Logic Programming, Abduction and Probability
David Poole

Department of Computer Science,
University of British Columbia,
Vancouver, B.C., Canada V6T 172
poole@cs.ubc.ca
telephone: (604) 822 6254
fax: (604) 822 5485

Abstract

Probabilistic Horn abduction is a simple frame-
work to combine probabilistic and logical rea-
soning into a coherent practical framework.
The numbers can be consistently interpreted
probabilistically, and all of the rules can be in-
terpreted logically. The relationship between
probabilistic Horn abduction and logic pro-
gramming is at two levels. At the first level
probabilistic Horn abduction is an extension of
pure Prolog, that is useful for diagnosis and
other evidential reasoning tasks. At another
level, current logic programming implementa-
tion techniques can be used to efficiently imple-
ment probabilistic Horn abduction. This forms
the basis of an “anytime” algorithm for esti-
mating arbitrary conditional probabilities. The
focus of this paper is on the implementation.

1 Introduction

Probabilistic Horn Abduction [Poole, 1991c; Poole,
1991b; Poole, 1992a] is a framework for logic-based ab-
duction that incorporates probabilities with assump-
tions. It is being used as a framework for diagnosis
[Poole, 1991c] that incorporates both pure Prolog and
Bayesian Networks [Pearl, 1988] as special cases [Poole,
1991b]. This paper is about the relationship of proba-
bilistic Horn abduction to logic programming. This sim-
ple extension to logic programming provides a wealth of
new applications in diagnosis, recognition and evidential
reasoning [Poole, 1992a).

This paper also presents a logic-programming solution
to the problem in abduction of searching for the “best”
diagnoses first. The main features of the approach are:

e We are using Horn clause abduction. The proce-
dures are simple, both conceptually and computa-
tionally (for a certain class of problems). We de-
velop a simple extension of SLD resolution to im-
plement our framework.

e The search algorithms form “anytime” algorithms
that can give an estimate of the conditional proba-
bility at any time. We do not generate the unlikely
explanations unless we need to. We have a bound on

the probability mass of the remaining explanations
which allows us to know the error in our estimates.

e A theory of “partial explanations” is developed.
These are partial proofs that can be stored in a pri-
ority queue until they need to be further expanded.
We show how this is implemented in a Prolog inter-
preter in Appendix A.

2 Probabilistic Horn abduction

The formulation of abduction used is a simplified form
of Theorist [Poole et al., 1987; Poole, 1988b] with prob-
abilities associated with the hypotheses. It is simpli-
fied in being restricted to definite clauses with simple
forms of integrity constraints (similar to that in [Goebel
et al., 1986]). This can also be seen as a generalisa-
tion of an ATMS [Reiter and de Kleer, 1987] to be non-
propositional.

The language is that of pure Prolog (i.e., definite
clauses) with special disjoint declarations that specify a
set of disjoint hypotheses with associated probabilities.
There are some restrictions on the forms of the rules and
the probabilistic dependence allowed. The language pre-
sented here is that of [Poole, 1992a)] rather than that of
[Poole, 1991¢; Poole, 1991b).

The main design considerations were to make a lan-
guage the simplest extension to pure Prolog that also
included probabilities (not just numbers associated with
rules, but numbers that follow the laws of probability,
and so can be consistently interpreted as probabilities
[Poole, 1992a]). We are also assuming very strong in-
dependence assumptions; this is not intended to be a
temporary restriction on the language that we want to
eventually remove, but as a feature. We can repre-
sent any probabilistic information using only indepen-
dent hypotheses [Poole, 1992a]; if there is any depen-
dence amongst hypotheses, we invent a new hypothesis
to explain that dependency.

2.1 The language

Our language uses the Prolog conventions, and has the
same definitions of variables, terms and atomic symbols.

Definition 2.1 A definite clause is of the form: a.
or a «— ay A -+ A ay. where a and each a; are atomic
symbols.

Definition 2.2 A disjoint declaration is of the form

ahn :pn])~

where the h; are atoms, and the p; are real numbers
0 < p; <1 such that py +--- 4+ p, = 1. Any variable
appearing in one h; must appear in all of the A; (i.e., the
h; share the same variables). The h; will be referred to
as hypotheses.

Definition 2.3 A probabilistic Horn abduction
theory (which will be referred to as a “theory”) is a col-
lection of definite clauses and disjoint declarations such
that if a ground atom h is an instance of a hypothesis
in one disjoint declaration, then 1t is not an instance of
another hypothesis in any of the disjoint declarations.

disjoint([hy : p1, -

Given theory T, we define

Fr the facts, is the set of definite clauses in T' together
with the clauses of the form

false «— h; A hy

where h; and h; both appear in the same disjoint
declaration in T, and ¢ # j. Let F} be the set of
ground instances of elements of F7p.

Hp to be the set of hypotheses, the set of h; such that
h; appears in a disjoint declaration in 7. Let H}
be the set of ground instances of elements of Hp.

Pr is a function Hf — [0,1]. Pr(h}) = p; where A} is a
ground instance of hypothesis h;, and h; : p; isin a
disjoint declaration in 7.

Where T is understood from context, we omit the sub-
script.

Definition 2.4 [Poole et al., 1987; Poole, 1988a] If ¢ is
a closed formula, an explanation of ¢ from (F, H) is a
set. D of elements of H' such that

e FUD[E g and
o FUD £ false.

The first condition says that D is a sufficient cause for
g, and the second says that I is possible.

Definition 2.5 A minimal explanation of ¢ is an ex-
planation of g such that no strict subset is an explanation
of g.

2.2 Assumptions about the rule base

Probabilistic Horn abduction also contains some as-
sumptions about the rule base. It can be argued that
these assumptions are natural, and do not really restrict
what can be represented [Poole, 1992a]. Here we list
these assumptions, and use them in order to show how
the algorithms work.

The first assumption we make is about the relationship
between hypotheses and rules:

Assumption 2.6 There are no rules with head unifying
with a member of H.

Instead of having a rule implying a hypothesis, we
invent a new atom, make the hypothesis imply this atom,
and all of the rules imply this atom, and use this atom
instead of the hypothesis.

Assumption 2.7 (acyclicity) If F” is the set of ground
instances of elements of F'| then it is possible to assign
a natural number to every ground atom such that for
every rule in F"’ the atoms in the body of the rule are
strictly less than the atom in the head.

This assumption is discussed in [Apt and Bezem,

1990].

Assumption 2.8 The rules in F’ for a ground non-
assumable atom are covering.

That is, if the rules for @ in F’ are

a%Bl
a%Bz

a— B,
if a 1s true, one of the B; is true. Thus Clark’s completion

[Clark, 1978] is valid for every non-assumable. Often we
get around this assumption by adding a rule

a — some_other_reason_for_a

and making “some_other_reason_for_a” a hypothesis

[Poole, 1992a).

Lemma 2.9 [Console et al., 1991; Poole, 1988b] Under
assumptions 2.6, 2.7 and 2.8, if expl(g,T) is the set of
minimal explanations of g from theory 7"

g = \/ €;

e;€expl(yg,T)

Assumption 2.10 The bodies of the rules in F” for an
atom are mutually exclusive.

Given the above rules for a, this means that
B; A By = false

is true in the domain under consideration for each i # j.
We can make this true by adding extra conditions to the
rules to make sure they are disjoint.

Lemma 2.11 Under assumptions 2.6 and 2.10, mini-
mal explanations of atoms or conjunctions of atoms are
mutually inconsistent.

See [Poole, 1992a] for more justification of these as-
sumptions.

2.3 Probabilities

Associated with each possible hypothesis is a prior prob-
ability. We use this prior probability to compute arbi-
trary probabilities.

The following is a corollary of lemmata 2.9 and 2.11

Lemma 2.12 Under assumptions 2.6, 2.7, 2.8, 2.10
and 2.13, if expl(g,T) is the set of minimal explana-
tions of conjunction of atoms g from probabilistic Horn
abduction theory T':

Plg) = P \/ €

e;€expl(yg,T)

= > Pe)
e;€expl(y,T)

Thus to compute the prior probability of any g we sum
the probabilities of the explanations of g¢.

To compute arbitrary conditional probabilities, we use
the definition of conditional probability:

P(aAp)
P(B)

Thus to find arbitrary conditional probabilities
P(«|B), we find P(f), which is the sum of the explana-
tions of 8, and P(aAB3) which can be found by explaining
« from the explanations of 3. Thus arbitrary conditional
probabilities can be computed from summing the prior
probabilities of explanations.

It remains only to compute the prior probability of
an explanation D of g. We assume that logical depen-
dencies impose the only statistical dependencies on the
hypotheses. In particular we assume:

P(alf) =

Assumption 2.13 Ground instances of hypotheses
that are not inconsistent (with Fp) are probabilistically
independent. That is, different disjoint declarations de-
fine independent hypotheses.

The hypotheses in a minimal explanation are always
logically independent. The language has been carefully
set up so that the logic does not force any dependencies
amongst the hypotheses. If we could prove that some
hypotheses implied other hypotheses or their negations,
the hypotheses could not be independent. The language
is deliberately designed to be too weak to be able to state
such logical dependencies between hypotheses.

Under assumption 2.13, if {hy, -+, h,} are part of a
minimal explanation, then

P(hyA---Ahy) = fipmg

To compute the prior of the minimal explanation we mul-
tiply the priors of the hypotheses. The posterior proba-
bility of the explanation i1s proportional to this.

The following is a corollary of lemmata 2.9 and 2.11

Lemma 2.14 Under assumptions 2.6, 2.7, 2.8, 2.10
and 2.13, if expl(g,T) is the set of all minimal expla-
nations of ¢ from theory T':

Plg) = P\ e

e;€expl(yg,T)

= > Ple)
e;€expl(yg,T)

2.4 An example

In this section we show an example that we use later in
the paper. It is intended to be as simple as possible to
show how the algorithm works.

Suppose we have the rules and hypotheses:

rule((a :- b, h)).
rule((a :- q,e)).
rule((q :- h)).

rule((q :- b,e)).
rule((h :- b, £)).

rule((h :- ¢, e)).

rule((h :- g, b)).
disjoint([b:0.3,c:0.7]).
disjoint([e:0.6,£:0.3,g:0.1]).

There are four minimal explanations of a, namely

{c,e}, {b,e}, {f,b} and {g,b}.

The priors of the explanations are as follows:
P(ehe)=0.7x0.6=0.42.

Similarly P(bAe) = 0.18, P(fAb) = 0.09 and P(gAb) =
0.03. Thus

P(a) =042+ 0.18 + 0.09 4 0.03 = 0.72

There are two explanations of e A a, namely {¢, e} and
{b,e}. Thus P(e A a) = 0.60. Thus the conditional
probability of e given a is P(e|a) = 0.6/0.72 = 0.833.

What is important about this example 1s that all of
the probabilistic calculations reduce to finding the prob-
abilities of explanations.

2.5 Tasks
The following tasks are what we expect to implement:

1. Generate the explanations of some goal (conjunction
of atoms), in order.

2. Determine the prior probability of some goal. This
is implemented by enumerating the explanations of
the goal.

3. Determine the posterior probabilities of the expla-
nations of a goal (i.e., the probabilities of the expla-
nations given the goal).

4. Determine the conditional probability of one for-
mula given another. That is, determining P(«|3)
for any « and S3.

All of these will be implemented by enumerating the
explanations of a goal, and estimating the probability
mass 1n the explanations that have not been enumer-
ated. It is this problem that we consider for the next few
sections, and then return to the problem of the tasks we
want to compute.

3 A top-down proof procedure

In this section we show how to carry out a best-first
search of the explanations. In order to do this we build
a notion of a partial proof that we can add to a priority
queue, and restart when necessary.

3.1 SLD-BF resolution

In this section we outline an implementation based on
logic programming technology and a branch and bound
search.

The implementation keeps a priority queue of sets
of hypotheses that could be extended into explanations
(“partial explanations”). At any time the set of all the
explanations is the set of already generated explanations,
plus those explanations that can be generated from the
partial explanations in the priority queue.

Q:={{g —g.{Hk
= {};
repeat
choose and remove best (g — C, D) from Q;
if C'=true
then if good(D) then I := T U {D} endif
else Let C =a AR
for each rule(h — B) where mgu(a,h) =0
Q:=QU{ly— BAR D) :
if a € H and good({a} U D)
then Q = QU {{g — R, {a} U D)}
endif
endif

until @ = {}

where good(D) = (Vdy,ds € D An € NG 3¢ (d1,ds) = n¢)
A

(Bm€ll,3¢ D C 7¢)

Figure 1: SLD-BF Resolution to find explanations of ¢
in order.

Definition 3.1 a partial explanation is a structure
(9 = C,D)

where ¢ is an atom (or conjunction of atoms), C' is a
conjunction of atoms and D is a set of hypotheses.

Figure 1 gives an algorithm for finding explanations of
q in order of probability (most likely first). At each step
we choose an element

(9 = C,D)

of the priority queue @ with maximum prior probability
of D.

We have an explanation when C is the empty conjunc-
tion (represented here as true). In this case D is added
to the set II of already generated explanations.

Otherwise, suppose C' is conjunction a A R.

There are two operations that can be carried out. The
first is a form of SLD resolution [Lloyd, 1987, where for
each rule

in F', such that A and a have most general unifier 8, we
generate the partial explanation

(g —biA-Aby AR, D)0

and add 1t to the priority queue.
The second operation is used when a € H. In this
case we produce the partial explanation

(9 = R,{a} U D)

and add it to Q. We only do this if {a} U D is consistent,
and is not subsumed by another explanation of ¢. Here
we assume the set NG of pairs of hypotheses that ap-
pear in the same disjoint declaration (corresponding to
nogoods in an ATMS [Reiter and de Kleer, 1987]). Un-
like in an ATMS this set can be built at compile time
from the disjoint declarations.

This procedure will find the explanations in order of
likelihood. Tts correctness is based on the meaning of a
partial explanation

Definition 3.2 A partial explanation (g — C,D) is
valid with respect to (I, H) if

FEDAC=yg

Lemma 3.3 Fvery partial explanation in the queue ()
is valid with respect to (F, H).

Proof: This is proven by induction on the
number of times through the loop.
It is trivially true initially as ¢ = ¢ for any q.

There are two cases where elements are added
to . In the first case (the “rule” case) we know

FEDARANa=¢
by the inductive assumption, and so
FE(DARANa=g)f
We also know
FE=E(B=h)
As afl = hf, by a simple resolution step we have

Fl(DARAB= g)b.

The other case is when a € H. By the induction
step

FEDA@AR)=yg
and so

FE(DA)AR= g

If D only contains elements of H and a is an el-
ement of H then {a}UD only contains elements
of H. O

It is now trivial to show the following:

Corollary 3.4 FEvery element of Il in figure 1 is an ez-
planation of q.

Although the correctness of the algorithm does not
depend on which element of the queue we choose at any
time, the efficiency does. We choose the best partial ex-
planation based on the following ordering of partial ex-
planations. Partial explanation (g1 < C4, D) is better
than (g2 — Ca, D2} if P(Dy) > P(D2). Tt is simple to
show that “better than” is a partial ordering. When we
choose a “best” partial explanation we choose a minimal
element of the partial ordering; where there are a number
of minimal partial explanations, we can choose any one.
When we follow this definition of “best”, we enumerate
the minimal explanations of ¢ in order of probability.

3.2 Our example

In this section we show how the simple example in Sec-
tion 2.4 1s handled by the best-first proof process.

The following is the sequence of values of) each time
through the loop (where there are a number of mini-
mal explanations, we choose the element that was added

last)

Ha —a, {1}

Ha—=bAh{}),(a—=qAhe{})}

Ha—qne{}), (a—h{b})}

Ha—=hne {}) {a—=bnreAed}), (a—h {b})}

{a—=bAfre{}),{a—chene{}),
(a—gAbre{}),{(a—=brene{}), {a—h {b})}

Ha—=chene{}), (a—=gnbnre}),
(a=bnrene {}),(a— fAe b)), (a—h {b})}

{a—gnbre), {a—=brene {}),{a—eNe {c}),
(a = fne{db}),{a—h {b})}

Ha—=bAene{}), (a—enect),(a—fAe {b}),

(@ —h,{b}),(a =bne, {g})}
{la—ene{ct),(a—ene {b}),{a — fAre{b}),
(@ —h,{b}),(a —=bnre {g})}
{{la—e{e,c}),{a—eNne {b}
(a—h,{b}),{a—bre {9}
{{a —true,{e,c}),{a —eAe, {b}),{a — fAe, {b}),
(@ —h,{b}),{a =bne {g})}

Thus the first, and most likely explanation is {e, c}.

{a—ene {b}),{a — fAre{b}), (a—h {b}),

(a—bne {9}

<aFf/\e’{b}>’< Hh"{b}>a<aFea{eab}%
Ha=bnre{gh}

{<tha{b}>a<aHe’{e’b}%(an/\e’{g}%
(a—e{f,b})}

{a—=bAF b}, {a—chne {b}), {a—gnb{b}),
(a—e{e,b}),{(a—bAre{g}),{a—¢e {f b})

{a = f,{b}) (@ —cne {b}),{a —gnb {b}),
(a—e{eb}), (a—=bAe{g}),(a—e {f b})}

{a—cne {b}),{a—gnb{b}), {a —e{eb}),
(a—bAne {g}),{a—true, {f,b}),{a — e, {f,b})}

Here the algorithm effectively prunes the top partial
explanation as (¢, b) forms a nogood.

{a—gNnb{b}) (a—e{eb}) {a —bAe {g}),
(a — true,{f,b}),{a — e, {f,b})}

{{a—e {e,b}), {(a—bAne {g}),{a —true, {f,b}),
(a—e {f,b}), {a=0b{g,b})}}

TR e

{{a — true,{e,b}), {a — bAe {9}, {a — true, {f,b}),

<a — e’{f’b}>’<a — b,{g,b})}

We have now found the second most likely explana-
tion, namely {e, b}.

{a—=bnre {g}),{a —true, {f,b}),{a — e, {f,b}),
(a=0b{g,b})}

a —true, {f,b}) (@ —e,{f,b}),(a — e {g,0}),
(a=b{g,0})}

We have thus found the third explanation {f,b}.

{{a e {f,b}),{a—¢ {g,0}),(a — b {g,b})}
{{a —e,{g,b}),(a —b,{g,b})}

{(a —b,{g,0})}
{{a —true,{g,b})}

The fourth explanation is {g,b}. There are no more
partial explanations and the process stops.

4 Discussion

4.1 Probabilities in the queue

We would like to give an estimate for P(g) after having
generated only a few of the most likely explanations of g,
and get some estimate of our error. This problem reduces
to estimating the probability of partial explanations in
the queue.

If (g — C, D) is in the priority queue, then it can pos-
sibly be used to generate explanations Dy, ---, D,. Each
D; will be of the form DU D}. We can place a bound on
the probability mass of all of the D;, by

P(DyV---VD,) = P(DAND]V---V D))
< P(D)

Given this upper bound, we can determine an upper
bound for P(g), where {e1, -+, e,} is the set of all min-
imal explanations of g:

P(g) = PleaVeaV---Vey)
= Pler)+ Plez) + -+ Pleyn)

> Ple)] + >

e; found e; to be generated

P(ej)

We can easily compute the first of these sums, and can
put upper and lower bounds on the second. This means
that we can put a bound on the range of probabilities of
a goal based on finding just some of the explanations of
the goal. Suppose we have goal g, and we have generated
explanations II. Let

Pn= Y P(D)

Dell

Po= >

D:{g—C D)eQ

P(D)

where () is the priority queue.

We then have
Pn < P(g) < Pn+ Pq

As the computation progresses, the probability mass
in the queue Pg approaches zero! and we get a better
refinement on the value of P(g). This thus forms the
basis of an “anytime” algorithm for Bayesian networks.

4.2 Conditional Probabilities

We can also use the above procedure to compute condi-
tional probabilities. Suppose we are trying to compute
the conditional probability P(«|8). This can be com-
puted from the definition:

Plal) = 25

We compute the conditional probabilities by enumer-
ating the minimal explanations of « A and 3. Note that
the minimal explanations of & A 3 are explanations (not

!Note that the estimate given above does not always de-
crease. It is possible that the error estimate increases. [Poole,
1992b] considers cases where convergence can be guaranteed.

necessarily minimal) of 3. We can compute the explana-
tions of a A 3, by trying to explain « from the explana-
tions of #. The above procedure can be easily adapted
for this task, by making the task to explain 8 A «, and
making sure we prove 3 before we prove «, so that we
can collect the explanations of 7 as a we generate them.
Let P? be the sum of the probabilities of the explana-
tions of 4 enumerated, and let P“*? be the sum of the
explanations of a A 3 generated.

Thus given our estimates of P(a A 5) and P(3) we
have a5 a5

P« PN+ Py
Py < Pl < 57

The lower bound is the case where all of the partial de-
scriptions in the queue go towards worlds implying 3,
but none of these also lead to «v. The upper bound is the
case where all of the elements of the queue go towards
implying «, from the explanations already generated for

4.3 Consistency and subsumption checking

One problem that needs to be considered is the prob-
lem of what happens when there are free variables in
the hypotheses generated. When we generate the hy-
potheses, there may be some instances of the hypotheses
that are inconsistent, and some that are consistent. We
know that every instance is inconsistent if the subgoal is
subsumed by a nogood. This can be determined by sub-
stituting constants for the variables in the the subgoal,
and finding if a subset unifies with a nogood.

We cannot prune hypotheses because an instance 1s in-
consistent. However, when computation progresses, we
may substitute a value for a variable that makes the par-
tial explanation inconsistent. This problem is similar to
the problem of delaying negation-as-failure derivations
[Naish, 1986], and of delaying consistency checking in
Theorist [Poole, 1991a]. We would like to notice such
inconsistencies as soon as possible. In the algorithm of
Figure 1 we check for inconsistency each time a par-
tial explanation is taken off the queue. There are cases
where we do not have to check this explicitly, for exam-
ple when we have done a resolution step that did not
assign a variable. There is a trade-off between checking
consistency and allowing some inconsistent hypotheses
on the queue?. This trade-off is beyond the scope of this
paper.

Note that the assumptions used in building the system
imply that there can be no free variables in any explana-
tion of a ground goal (otherwise we have infinitely many
disjoint explanations with bounded probability). Thus
delaying subgoals eventually grounds all variables.

4.4 Tterative deepening

In many search techniques we often get much better
space complexity and asymptotically the same time com-
plexity by using an iterative deepening version of a
search procedure [Korf, 1985]. An iterative deepening
version of the best-first search procedure is exactly the

2We have to check the consistency at some time. This
could be as late as just before the explanation is added to II.

same as the iterative deepening version of A* with the
heuristic function of zero [Korf, 1985]. The algorithm of
procedure 1 is given at a level of abstraction which does
not preclude iterative deepening.

For our experimental implementations, we have used
an interesting variant of iterative deepening. Our queue
is only a “virtual queue” and we only physically store
partial explanations with probability greater than some
threshold. We remember the mass of the whole queue,
including the values we have chosen not to store. When
the queue is empty, we decrease the threshold. We can
estimate the threshold that we need for some given accu-
racy. This speeds up the computation and requires less
space.

4.5 Recomputing subgoals

One of the problems with the above procedure is that
it recomputes explanations for the same subgoal. If s is
queried as a subgoal many times then we keep finding
the same explanations for s. This has more to do with
the notion of SLD resolution used than with the use of
branch and bound search.

We are currently experimenting with a top-down pro-
cedure where we remember computation that we have
computed, forming “lemmata”. This is similar to the use
of memo functions [Sterling and Shapiro, 1986] or Earley
deduction [Pereira and Shieber, 1987] in logic program-
ming, but we have to be very careful with the interac-
tion between making lemmata and the branch and bound
search, particularly as there may be multiple answers to
any query, and just because we ask a query does not
mean we want to solve it (we may only want to bound
the probability of the answer).

4.6 Bounding the priority queue

Another problem with the above procedure that is not
solved by lemmatisation is that the bound on the prior-
ity queue can become quite large (i.e., greater than one).
Some bottom-up procedures [Poole, 1992b], can have an
accurate estimate of the probability mass of the queue
(i.e., an accurate bound on how much probability mass
could be on the queue based on the information at hand).
See [Poole, 1992b] for a description of a bottom-up pro-
cedure that can be compared to the top-down procedure
in this paper. In [Poole, 1992b] an average case analysis
is given on the bottom-up procedure; while this is not
an accurate estimate for the top-down procedure, the
case where the bottom-up procedure is efficient [Poole,
1992b] is the same case where the top-down procedure
works well; that 1s where there are normality conditions
that dominate the probability of each hypothesis (i.e.,
where all of the probabilities are near one or near zero).

5 Comparison with other systems

There are many other proposals for logic-based abduc-
tion schemes (e.g., [Pople, 1973; Cox and Pietrzykowski,
1987; Goebel et al., 1986; Poole, 1988a]). These, how-
ever, consider that we either find an arbitrary explana-
tion or find all explanations. In practice there are pro-
hibitively many of these. It is also not clear what to
do with all of the explanations; there are too many to

give to a user, and the costs of determining which of the
explanations is the “real” explanation (by doing tests
[Sattar and Goebel, 1991]) is usually not outweighed by
the advantages of finding the real explanation. This is
why 1t 1s important to take into account probabilities.
We then have a principled reason for ignoring many ex-
planations. Probabilities are also the right tool to use
when we really are unsure as to whether something is
true or not. For evidential reasoning tasks (e.g., diagno-
sis and recognition) it is not up to us to decide whether
some hypothesis is true or not; all we have is probabilities
and evidence to work out what is most likely true. Simi-
lar considerations motivated the addition of probabilities
to consistency-based diagnosis [de Kleer and Williams,
1989].

Perhaps the closest work to that presented here is that
of Stickel [Stickel, 1988]. His is an iterative deepening
search for the lowest cost explanation. He does not con-
sider probabilities.

6 Using existing logic programming
technology

In this section we show how the branch and bound search
can be compiled into Prolog. The basic idea 1s that when
we are choosing a partial explanation to explore, we can
choose any of those with maximum probability. If we
choose the last one when there is more than one, we
carry out a depth-first search much like normal Prolog,
except when making assumptions. We only add to the
priority queue when making assumptions, and let Prolog
do the searching when we are not.

6.1 Remaining subgoals

Consider what subgoals remain to be solved when we are
trying to solve a goal. Consider the clause:

h%bl/\bz/\/\bm

Suppose R 1s the conjunction of subgoals that remain
to be solved after h in the proof. If we are using the
leftmost reduction of subgoals, then the conjunction of
subgoals remaining to be solved after subgoal b; is

bigt A Aby AR

The total information of the proof is contained in the
partial explanation at the point we are in the proof, i.e.,
in the remaining subgoals, current hypotheses and the
associated answer. The idea we exploit is to make this
set of subgoals explicit by adding an extra argument to
each atomic symbol that contains all of the remaining
subgoals.

6.2 Saving partial proofs

There i1s enough information within each subgoal to
prove the top level goal it was created to solve. When we
have a hypothesis that needs to be assumed, the remain-
ing subgoals and the current hypotheses form a partial
explanation which we save on the queue. We then fail
the current subgoal and look for another solution. If
there are no solutions found (i.e., the top level computa-
tion fails), we can choose a saved subgoal (according to
the order given in section 3.1), and continue the search.

Suppose in our proof we select a possible hypothesis
h of cost P({h}) with U being the conjunction of goals
remaining to be solved, and 7' the set of currently as-
sumed hypotheses with cost P(T). We only want to
consider this as a possible contender for the best solu-
tion if P({h}UT) is the minimal cost of all proofs being
considered. The minimal cost proofs will be other proofs
of cost P(T'). These can be found by failing the current
subgoal. Before we do this we need to add U, with hy-
potheses {h} UT to the priority queue. When the proof
fails we know there is no proof with the current set of
hypotheses; we remove the partial proof with minimal
cost from the priority queue, and continue this proof.

We do a branch and bound search over the partial
explanations, but when the priorities are equal, we use
Prolog’s search to prefer the last added. The overhead on
the resolution steps is low; we only have to do a couple
more simple unifications (a free variable with a term).
The main overhead occurs when we reach a hypothesis.
Here we store the hypotheses and remaining goals on
a priority queue and continue or search by failing the
current goal. This is quick (if we implement the priority
queue efficiently); the overhead needed to find all proofs
is minimal.

Appendix A gives code necessary to run the search
procedure.

7 Conclusion

This paper has considered a logic programming approach
that uses a mix between depth-first and branch-and-
bound search strategies for abduction where we want
to consider probabilities, and only want to generate the
most likely explanations. The underlying language is
a superset of pure Prolog (without negation-as-failure),
and the overhead of executing pure Prolog programs is
small.

A Prolog interpreter

This appendix gives a brief overview of a meta-
interpreter. Hopefully it is enough to be able to build
a system. Our implementation contains more bells and
whistles, but the core of it is here.

A.1 Prove

prove(G, Ty, 11, Co, C1, U)

means that G' can be proven with current assumptions
Ty, resulting in assumptions 77, where C; is the proba-
bility of 7;, and U is the set of remaining subgoals.

The first rule defining prove is a special purpose rule
for the case where we have found an explanation; this
reports on the answer found.

prove(ans(4),T,T,C,C,_) = !,
ans(4,T,C).
The remaining rules are the real definition, that follow
a normal pattern of Prolog meta-interpreters [Sterling

and Shapiro, 1986].

prove(true,T,T,C,C,_)
prove((4,B),T0,T2,C0,C2,U) :- !,

prove(A,T0,T1,C0,C1,(B,U)),
prove(B,T1,T2,C1,C2,U).
prove(H,T,T,C,C,_) :-
hypothesis(H,PH),
member (H,T),!.
prove(H,T,[HIT],C,C1,U) :-
hypothesis(H,PH),
\+ ((member(H1,T), makeground((H,H1)),
nogood(H,H1))),
C1 is C*PH,
add_to_PQ(process([H|T],C1,U)),
fail.
prove(G,T0,T1,C0,C1,U) :-
rul(G,B),
prove(B,T0,T1,C0,C1,U).

A.2 Rule and disjoint declarations

We specify the rules of our theory using the declaration
rule(R) where R is the form of a Prolog rule. This asserts
the rule produced.

rule((H :- B)) :— !,
assert(rul(H,B)).
rule(H) :-

assert(rul(H,true)).

The disjoint declaration forms nogoods and declares
probabilities of hypotheses.

:- op(500, xfx, :).

disjoint([]).

disjoint ([H:P|R]) :-
assert (hypothesis(H,P)),
make_disjoint(H,R),
disjoint(R).

make_disjoint(_,[1).

make_disjoint (H,[H2 : _
assert(nogood(H,H2)),
assert(nogood(H2,H)),
make_disjoint(H,R).

| R1) :-

A.3 Explaining

To find an explanation for a subgoal G we execute
explain(G). This creates a list of solved explanations
and the probability mass found (in “done”), and creates
an empty priority queue.

explain(G) :-

assert(done([],0)),

initQ,

ex((G,ans(G)),[1,1),".

ex(G, D, C) tries to prove G with assumptions D such

that probability of D is C'. If G cannot be proven, a par-
tial proof is taken from the priority queue and restarted.
This means that ex(G, D, C) succeeds if there is some
proof that succeeds.

ex(G,D,C) :-
prove(G,D,_,C,_,true).
ex(_,_,_) :-
remove_from_PQ(process(D,C,U)),!,
ex(U,D,C).

We can report the explanations found, the estimates
of the prior probability of the hypothesis, etc, by defin-
ing ans(G, D,C), which means that we have found an
explanation D of G with probability C'.

ans(G,[],_) :-
writeln([G,’ is a theorem.’]),!.
ans(G,D,C) :-
allgood(D),
qmass (QM),
retract(done(Done,DC)),
DC1 is DC+C,
assert(done([expl(G,D,C) |Done] ,DC1)),
TC is DC1 + QM,
writeln([’Probability of ’,G,
)y = [’,DCl,’,’,TC,’]’]),
Pri1 is C / TC,
Pr2 is C / DC1,
writeln([’Explanation: ’,D]),
writeln([’Prior = ’,C]),
writeln([’Posterior = [’,Prt1,’,’,Pr2,°1°]).
more is a way to ask for more answers. It will take
the top priority partial proof and continue with it.

more :- ex(fail,_,_).

A.4 Auxiliary relations used

The following relations were also used. They can be
divided into those for managing the priority queue, and
those for managing the nogoods.

We assume that there is a global priority queue into
which one can put formulae with an associated cost and
from which one can extract the least cost formulae. We
assume that the priority queue persists over failure of
subgoals. It can thus be implemented by asserting into
a Prolog database, but cannot be implemented by carry-
ing it around as an extra argument in a meta-interpreter
[Sterling and Shapiro, 1986], for example. We would like
both insertion and removal from the priority queue to be
carried out in logn time where n is the number of ele-
ments of the priority queue. Thus we cannot implement
it by having the queue asserted into a Prolog database
if the asserting and retracting takes time proportional
to the size of the objects asserted or retracted (which it
seems to in the implementations we have experimented
with).

Four operations are defined:

mitQ)
initialises the queue to be the empty queue, with zero
queue mass.

add_to_PQ(process(D,C,U))

adds assumption set D, with probability C' and remain-
ing subgoals U to the priority queue. Adds C' to the
queue mass.

remove_from_PQ(process(D, C,U))

if the priority queue is not empty, extracts the ele-
ment with highest probability (highest value of C') from
the priority queue and reduces the queue mass by C'.
remove_from_P() fails if the priority queue is empty.

qmass(M)

returns the sum of the probabilities of elements of the
queue.
We assume the relation for handling nogoods:

allgood(L)
fails if . has a subset that has been declared nogood.

Acknowledgements

Thanks to Andrew Csinger, Keiji Kanazawa and Michael
Horsch for valuable comments on this paper. This
research was supported under NSERC grant OG-
POO44121, and under Project BbH of the Institute for
Robotics and Intelligent Systems.

References

[Apt and Bezem, 1990] K. R. Apt and M. Bezem.
Acyclic programs (extended abstract). In Logic Pro-
gramming: Proceedings of the Seventh International

Conference, pages 617-633. MIT Press, 1990.
[Clark, 1978] K. L. Clark. Negation as failure. In H. Gal-

laire and J. Minker, editors, Logic and Databases,
pages 293-322. Plenum Press, New York, 1978.

[Console et al., 1991] L. Console, D. Theseider Dupre,
and P. Torasso. On the relationship between abduc-
tion and deduction. Journal of Logic and Computa-

tion, 1(5):661-690, 1991.

[Cox and Pietrzykowski, 1987] P. T. Cox
and T. Pietrzykowski. General diagnosis by abduc-
tive inference. Technical Report CS8701, Computer
Science, Technical University of Nove Scotia, Halifax,

April 1987.
[de Kleer and Williams, 1989] J. de Kleer and B. C.

Williams. Diagnosis with behavioral modes. In Proc.
11th International Joint Conf on Artificial Intelli-
gence, pages 1324-1330, Detroit, August 1989.

[Goebel et al., 1986] R. Goebel, K. Furukawa, and
D. Poole. Using definite clauses and integrity con-
straints as the basis for a theory formation approach
to diagnostic reasoning. In E. Shapiro, editor, Proc.

Third International Conference on Logic Program-
ming, pages 211-222, London, July 1986.

[Korf, 1985] K. E. Korf. Depth-first iterative deepening:
an optimal admissable tree search. Artificial Intelli-

gence, 27(1):97-109, September 1985.
[Lloyd, 1987]) J. W. Lloyd. Foundations of Logic Pro-

gramming. Symbolic Computation Series. Springer-
Verlag, Berlin, second edition, 1987.

[Naish, 1986] L. Naish. Negation and Control in Pro-
log. Lecture Notes in Computer Science 238. Springer

Verlag, 1986.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, San Mateo, CA, 1988.

[Pereira and Shieber, 1987] F. C. N. Pereira and S. M.
Shieber. Prolog and Natural-Language Analysis. Cen-
ter for the Study of Language and Information, 1987.

[Poole et al., 1987] D. Poole, R. Goebel, and R. Aleliu-
nas. Theorist: A logical reasoning system for defaults
and diagnosis. In N. Cercone and G. McCalla, editors,
The Knowledge Frontier: Essays in the Representa-
tion of Knowledge, pages 331-352. Springer-Verlag,
New York, NY, 1987.

[Poole, 1988a] D. Poole. A logical framework for default
reasoning. Artificial Intelligence, 36(1):27-47, 1988.

[Poole, 1988b] D. Poole. Representing knowledge for
logic-based diagnosis. In International Conference
on Fifth Generation Computing Systems, pages 1282—
1290, Tokyo, Japan, November 1988.

[Poole, 1991a] D. Poole. Compiling a default reasoning
system into Prolog. New Generation Computing Jour-

nal, 9(1):3-38, 1991.

[Poole, 1991b] D. Poole. Representing Bayesian net-
works within probabilistic Horn abduction. In Proc.
Seventh Conf. on Uncertainty in Artificial Intelli-
gence, pages 271-278, Los Angeles, July 1991.

[Poole, 1991c] D. Poole. Representing diagnostic knowl-
edge for probabilistic Horn abduction. In Proc. 12th
International Joint Conf. on Artificial Intelligence,
pages 1129-1135, Sydney, August 1991.

[Poole, 1992a] D. Poole. Probabilistic Horn abduction
and Bayesian networks. Technical Report 92-20, De-
partment of Computer Science, University of British
Columbia, August 1992. To appear, Artificial Intelli-
gence 1993.

[Poole, 1992b] D. Poole. Search for computing posterior
probabilities in Bayesian networks. Technical Report
92-24, Department of Computer Science, University of
British Columbia, September 1992.

[Pople, 1973] H. E. Pople, Jr. On the mechanization
of abductive logic. In Proc. 3rd International Joint
Conf. on Artificial Intelligence, pages 147-152, Stan-
ford, August 1973.

[Reiter and de Kleer, 1987] R. Reiter and J. de Kleer.
Foundations of assumption-based truth maintenance
systems: preliminary report. In Proc. 6th National
Conference on Artificial Intelligence, pages 183-188,
Seattle, July 1987.

[Sattar and Goebel, 1991] A. Sattar and R. Goebel. Us-
ing crucial literals to select better theories. Computa-
tional Intelligence, 7(1):11-22, February 1991.

[Sterling and Shapiro, 1986] L. Sterling and E. Shapiro.
The Art of Prolog. MIT Press, Cambridge, MA | 1986.

[Stickel, 1988] M. E. Stickel. A Prolog-like inference
system for computing minimum-cost abductive expla-
nations in natural language interpretations. Techni-
cal Note 451, SRI International, Menlo Park, CA,
September 1988.

