exclu-
sive and their disjunction is implied by dom(X). For every
ci 2 PX , there is a probability distribution pi over range(X),
which represents P(X | ci).

This construction implies that for any pair of random vari-
ables X and Y 2 vars(dom(X)), Y is not a descendent of X .
A random variable Y , whose instantiation may possibly ren-
der X undefined, cannot thus be probabilistically influenced
by the value of X . This follows from the constraint that the
total ordering of the random variables used in the construc-
tion of the probabilistic model is consistent with the property
ordering of the ontology.

Note that the random variables involved in the primitive
form of the domain of a random variable X , vars(dom(X)),
need not be parents of X in an OBBN, unless X is also prob-
abilistically dependent on these random variables. The CPDs
of X are simply irrelevant in the cases when its domain does
not hold.
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Definition 5. An ontologically-based belief network
(OBBN) is described by a 5-tuple hOnt,X,�,Pa,Pi, where

• Ont is an ontology;
• X ✓ Ont.Prop is a set of random variables;
• � is a total ordering of the variables that is consistent

with the property ordering of Ont;

• Pa : X ! 2X specifies, for each Xi 2 X, the set of its
parent variables Pa(Xi)✓ {X 2 X : X � Xi}; and

• P is a mapping from X, that maps X 2 X into {hci, pii :
ci 2PX}. Thus, P(X) specifies a conditional probability
distribution for X given any proposition that is consistent
with dom(X).

While the definition of an OBBN does not require that the
CPDs of the random variables be specified in any particular
form, a natural representation of the CPDs is a tree structure,
like that for context-specific independence [Boutilier et al.,
1996]. In the tree-structured representation of the CPDs for
X , the internal nodes correspond to the parent variables, and
the arcs from a node correspond to values for the random vari-
able at that node. The domain of X conjoined with the path
to a node must imply the domain of the random variable at
that node in the ontology. PX corresponds to the set of paths
down the tree, with the corresponding conditional probability
distributions at the leaves.
Example 3. Figure 1 depicts a tree-structured representa-
tion of the CPDs for causeDamage. Note that the path
isAnimal = false cannot split on any other parent variable be-
cause any more splitting results in undefined conjunctions of
variable assignments, and similarly for the path isAnimal =
true^ isHuman = false.
Example 4. The tree-structured CPDs for education con-
sist of only one single distribution (e.g., (0.2,0.8)) over
{low,high}, since education does not need a parent variable
in an OBBN. We will only use education in the contexts
where the individual under consideration is a human.

Given an OBBN M = hOnt,X,�,Pa,Pi, the correspond-
ing extended belief network (EBN) M+ has random vari-
ables X+ for X 2 X, and the parents of X+ are the par-
ents of X together with those random variables in the min-
imal subset Y of vars(dom(X)) such that for every ran-
dom variable Y 2 vars(dom(X)), either Y 2 Y or M.Ont |=
dom(X)

Y

! dom(X){Y}, where dom(X)
Y

denotes the part
of dom(X) that involves the variables in Y and similarly for
dom(X){Y}. In the worst case, Y = vars(dom(X)). For con-
texts ci where dom(X) is true, PM+(X+ | c+i ) = PM(X | ci),
(hence PM+(X+ = ? | c+i ) = 0). For contexts ci where
dom(X) is false, PM+(X+ =? | c+i ) = 1.

4.2 Semantics
The standard semantics for probability is in terms of possi-
ble worlds, which correspond to assignments to all of the
random variables. A joint probability distribution is a dis-
tribution over the possible worlds, and probabilities of indi-
vidual propositions can be defined in terms of this. When
there is an underlying ontology, an assignment of a value to

each random variable is often undefined. If we only consider
the well-defined assignments, we can get a smaller possible
world structure. The analogous notion to an assignment of
a value to each random variable is a maximal well-defined
conjunction of variable assignments:
Definition 6. A well-defined conjunction of variable assign-
ments X1 = x1 ^ · · ·^ Xk = xk is maximal if for any vari-
able X 0 /2 {X1, . . . ,Xk} and any value x0 2 range(X 0), X1 =
x1^ · · ·^ Xk = xk ^ X 0 = x0 is not well-defined.

To avoid considering equivalent conjunctions that only dif-
fer in the order of variable assignments, we assume that vari-
ables in a conjunction follow a total ordering consistent with
the ordering of the ontology. For conjunction a , we use a<k
to denote the preceding part of a that contains all variables
Xi 2 vars(a) with i < k.

Whereas an EBN encodes a joint probability distribution
over all conjunctions of extended variable assignments that
involve all the random variables, an OBBN represents a joint
probability distribution only over maximal well-defined con-
junctions of the non-extended random variables. For an
OBBN M with the total ordering X1, . . . ,Xn of random vari-
ables, the probability of a maximal well-defined conjunction,
a ⌘ Xp(1) = xp(1)^ · · ·^Xp(k) = xp(k), (where p is a mapping
from {1, . . . ,k} to {1, . . . ,n} with p(i) < p(i+ 1)), is com-
puted as:

PM(a) =
k

’
i=1

PM(Xp(i) = xp(i) | cp(i)),

where cp(i) is the parent context for Xp(i) such that a<p(i) |=
cp(i). By not representing the undefined worlds, an OBBN
can reduce the size of the set of possible worlds by an expo-
nential factor.
Example 5. For the EBN in Example 2, there are 4 random
variables, each with 3 values (including ?), and so there are
34 = 81 possible worlds. The possible worlds for the OBBN
for Example 3 are shown in Figure 4. Out of the 81 possi-
ble worlds for the EBN, only 8 have a non-zero probability.
The others are impossible due to the ontology. There is an
isomorphism between the non-zero worlds and the worlds for
the EBN in Figure 4.

isAnimal

isHuman causeDamage

causeDamageeducation

causeDamage causeDamage

w1 w2 w3 w4

w5 w6

w7 w8

true false

true false

low high

true false true false

true false

true false

Figure 4: A tree-structured representation of all possible
worlds that are encoded by an OBBN for Example 2. Ev-
ery path from the root to a leaf corresponds to a maximal
well-defined conjunction of variable assignments.
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5 Inference
The problem of inference is to determine the posterior distri-
bution P(Q+ | E) for a random variable Q, given some well-
defined observed evidence E . We compare three approaches:
EBN-Q Compute P(Q+ | E+) using the EBN.
3Q Compute P(dom(Q) | E) and P(Q | E ^ dom(Q)) using

the OBBN.
MQ Replace Q in the OBBN with Q+, add explicit depen-

dencies from vars(dom(Q)) to Q+, and then compute
P(Q+ | E) using the modified OBBN.

We first describe 3Q. The inference starts with querying
whether the ontology entails that Q is always, never, or some-
times well-defined given E . This relatively cheap compu-
tation can simplify or even make redundant the subsequent
probabilistic queries. There are three possible outcomes for
the ontological query:

1. The ontology entails that E implies dom(Q) is false:

Ont |= E ! ¬dom(Q).

The answer to the query is then: P(Q+ = ?) = 1. No
probabilistic inference is needed.

2. The ontology entails that E implies dom(Q) is true:

Ont |= E ! dom(Q).

In this case, P(Q+ = ?) = 0, and for any other value
q 6=?, P(Q+ = q | E) is the same as P(Q = q | E) in the
OBBN, (which does not contain undefined values).

3. Otherwise, it remains uncertain whether an assignment
Q = q, for any q 2 range(Q), is well-defined given E .
We proceed with two separate probabilistic inference
tasks, which can be run in parallel: (i) determining the
probability that Q = q is well-defined given E . Let
g = P(dom(Q) | E); and (ii) calculating the distribution
of Q when it is well-defined, i.e., P(Q | E^dom(Q)). We
return P(Q+ = ? | E) = 1� g , and for q 6= ?, P(Q+ =
q | E) = g P(Q= q | E^dom(Q)). Since dom(Q) is well-
defined, (i) needs not deal with the potential issue of un-
definedness. Similarly, (ii) incorporates dom(Q) into the
evidence and becomes an instance of Case 2, where the
query variable is always defined.

Leveraging the underlying ontology, the entire inference
process of 3Q boils down to an ontological query, followed
by up to two probabilistic queries. The ontological query is
assumed to be a relatively cheaper computation compared to
the probabilistic queries, yet in some cases, it lets us skip one
or both of the probabilistic queries. This inference scheme is
summarized in Procedure 3Q-INFERENCE.

Compared with 3Q, MQ allows for a single probabilistic
query and so avoids repeated computation, at the expense of
needing to dynamically modify the OBBN structure for each
query.

6 Equivalence of Representations
In this section, we present the coherence of an OBBN and
the validity of 3Q-INFERENCE by comparing it to inference
using the corresponding EBN.

Procedure 3Q-INFERENCE

Input: OBBN M, query variable Q, and evidence E .
Output: posterior distribution P(Q+ | E), where

range(Q+) = range(Q)[{?}.
if Ont |= E ! ¬dom(Q) then

return P(Q+ =? | E) = 1
else if Ont |= E ! dom(Q) then

D P(Q | E)
return {P(Q | E) =D, P(Q+ =? | E) = 0}

else
g  P(dom(Q) | E)
D P(Q | E ^dom(Q))
return {P(Q | E) = g ·D, P(Q+ =? | E) = 1� g}

end

Theorem 1. Every maximal well-defined conjunction S of
variable assignments defined in an OBBN M can be extended
to a possible world S+

f ull in the corresponding EBN by adding
an assignment of ? to every random variable X /2 vars(S),
and PM(S) = PM+(S+

f ull). All other possible worlds in M+

have probability 0.
For a proof of this and other theorems, see the online ap-

pendix5. This shows that an OBBN represents a probabil-
ity distribution over all maximal well-defined conjunctions of
variable assignments.

This result is surprising because although some proposi-
tions may not be well-defined, as long as we follow the struc-
ture of an OBBN and never have a defined variable depend on
an undefined variable, we never need to explicitly represent
the value “undefined”.

The coherence of an OBBN and the correspondence be-
tween the OBBN and the EBN directly lead to the consistency
of probabilistic query results between the two models.
Theorem 2. Let M be an OBBN with a total ordering
X1, . . . ,Xn of random variables and M+ be the corresponding
EBN. Let S be a well-defined conjunction of variable assign-
ments. Then PM(S) = PM+(S+).
Theorem 3. Let M be an OBBN and M+ be the correspond-
ing EBN. For any random variable Q and well-defined evi-
dence E with PM(E)> 0, the posterior PM(Q+ | E) returned
by 3Q-INFERENCE is the same as PM+(Q+ | E+).

7 Empirical Comparison
We construct an ontology that expands parametrically with
the number of properties. For each property, there can be
classes that are defined when the property is true, classes de-
fined when the property is false, and classes that are defined
when the property is defined but do not depend on its value.
We construct one instance of each of these classes in a recur-
sive tree structure, which we call a TAF structure (for “true,
always, false”), in a breadth-first manner.

Figure 5 provides a pictorial illustration of the synthetic
ontology. The range of each property is {true, false}. Prop-

5The appendix can be accessed at http://www.cs.ubc.ca/~poole/
papers/kuo-ijcai2013-appendix.pdf.
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erty p0 is always defined, (e.g., the domain of p0 could be
Thing in an OWL ontology). Property p1 is only defined
when p0 = true; p2 is always defined regardless of the value
p0 takes; and p3 is defined when p0 = false. p4 is defined only
when p1 = true, (so dom(p4)⌘ p0 = true^ p1 = true). Note
that although p5 is defined no matter what value p1 takes,
it still requires that p1 be defined, which means p0 = true.
Other properties are constructed in the same fashion.

p0

p1 p2 p3

p4 p5 p6 p10 p11 p12. . .

true
always

false

true
always

false
true always false

Figure 5: A pictorial visualization of a TAF-structured ontol-
ogy with 13 properties, namely p0, p1, . . . , p12.

We build an OBBN using the ontology such that each ran-
dom variable pi probabilistically depends on every predeces-
sor variable whenever it is defined, except for those variables
whose values are determined when pi is defined. As an exam-
ple, for the ontology in Figure 5, p12 has probabilistic depen-
dencies on p2, p7, p8, p9, and p11. We query the final random
variable.

We use an open-source implementation of the CVE algo-
rithm [Poole and Zhang, 2003], which uses a compact rep-
resentation for the CPDs to exploit context-specific indepen-
dence. Figure 6 presents a comparison of the running times
for probabilistic queries using the OBBN and its correspond-
ing EBN. These running times are the averages of those of
500 runs of the same queries for 15  n  30, 100 runs for
31 n 45, and 10 runs for 46 n, where n is the number of
random variables6. The significant difference in the running
times demonstrates that inference with OBBNs can be orders
of magnitude more efficient7.

All of the measured running times are for a Java implemen-
tation running on a Windows 7 machine with an Intel dual-
core i5-2520 processor and 16 GB of RAM, with up to 12
GB allocated to the Java Virtual Machine. Garbage collector
was run using a separate parallel thread.

8 Conclusion
We have presented OBBNs, a simple framework that inte-
grates belief networks with ontologies and avoids explicit
modelling of undefined values in the random variables.
We showed that, by exploiting the determinism that arises
from the ontology, probabilistic reasoning involving variables
whose corresponding properties may not be well-defined can

6For the small models, we could not get meaningful measures of
the running times with one single run of each query, due to the issue
of recorded numerical precision. The inference procedures are de-
terministic, and the variation in our implementation’s running times
is not significant.

7In our experiments, we ran the two probabilistic queries sequen-
tially. However, they could easily be executed in parallel.

Figure 6: A comparison of running times for probabilistic
queries with an OBBN and its corresponding EBN. The x-
axis is linearly spaced, whereas the y-axis is spaced using the
log scale.

still be effectively carried out. The proposed framework frees
domain modellers from having to think about undefined val-
ues by separating the probabilistic dependencies from the log-
ical dependencies implied by the ontology. Importantly, it
also facilitates more efficient inference by leveraging the on-
tology to reduce the probabilistic network structures and the
ranges of the random variables.
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