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Abstract

This paper considers defaults as summaries of
decision-theoretic deliberations. We investigate
the idea that the default e — a means that a is
the optimal action based on all we know (con-
tingently) being e. Tt is shown how this notion
of a default is nonmonotonic and has a prefer-
ence for more specific defaults. It has the ad-
vantage of defaults can, in principle, be derived
from lower level concepts. We thus have a ra-
tional basis for determining whether a default
is correct or not. One special case considered
is where the action is whether to accept some
proposition as true, accept it as false or nei-
ther. This is needed to allow for conclusions
to be used as premises in other defaults. It
is shown that when the gain in utility of ac-
cepting a proposition depends only only on the
truth of the proposition, then the acceptance of
q based on evidence e depends only on whether
P(qle) exceeds a threshold that is a function
of the utilities for accepting q. We also give a
bound on the loss (in utility terms) of using an
accepted proposition in another derivation.

1 Introduction

In Al, formal default reasoning started off as a spin
off from logic [Reiter, 1980; McCarthy, 1980; McDer-
mott and Doyle, 1980]. Logic is a normative theory
of correct reasoning; the hope was that by adding in a
“nonmonotonic” component, a normative theory of rea-
soning where we jump to conclusions could be derived.
Probability theory on the other hand started off as a
normative theory of reasoning under uncertainty [Jef-
freys, 1961], but is very quantitative in nature. Recently
qualitative versions of probability theory have been pro-
posed for default reasoning [Pearl, 1989; Neufeld, 1989;
Bacchus, 1989]. One problem with all of these pro-
posals (with some notable exceptions [Neufeld, 1989;
Bacchus, 1989]) is that we cannot “take the semantics
seriously”; there is no way to use the semantics to de-
cide whether some default is correct or not. When we do
take the semantics seriously it is not so obvious that the
default statements say what we actually want to say.

1.1 Defaults and utilities

What one is prepared to say “yes” to depends on both
utility and probabilistic information (Doyle [1989] argues
this most strongly; see section 6.1).

If one is playing a game like “trivial pursuit” (where
there is no penalty for saying something wrong over the
penalty for saying nothing), it is better to have a wild
guess at something than to say nothing. If one is in court
acting as an expert witness, then one should only say
what one is sure of; witnesses don’t want to be caught
out and have their credibility ruined. What one assents
to, and so what defaults one uses, is very dependent on
the situation and the utilities involved.

If one 1s in a closed room full of mixes of birds and
someone opens up some windows high up in the room,
then what one believes about the prototypical bird in
the room changes as the proportion of the flying birds
in the room changes'. At the start we may believe that
the prototypical default bird in the room flies, but as the
population of the birds change, after half an hour we may
believe that the prototypical bird in the room does not
fly. Thus probabilistic information (information about
proportions of populations with certain properties) does
affect the defaults we make.

In this paper we consider a formulation of defaults
that takes probability and utility into consideration.

1.2 The Proposal

Other people have observed that utilities have something
to do with default reasoning [Shoham, 1987; Loui, 1990;
Doyle, 1989; Kadie, 1988]. In this paper we take this re-
lationship seriously and treat defaults as decision theory
summmaries.

A default e — 4 @ means that a is the best decision out
of those decisions in A if all you know is e. Note that the
conclusion of a default is an action, and not a proposition
as in most default frameworks (but see section 4).

The default “if you are in Vancouver in November,
carry an umbrella”, is of this type of a default that has
an action as a conclusion and propositions as premises.
This is represented as

tn_Vancouver A is_November — carry_umbrella

!This example is due to Alan Mackworth (personal
communication)



The main feature of this framework are:

e We develop a meaning for defaults and inherit a
calculus (albeit very weak) for reasoning with these
defaults that is sound with respect to the semantics.

e We can take the semantics seriously, and argue
whether or not some default 1s true or not. More-
over, it can be argued that these default statements
are the sort of statements that correspond to every-
day defaults.

e This is useful in its own right as a summary of what
actions should be taken based on certain evidence.
For example, in some implementations of influence
diagrams (those that evaluate the diagram inde-
pendently of any particular observations) [Shachter,
1986], the output is a contingency table of the out-
put for all tuples of possible observations. One of
the motivations for this paper was to allow for a
more compact representation of the decisions based
on different combinations of observations.

e Building on a decision theoretic base, we develop
the notion of approximate reasoning, where we can
have a measure on the cost of making a mistake.
This is useful when we want to develop a theory of
fast, but approximate reasoning.

In section 4 we consider the special case of where the
actions are to accept some proposition, to accept its
negation or to accept neither. This is special as it allows
us to use the conclusion of the default as a premise for
more inference. We analyse the possible costs of making
this unsound but often reasonable rule.

2 Background

2.1 Probability
We use a standard definition of conditional Bayesian
probability (e.g., [Jeffreys, 1961]), where P(«a|3) is a
function from two propositions into the interval [0, 1],
where 7 # false. We use the formulation based on the
three axioms:

1. P(zlz) =1

2. P(—zly) =1— P(z|y)

3. P(x Ayl|z) = P(zly A z) x P(y|z)

The following lemma can be easily proven from the
axioms and is used in this paper:
Lemma 2.1 P(z|z) = P(z|y A z) x P(y|z) + P(z|-y A
) x P(-ylz)

We use the symbol = for normal logical (material)
implication.
Lemma 2.2 if y = z then P(z|y A z) = P(x|y).

2.2 Classical decision theory

Under classical Bayesian decision theory (e.g., [Raiffa,
1968]), we assume that there is a subjective utility func-
tion, p(a, w) of the utility of action a if the world is w.

The expected utility of action a given evidence e,
E(a,e) is given by

E(a,e) = Zu(a,w) x P(wle)

This is the utility of a averaged over all possible worlds,
weighted by their probability.

3 Decision-theoretic defaults

If e 18 a formula in the propositional calculus, and
A ={ay,as,...} is aset of possible alternate actions (the
possible actions being primitive), and a € A, we write

€ —40a
if
& = Ela;,e).
(a,¢) = max&(a;, )
In other words, e — 4 a if, given all that we know

(contingently — see [Poole, 1991]) is ¢, a is the action in
A that maximises expected utility.

3.1 Nonmonotonicity

The following example shows how the meaning of de-
faults can allow us to derive defaults from lower level
constructs. Note that, in general the user would not
provide the probability and utility, but only provide the
default. Because we have a formal definition of the truth
of a default, we can argue about whether some default
is reasonable (based on whether the underlying proba-
bilities and defaults are reasonable). This example also
shows the notion of defaults is nonmonotonic and shows
how we have a preference for more specific defaults.

Example 3.1 Suppose we have the possible actions
A = {say_flies, say_not_flies, say_nothing}

and the following underlying utility and probability in-
formation:

p(say_flies, flies) = 100
p(say_flies,—flies) = —200
p(say-not_flies, flies) = —200
p(say-not_flies, —flies) = 100
p(say_nothing, flies) = 0
p(say-nothing, —flies) = 0
P(flies|bird) = 0.9
P(flies|emu) = 0.001
P(birdlemu) = 1

Given bird we can derive the following expected utili-
ties
E(say_flies, bird)
= p(say_flies, flies) x P(flies|bird)
+u(say_flies,~flies) x P(—flies|bird)
= 100 x0.9—200x 0.1
= 70
E(say-not_flies, bird)
= p(say-not_flies, flies) x P(flies|bird)
+u(say_not_flies, —~flies) x P(—flies|bird)
= —200x0.94100 x 0.1
= 170
E(say-nothing, bird)



= p(say_nothing, flies) x P(flies|bird)
+u(say_nothing, — flies) x P(—flies|bird)
=0
Thus we can derive the default
bird — 4 say_flies
Similarly if we were given emu, we can compute the ex-
pected utility as:
E(say_flies,emu) = —199.9
E(say-not_flies,emu) = 99.7
0

E(say_nothing, emu)
Thus we can derive the default
emu — 4 say_not_flies

If we are given bird A emu we can use lemma 2.2 to
show that the same deviation works as when we are given
just emu and so we have:

bird N emu — 4 say_not_flies

There are two things that can be derived from this
example

nonmonotonicity When we learnt new information,
namely that the individual was an emu as well as a
bird, we no longer derived the conclusion say_flies,
but rather derived the conclusion say_not_flies. We
thus change our minds when presented with differ-
ent information.

specificity If we know that emus are birds, when we
have both emu and bird, we make the same conclu-
sion that we would using just emu. This preference
for more specific defaults is true in general (section

3.2).

3.2 Specificity

One of the features of defaults that is important is the
fact that more specific defaults should over-ride more
general defaults. If we have z = y, then knowing =z
is more specific knowledge than knowing y. When we
have the defaults # —4 @ and y — 4 b, then when given
z Ay we should conclude, by specificity, a. The following
proposition establishes this:

Proposition 3.2 If « = yand ¢ —4 a then xAy —4 a.

The proof of this and other propositions appears in
Appendix A.

This result should not be too surprising, as the prefer-
ence for more specific knowledge is common to the prob-
abilistic formulations of defaults (see [Pearl, 1989]), as
opposed to the logical formulations of defaults.

3.3 Ignoring Irrelevance

If we have some condition ¢ such that we make the same
decision whether or not ¢ is true, then we will make that
decision even if we did not know the truth of c.

Proposition 3.3 The following is valid inference:
eNc—4a
eN—c—4a
€ —40a

Thus if would make the same decision if ¢ is true or
false, then we can ignore the value of ¢ in our defaults.
What is important here is that we can derive conse-
quences of our defaults based on the underlying defi-
nition.

3.4 Disjunction

We cannot do arbitrary reasoning by cases. For example
the disjunction rule of Pearl [1989]

€1 —4 QA
€g — 4 QA
erVey —4a

is not valid in general. It is however valid when e; and
€9 either imply each other or are inconsistent. Accepting
this rule would lead us to Simpson’s paradox [Neufeld
and Horton, 1990].

3.5 Restricting the choices

Sometimes we may have fewer choices to make than at
other times. The following proposition shows that if
we do not eliminate the best choice, we can restrict the
choices available without affecting the default.

Proposition 3.4 If e —4 a and B C A such that « € B
then e —pg a.

We can use the following lemma to split the set of
possible alternatives.

Proposition 3.5 If ¢ —4 a and e —pg b then either
€ —AuB @ OT € —4uB b

In the rest of the paper we assume that the set of
choices of actions is fixed, and omit the subscript to —.

4 Acceptance Assumption

The preceding section considered the case when the con-
clusion of a default was an action. Often in default rea-
soning, we want to use a default to conclude that some
proposition is true, and then use that proposition in fur-
ther reasoning.

Jon Doyle has previously propounded the idea that we
expand on:

“... we wish to use rationality as a standard

for adopting assumptions by saying that an as-
sumption should be adopted if the expected
utility of holding it exceeds the expected utility
of not holding it.” [Doyle, 1989, p. 5]

In this section we show how to relate the action that is
a conclusion of a default to the acceptance of the truth of
a proposition. We consider the acceptance of a proposi-
tion as a decision like another decision. For a proposition
z there are three alternate decisions that could be made:

e 2! is the decision to accept proposition z as true.
o 27 is the decision to accept z as false.
e 2% is the decision to neither accept z nor —z.

For each proposition we make the decision of whether
to accept it as true, to accept it as false or to make no
commitment.



Example 4.1 We write the decision to accept flies as
true if the individual under consideration is a bird as

bird — flies'

This would correspond to the default in example 3.1, but
the action is to accept the proposition flies, rather than
the action to say something. Similarly the default that
injured birds do not fly, can be written:

bird A injured — flies’

This says that if all you know about some individual 1s
that the individual is an injured bird, that it is better
to assume that it does not fly, than being uncommitted
about the flying ability of the individual or assuming
that it does fly.

We also allow for a default to conclude that we should
not assume anything about the flying ability of young
birds:

bird A young — flies"

Note that we only have a two valued logic (classical
probability theory 1s based on every proposition being
true or false in each possible world [Jeffreys, 1961]), but
we have three possible actions that we can do with re-
spect to a proposition. We assume here that it is never
a good policy to assume a proposition and its negation.

Assumption 4.2 We assume the following inequalities:
W= |2) < p(="]2) < p(="]2)

p(='mz) < p(2¥|=z) < p(e |=2)
That is it is better to guess correctly than to be non-
committal. And it is better to be non-committal than
guessing wrongly?.

The second assumption that we make is that the util-
ities of different propositions are in some sense indepen-
dent. We can treat the gain in accepting proposition z
as not affected by the truth of other propositions.

Assumption 4.3 The change in utility of accepting z
or accepting —z or accepting neither in a world w de-
pends only on the truth of z in w.

That is, if wy and ws are two worlds that agree on the
truth of z then

p(2" wi) = (" wr) = p(e", we) — p(z*, w)
where {r, s} C {t,u, f}.
This assumption means that we only have to consider

the gain in making the correct decision and the loss in
making an incorrect decision.

Definition 4.4 If p is an atomic proposition we use the
following notational schema where r and s denote differ-
ent elements of {¢, f, u}, and o is a sign (one of + or =)
such that op is p if 0 is + and op is =p is o is =. We
define
"A*(op) = p(p® w) — p(p", w)

where w i1s a world in which op is true. This schema,
representing 12 different formulae, denotes the change
in utility made what changing our action from r to s.

2 Analogous results to the ones below hold when the above
constraints are violated — the arithmetic is slightly changed.

For example, 7 Al(2) is pu(z!, w) — p(z/, w), where z is
true in w, which is the utility gained when we decide to
commit to z over committing to -z given that z is true.

UAT(=z) s p(2f w) — p(2¥, w), where z is false in w,
which is the utility gained when we decide to commit to
—z over not committing to the truth of z given that z is
false.

Under assumption 4.2, fA%(z), T A¥%(z) and *A?(z) are
all positive. These all consist of the gain made by making
a better guess given that z is true. Note also that

FAY2) = TAY(2) + *Al(2).
Thus ‘Af (=z), “Af(=z) and 'A¥(=z) are all positive.
All of the others are negative, using the equality
"Af(oz) = —AT(0z)

Lemma 4.5 For s and r each being one of ¢, u or f, the

following holds:
E(2° a)=E(2 x) = "A (2)x P(z|2)+" A*(—z)x P(—z|x)

4.1 Characterization of defaults

In this section we analyse when we can conclude a default
based on the assumptions in the previous section. We
first consider when one decision should be made over
another decision.

Lemma 4.6

(2 x) > £ x)
if and only if

‘A (e)

P(z|z) > A £ AT (=)

Lemma 4.7
E(2h x) > £ x)
if and only if

‘A¥(=2)

The following theorem is a direct corollary of lemmata
4.6 and 4.7.
Theorem 4.8 = — 2! if and only if
‘Al (=2) ‘A (=2)
TANz) + 1A (=z) AN (z) + 1 AY(=2)

PM@ZmM(

What is important to notice here is that the decision
to accept z based on x 1s determined completely by a
threshold on the probability P(z|z) and that the thresh-
old is a function of the utilities of the acceptance of z.

We can carry out a similar analysis of

Lemma 4.9
E(2* x) > E( x)
if and only if

AT (mz)
P(z]z) > TATG) + " A (=7



The following theorem is a direct corollary of lemmata

4.6, 4.7 and 4.9.
Theorem 4.10 z — 2! iff

‘Al (=2) A )
TAN(z) + AT (mz) W Al(z) + 1A (—2)

PM@ZmM(

z — 7 iff

/(=2 ()
P < mi
(4$>—“““(fAmzy+tamﬁzVfA”@)+”Awa>)
z — z% iff P(z]x) is between these two values.

Example 4.11 Suppose we have the following utilities

p(pt,p) = p(p,-p) = 0
n(@',p)=pp',—p) = a
u(®',—p) = ppf p) = —b

a is the prize we get for guessing right. b is the price we
pay if we are wrong; both @ and b are positive.

We have:

‘A=) = 05
ENEEDvES N

A% (=z) _ b
YA (z) 4+ TAY(—z) a+b

“Af(—'z) _ a
TAY(2) + v Af(=z) a+b

We have the following cases of acceptance:

a>b
qg—p' if P(plg) >

g—p’ if P(plg) <

N = N =

Here we would never decide on p*. We would expect
to lose by being noncommittal.

a==5b
qg—p' if P(plg) >

q—p" if P(plg) =

N — DN — DN —

g—p’ if P(plg) <

Here, when P(plq) = %, it doesn’t matter which

decision we make. They all have the same expected

utility.
a<b
qg—p' if P(P|Q)>—b
~a+b
foirop <!
g—p i (P|Q)_a+b
a b
o —— <P <
¢—pt i s (P|Q)_a+b

If we are very conservative we would expect that b >
a. In this case we have

b
a+b
The algebra of thresholding probability here is the
same as the system of Bacchus [1989], but where the
actual value of the threshold depends on the utilities

associated with the acceptance of the conclusion of the
default.

o~
~

5 Approximate Reasoning

One of the features of utility-based approach to default
reasoning is the ability to have a notion of the cost of get-
ting a wrong answer. We can thus talk precisely about
a tradeoff of accuracy, and consider the cost of making
assumptions. Consider the following rule (called “con-
traction” [Pearl, 1989]):

r—y
T Ay — 2

_—
r —Z

This rule says that if we can conclude y, and use y
to conclude z then we can conclude z without using y.
This rule says that we can use derived conclusions as
lemmata for other conclusions. This is not a valid rule
of inference in the decision-theoretic defaults [Bacchus,
1989]. This is because we do not know that y is true we
have only decided that we should make it true.

Pearl [1989] argues that e-semantics (in which con-
traction is a valid rule) is an idealisation. One of the
main advantages of the decision-theoretic defaults is that
we can measure the cost of our idealisation. With the
decision-theoretic defaults we can consider how much we
can lose by applying the above rule.

Proposition 5.1 The maximum that we can lose by fol-
lowing the above rule is

(1—th(y")) x *Af(=2)
where th(y') is the threshold for accepting y, which is
'Al(2) AU()
th(y') =
@) = mox (x5 ATy AT A

Example 5.2 Using the utilities of example 4.11, we
find that the maximum we can lose is

(1 —th(y)) x "Af(=2)
= P X (a—I—b)

= a

Even if we are extremely conservative and have a large
b value, the conservatism in the acceptance of y means
that we cannot lose much when we accept z.

6 Comparison with other proposals

6.1 Doyle

Doyle has also considered the role of utility and probabil-
ity in default reasoning [Doyle, 1989]. This paper can be
seen as following in the pioneering steps of [Doyle, 1989]



in incorporating rationality into reasoning. We go into
much more detail in one case of the general framework
outlined by Doyle.

Doyle [1990] motivates his rational belief revision in
economic terms. However, unlike the defaults in this
paper, the object level statements are not statements of
preference in a utility sense. The utility is to suggest
alternate definitions of belief revision. 1 would argue
that the notion of utility of beliefs should be logically
prior to the notion of rational belief revision. Once we
have a notion of the utility of belief, we should be able
to use this to develop a notion of rational belief revision.

Other work of Doyle [1985; 1989] has considered the
problem of default reasoning as a problem of group de-
cision making, and used the theory of group decision
making for default reasoning. The group decision mak-
ing and the individual decision making used in this pa-
per are not incompatible (unless we want to claim they
are the same [Doyle and Wellman, 1989]), and so these
approaches should be seen as complementary to the ap-
proach propounded here.

6.2 Shoham
Shoham [1987] has argued that we should take probabili-

ties and utilities into account when considering defaults.
Here we take this suggestion seriously and consider the
normative theory of decision making as a starting point.
He instead develops a general framework of nonmono-
tonic reasoning based on ordering of interpretations. The
system propounded here cannot be simply put into the
framework developed by Shoham (one of the reasons is
that we have automatic specificity, which one can show
cannot be in any system that treats all logically equiva-
lent formulae as equivalent [Poole, 1991]).

6.3 Loul

Loui [1990] has also proposed a mix between decision
theory and defeasible reasoning. He has, however, sug-
gested the opposite mix, namely using a form of defea-
sible reasoning for decision making. His motivation is
very different to the motivation of this paper; it is an
intriguing idea to consider whether the default system
propounded here could be used as the basis for the ar-
gument system in Loui’s proposal.

6.4 Bacchus

Bacchus [1989] has investigated the logic of thresholding
conditional probability. All of the results of his theory
can be transferred to the system in this paper. We com-
plement Bacchus’ work in that we show how straight-
forward decision-theoretic concerns lead us to threshold-
ing probability.

Rather than having a constant threshold for accep-
tance, we have a different threshold for each proposition.
While this is not inconsistent with Bacchus’s results, it
is interesting that we can determine exactly what the
threshold should depend on. This is because we can an-
swer the question of where the thresholds come from.

In Bacchus’s system, all one can say about such rules
as contraction (section 5) is that they are unsound with
respect to the thresholding semantics. In the system

outlined in this paper we can answer the question of
how much we can lose by using these idealised rules of
inference. and look at the utility of using conclusions,
even if they may be mistaken.

7 Conclusion

In this paper we considered a simple idea; namely that
defaults provide summaries of possible decisions that has
already taken utilities and probabilities into considera-
tions. This allows for a definition of default for which
we can take the meaning seriously. I would argue that
the default “birds fly” really means that if all you know
about some individual is a bird, then it is good policy
to assume that the individual can fly. Rather than us-
ing decision theory directly for nonmonotonic reasoning
[Kadie, 1988], this paper has explored only having the
summaries of good decisions as defaults.

The main result was to show that under the assump-
tion that the utility of the choice of whether to accept
a proposition depends only on the truth of the proposi-
tion (assumption 4.3), the acceptance depends on thresh-
olds of conditional probability. Thus we get to the same
system that Bacchus [1989] proposed. We have the ad-
vantage that we can derive the threshold for acceptance
from utility considerations. This is one of the few pro-
posals that can use the idea of the cost of an incorrect
conclusion.

The resulting calculus is very weak. Further work can
be carried out in incorporating independence assump-
tions, and in making assumption 4.3 more realistic. As-
sumption 4.3 is interesting as an idealisation, but is not
practical. In practice the importance of a piece of infor-
mation critically depends on what other information 1s
true.

A  Proofs

Proposition 3.2 If v = y and # — a then 2 A y — a.
Proof: If x = y then P(ylx) = 1.

E(ai, x \y)

= Zp(ai,w) x P(w|z Ay)

Z/J(ai, w) x P(w|z) (by lemma 2.2)

= &(a;,x)
The result follows immediately. O

Proposition 3.3 The following is valid inference:

eNc—4a
eN—c—4a
€ —40a

Proof: Using lemma 2.1, we have
P(wle)
= P(wleAe) x Plcle)
+P(wle A —e) x P(—cle)
E(ai,e)



= Zﬂaza
= P(c|6)2u(ai, w) x P(wle A ¢)

—|C| Zﬂ ai, w

= P(c|e)€(ai,e/\c)—|—P(—|c|) (a;, e A —c)

) X P(wle)

) x P(w|e A —c¢)

We know e A ¢ — a and e A ¢ — a, so for each a; € A,

\Y

given E(a,e Ne) > Elaj,eNe)
and E(a,e A—e) > E(aj, e A-c)
then P(cle)é(a,e Ac)+

P(—cle)é(a,e A—e) > P(cle)é(ai, e Ae) +
P(—cle)é(az, e A —c)
so E(a,e) > Elai,e)

O

Lemma 4.5 For s and r each being one of ¢, u or f,

the following holds:
E(Z° w)=E(", x)
Proof:

E(z% m)— E(27, x)

- ZW w) x P(wle) =Y p(=",w) x P(wl|x)

w)) x P(w|x)
w:z true iIl w
T DI e
w:z false iIl w
= "A'z) > Pulr)
w:z true iIl w
A (mz) Y Plulr)

w:z Talse 1n w

= T"A%(z) x P(z|z) + "A%(z) x P(—z|®)

w)) x P(w|x)

O

Lemma 4.6
E(2 ) > & x)
if and only if

Al
P(z]z) > TAG) + A7)

Proof: The following sequence of inequalities are all
equivalent:

E( ) > £ x)
g ) =& ) > 0
FAY(2) x P(z|z) = 'Af(=z) x P(=z]z) >0

fAt(z) x P(z|z) > tAf(—'z) x (1 = P(z]z))
(A1) 4+ A (22)) x P(afa) > ' (2)
AT (2
P(zlz) > AT +(fA3‘(ﬁz)

=TA(2)x P(z]x)+" A% (=z) x P(—z|2)

The proofs of lemmata 4.7 and 4.9 are analogous to
the proof of lemma 4.6, and are omitted.

Proposition 5.1 The maximum that we can lose by
following the rule of contraction is

(1—th(y")) x 'Af(=z)
where th(y') is the threshold for accepting y, which is
tAf 4 tAu 4
th(yt) — max ( Z) ’ ( Z)
TAY(z) + 1A (=2) M ANz) + 1A% (=2)
Proof: Suppose we have z — y' and x Ay — z!. The
maximum we can lose by using the rule z — z! is given

by how much we would gain by doing one of the other
two actions. This is

max (S(z“, z)

— &2 x), £ x) — (21, x))
For s being either of u or f, we can derive
E(2°,x) - E(2 x)
= —AY2) x P(z]z) 4+ A% (=2) x
— tAs(—'Z) _ (sAt(Z) _|_ tAs(—'Z
x)
P(z|lx Ay) x P(y

(1= P(z[x))
) x P(z|z)
P

z

~—~

|[2) + P(zle A —y) x P(-yle)
|

AV

P(z|lz Ay) x P(ylz)
tAs(_‘Z) % t
z ( f<z>+fAs<ﬁz>) thy’)
£(200) £
< A%(m2) = (PAY(E) 4 1A% (=2)) X

tAs —|Z
(sAt T IAS ﬁz)) x th(yt)

= tA N ( z) x th(y )
A ( ) (1 —th(y"))
So that maximum that we can lose 1s

max (tAf(—'z) x (1 —th(y")),"A%(=z) x (1 — th(yt)))

(1= th(y")).

which, under assumption 4.2 is ‘Af(=z) x
O
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