Dialectics and Specificity: Conditioning in Logic-based Hypothetical
Reasoning (Preliminary Report)*

David Poole
Department of Computer Science,
The University of British Columbia,
Vancouver, B.C., Canada V6T 1W5

poole@cs.ubc.ca

Abstract

In this paper we start with defaults as possible hy-
potheses and prediction as membership in all exten-
sions. It is argued that this is too conservative and
does not allow many intuitive answers. We show how
viewing membership in all extensions as a form of di-
alectic, and adding a notion of conditioning can pro-
duce more intuitive answers. Defaults are possible hy-
potheses for a logical argument that contain a prag-
matic component that is a context in which we know
the default 1s applicable. This context is used to ig-
nore counter arguments that follow from the context
of the default. The conditioning that is presented is
very close to the irrelevance that Geffner added to e-
semantics, and the resulting solutions turn out to be
very similar.

1 Introduction

When considering default knowledge, there is a very
strong notion that we should prefer more specific
knowledge over more general knowledge [Touretzky,
1986, Poole, 1985, Loui, 1987, Geffner, 1988]. In
probability theory this is accomplished by condition-
ing [Pearl, 1988]. In this paper, we show how a form of
conditioning can be added to a logic-based hypotheti-
cal reasoning system. The resulting system is simple,
can be easily implemented and solves many problems
in a natural, straight-forward manner.

This work uses the first order predicate calculus;
default reasoning is accomplished by allowing the as-
sumption and criticism of premises in logical argu-
ments. The use of conditioning has been inspired
by probability, particularly the work of [Pearl, 1988,
Geffner, 1988, Neufeld and Poole, 1988].

This a revised version (section 5) of a paper in Eighth
Biennial Conference of the Canadian Society for Compu-

tational Studies of Intelligence (CSCSI-90)

1.1 Logic-based Hypothetical Reasoning

Monotonicity has often been cited as a problem with
using logic as a basis for commonsense reasoning. In
[Poole, 1988, Poole, 1989b] it was argued that instead
of deduction from our knowledge, reasoning should be
viewed as a process of theory formation. In [Poole,
1988] it was shown how default reasoning can be
viewed in this way by treating defaults as possible hy-
potheses that can be used in an explanation. In [Poole,
1989b] it was shown how membership in all extensions
can form the basis for prediction and can be imple-
mented as a process of dialectics.

1.2 Dialectics

The idea behind dialectics [Loui, 1990] is that a con-
clusion is reached by a process of argumentation. One
agent comes up with an argument for a proposition;
another agent can criticise the argument by coming
up with a counter argument. In the Theorist frame-
work all of the arguments are valid deductions; the
premises are background knowledge, knowledge of the
case at hand and assumptions.

One particularly appealing framework [Poole,
1989b] is where there are two agents. One agent finds
arguments for a proposition. The other agent tries to
either dismiss the argument out of hand (by showing
it is inconsistent), or create an argument against the
premises of the first agent’s arguments. This idea is
developed in more detail in section 2.2.

This implements membership in all extensions which
is (propositionally, at least) equivalent to circumscrip-
tion [Etherington, 1988]. This dialectical implementa-
tion [Poole, 1989b] provides an abstract specification
of recent implementations of circumscription [Przy-
musinski, 1989, Ginsberg, 1989, Inoue and Helft, 1990].
In this paper it is argued that this notion of predic-
tion is too restrictive, but is a good starting point for
different argument forms.

1.3 Background and Contingent Knowledge
Consider the following example:

Example 1.1 Suppose we have as defaults “birds
fly”, “emus don’t fly”, and as facts “emus are birds”
and “Tweety is an emu”. There is a very strong pref-
erence for concluding “Tweety doesn’t fly” based on
specificity [Touretzky, 1986, Poole, 1985, Loui, 1987,
Thomason and Horty, 1988]. We prefer to use the more
specific knowledge about emus over the more general
knowledge about birds.

The instances of the facts that are relevant to the
conclusion are

emu(tweety) A (emu(tweety) = bird(tweety)) (1)

Using the same defaults, if we change the facts by
swapping the role of emu and bird the answer should
be, by symmetry, that Tweety does fly (i.e., the oppo-
site of the previous conclusion). The instance of the
facts used would be

bird(tweety) A (bird(tweety) = emu(tweety)) (2)

Tt is important to notice that formulae (1) and (2)
are logically equivalent. Notice also that we have only
talked about the facts and not about the defaults.

This seems to indicate that defining specificity, with
logically equivalent instances of facts treated identi-
cally, is impossible. The first reaction is that these
are different because the implication is an instance of
a fact, and the equivalence does not hold between the
facts, only between the instances of the facts. There
are, however, good reasons why this 1s more than a
syntactic distinction [Poole, 1990].

There seems to be a qualitative difference between
the facts “emus are birds” and “tweety is an emu”.
The first 1s a fact that we would not like to consider
being false (we would not consider the question “what
if emus were not birds”), the second is one we may
consider being false (e.g., we could conceive of the sit-
uation where Tweety was a sparrow).

This indicates that we should partition the facts into
background facts and the contingent facts [Poole, 1985,
Delgrande, 1988, Geffner, 1988]. This distinction is
similar to the distinction between the network and
markers in marker passing systems such as NETL
[Fahlman, 1979], to the difference between the prob-
abilistic knowledge (such as p(A|B) = 0.345) and the
conditioning knowledge (the B in the preceding equa-
tion) in probability theory [Pearl, 1988], and to the
difference between background knowledge and obser-
vations in abduction [Popl, 1973, Poole, 1989b)].

1.4 Conditioning and Contexts

The final piece of the jigsaw is the notion of condition-
ing. If all we know about Tweety is that Tweety is an
emu (given that we do not also have “emus do fly”),
there is a very strong tendency to want to conclude
that Tweety doesn’t fly from the default “emus don’t
fly”.

The intuition behind conditioning that will be used
is that if “p’s are q’s” is a default and if we know p(e),
then all of the objections that could be raised about
q(c) that follow from p(e) have already been taken into
account when building the knowledge base. We only
consider arguments against the conclusion ¢(e) that do
not already follow from p(e).

This conditioning is accomplished by associating a
context with each default, in which we know the de-
fault is applicable. Arguments against a default can be
ignored if they are also arguments against the default
given only the context of the default.

The notion of “context” is used, rather than, for
example making a default into a pair, for a number of
reasons. The first is the reluctance to invent any new
connectives; part of the Theorist research is to see how
far we can get inventing as little as possible. It may
be the case that the appropriate context for a default
is not the same as the precondition for the default (see
section 5). Contexts seem to reflect a natural intuition.

The use of contexts is similar to an automatic pri-
oritisation or cancelling of defaults, but, we will see
that it has considerable advantages. One important
advantage is that the sort of knowledge required to
build the knowledge base is local, and so the knowl-
edge base should be able to be built incrementally.

2 Formal Framework

2.1 Theorist Framework

Theorist is a simple framework for hypothetical rea-
soning.

We assume we are given a standard first order lan-
guage over a countable alphabet. By a formula we
mean a well formed formula in this language. By an
instance of a formula we mean a substitution of terms
in this language for free variables in the formula. In
this paper the Prolog convention of variables starting
with an upper case letter is used.

The basic definitions of Theorist are in terms of a set
of closed formulae A (given as true) and a set of (pos-
sibly open) formulae H (the “possible hypotheses”).
A scenario of (A, H) is a set D of ground instances
of elements of H such that D U A is consistent. If g
is a closed formula, an explanation of g from (A, H)

is a scenario of (A, H) which, together with A, implies
g. An extension of (A, H) is the set of logical con-
sequences of A together with a maximal (with respect
to set inclusion) scenario of (A, H).

In [Poole, 1988] it was shown how to avoid hav-
ing complex formulae as defaults by “naming” compli-
cated defaults (similar to the use of abnormality[Mec-
Carthy, 1986]), using the name as the default and have
the name implying the formula as a fact. This is done
in the examples in this paper.

2.2 Membership in all extensions

It can be argued [Poole, 1989b] that predicting what
is in all extensions (i.e., can be explained even if an
adversary chooses the defaults) provides more satis-
factory results than, for example, predicting what is
in one extension. Etherington [1988] has shown that
this notion of prediction corresponds (propositionally
at least) to circumscription [McCarthy, 1986].

The following theorem was proved in [Poole, 1989b,
theorem 2.6]:

Theorem 2.1 g is in every extension of (A, H) if and
only if there is a set £ of (finite) explanations of ¢
from (A, H) such that there is no scenario S of (A, H)
wnconsistent with every element of £.

Theorem 2.1 leads to the following dialectical view
of membership in every extension' [Poole, 1989b].

There are two processes Y and A that are having an
argument as to whether g should be predicted. Pro-
cess) tries to find explanations of g. Process N tries
to find a scenario inconsistent with all of }’s explana-
tions.

In general Y has a set of explanations ® (initially ®
is empty). N tries to find a scenario S which is incon-
sistent with all members of ® (i.e., explains the con-
junction of the negation of the elements of ®). When
N finds such a scenario S, Y must find an explanation
of g from (S, H). Whichever process, using a complete
proof procedure, gives up first loses:

e If Y cannot come up with an explanation based
on A’s scenario S, then g is not in all extensions
(in particular g is not in any extension of S).

e If V' cannot come up with a scenario inconsistent
with all of)’s arguments, every extension con-
tains at least one of Y’s arguments, and so ¢ is in
every extension.

!This algorithm corresponds to an abstract specifica-
tion of algorithms for computing circumscription [Gins-
berg, 1989, Przymusinski, 1989]. These algorithms find all
of Y’s arguments and then fail on N’s counter arguments
[Tnoue and Helft, 1990].

One further refinement of theorem 2.1 can be eas-
ily proven. This corollary says that A" only needs to
choose one default from each of }’s explanations.

Corollary 2.2 ¢ is in all extensions of (A, H) if and
only if there is a set £ of explanations of g from (A, H)
such that there does not exist a counter argument.
Scenario S of (A, H) is a counter argument if V¢ €
&€ Ad € ¢ such that

1. ANd |E =S,

The following example shows how restricted this no-
tion of prediction 1s.

Example 2.3 Suppose we have the fact that emus are

birds, and the defaults “birds fly”, “emu’s don’t fly”,

and “if something looks like an emu, it is an emu”.
This can be represented as?:

K =1 VX emu(X) = bird(X),

VX ll_emu(X) Ambe(X) = emu(X),
VX bird(X) Abf(X) = flies(X),
VX emu(X) Aenf(X) = —flies(X)
[BA(X),

enf(X),

mbe(X)}

Using membership in all extensions as a basis for
prediction, we do not predict —flies(tweety) from

(K U {emu(tweety)}, H).

This is because of the counter argument {bf(tweety)}.
This seems like a peculiar objection to enf(tweety)
as it 18 a counter argument for any emu.
Similarly we do not predict emu(tweety) from (K U
{ll_emu(tweety)}, H), due to the counter argument

{bf(tweety), enf(tweety)}

which again, always holds whenever the default is ap-
plicable.

The objection to the conclusion of —flies(tweety)
from (KU{ll_emu(tweety)}, H), namely {bf(tweety)},
is also a peculiar objection.

The proposed “solutions” to such problems, namely
using cancellation axioms [McCarthy, 1986, Poole,
1988] and providing global priorities [McCarthy, 1986],
are unsatisfactory for a number of reasons (see section
6). In this paper an alternate solution is advanced.

2ll_emu(X) is intended to mean “X looks like an emu”.

3 Forcing Conditioning

If we have “emus don’t fly” as a default, we want it to
be used if all we know about an object is that it is an
emu. Although there may be counter arguments (e.g.,
because it is a bird, it flies), we have taken these into
account when building the knowledge base. The idea
is to ignore counter arguments to “emu’s don’t fly”
that follow just from the object being an emu. We
still take into account other arguments as to why the
emu should fly.
We assume that we are given the following sets

K a set of closed formulae; the “background knowl-
edge”. The knowledge that we know is always
true.

G a set of closed formulae; the given knowledge about
the situation being considered.

H a set of open formulae; the “possible hypotheses”.

We associate with each possible hypothesis a con-
text. The intention is that given just the context as-
sociated with a hypothesis we know the hypothesis 1s
applicable (if consistent). A counter argument can be
ignored 1f it is a counter argument when given only the
context of the default.

The context of possible hypothesis h, written C(h) is
a formula with free variables amongst the free variables
of h.

The basic idea that we exploit is that some counter-
arguments will be over-ridden by specificity. If S is an
argument against d, i,e,

KAGAdE-S
then S can be ignored due to specificity if
KACd)ANdE-S

Definition 3.1 We predict; ¢ if there is a set £ of
explanations of g from (K UG, H) such that there does
not exist a counter argument. Scenario S of (KUG, H)
is a counter argument if V¢ € £ Ad € ¢ such that

1. KAGAdE-S and
2. KAC(d)AdE-S.

Note that prediction in this definition is a strict su-
perset of membership in all extensions. If some for-
mula is in all extensions, then it is predicted.

Figure 1: A diagram of the knowledge in example 3.2.
Thick lines are facts, thin lines are (named) defaults.

)

Example 3.2 Consider the following “knowledge’
about birds (see figure 1):

K={ VX emu(X) = bird(X)
VX ostrich(X) = bird(X)
VX =(emu(X) A ostrich(X))
VX ll_emu(X) A mbe(X) = emu(X)
VX ll_ostrich(X) A mbo(X) = ostrich(X)
VX bird(X) Abf(X) = flies(X)
VX in_cage(X) ANIb(X) = bird(X)
VX emu(X) Aenf(X) = —flies(X)
VX ostrich(X) Aonf(X) = —flies(X)
VX flies(X) Anf(X) = in_air(X)}
bf(X),enf(X),onf(X), mbe(X), mbo(X),
UB(X), nF (X))

"=

The context information can be represented as

Chf(X)) = bird(X)
Clenf(X)) = emu(X)
Clonf(X)) = ostrich(X)
C(mbe(X)) = ll_emu(X)
C(mbo(X)) = ll_ostrich(X)

C(b(X)) = in_bird_cage(X)

Cnf(X)) = flies(X)

Example 3.3 Suppose we are given

o={

emu(tweety),

in_bird_cage(tweety),
bird(polly),
in_bird_cage(polly)}

We predict; that tweety does not fly, as there is an
explanation of = flies(tweety), namely {en f(tweety)}.
The only potential counter argument (i.e., explanation
of menf(tweety)) is {bf(tweety)}. This explanation is
ignored due to specificity as

K Aenf(tweety) A Clenf(tweety)) = —bf(tweety)

We do not predict; that tweety flies. There is an ex-
planation of flies(tweety), namely {bf(tweety)}, how-
ever the explanation of —bf(tweety), ({enf(tweety)})
is not an explanation of —bf({tweety) from the context
of bf(tweety), namely bird(tweety).

The knowledge in_bird_cage(tweety) provided no
evidence for the flying ability of Tweety. It could be
safely ignored as it was irrelevant to the conclusion.

We predict that Polly flies, as there is an argument
for the flying of Polly, and no reason to doubt that
argument. There is no argument for Polly not flying.

Example 3.4 Consider how example 2.3 is handled.
Suppose we have the knowledge base of example 3.2,
and are given

G = {ll_emu(tweety)}.

There is an explanation for emu(tweety), namely
mbe(tweety). There is one counter-argument for this,
namely

{bf(tweety), enf(tweety)}

however, this argument follows from C(mbe(tweety)),
and so can be ignored. Thus we predict emu(tweety).

We predicty —flies(tweety). There is an explana-
tion, namely

{mbe(tweety), enf(tweety)}

The same counter argument exists for mbe(tweety),
and can be ignored for the same reason as above.
There is one explanation of —en f(tweety), namely

{mbe(tweety), bf(tweety)}

This can be ignored as bf(tweety) is an argument
against enf(tweety) given C(enf(tweety)).

We do not predict; flies(tweety). There is an ex-
planation for flies(tweety), namely

{mbe(tweety), bf(tweety).}

There is a counter argument (an explanation of
b f(tweety)):

{mbe(tweety), enf(tweety)}

which cannot be ignored as it does not follow from
C(bf(tweety)).

Example 3.5 Suppose we have the knowledge base
of example 3.2 and are given that Tweety looks like
an emu and also looks like an ostrich (they do look
similar):

G = {ll_emu(tweety) All_ostrich(tweety)}
There are two explanations of bird(tweety), namely:
{mbe(tweety))

{mboltweety)).

There is a counter argument to each of these expla-
nations (they are, in fact, counter arguments to each
other), but there is only one potential counter argu-
ment to both explanations, namely

{bf(tweety), enf(tweety), onf(tweety)}

This, however is also a counter in the contexts of each

default and so can be ignored.
We thus predict bird(tweety).

—flies(tweety).

Example 3.6 As an interesting variation to the pre-

vious example, suppose we are given that Tweety ei-

ther looks like an emu or looks like an ostrich:

We also predict

G = {ll_emu(tweety) V ll_ostrich(tweety)}
There is one explanation of bird(tweety), namely:
{mbe(tweety), mbo(tweety)}.

There are potential counter arguments to this expla-
nation, namely

{bf(tweety), enf(tweety)}

{bf(tweety), onf(tweety)}
These, however can be ignored due to specificity.
We thus predict bird(tweety). We also predict
—flies(tweety).

These examples show the robustness of the defini-
tion of specificity.

It is interesting to consider how this definition han-
dles the qualitative lottery paradox [Poole, 1989a] that
is problematic for many systems. In [Poole, 1989a] it
was shown that there is a conflict between the “one
step default property” (conditioning in this paper) and
conjunctive closure. It was argued that conjunctive
closure was the less intuitive property.

Example 3.7 The general form of the qualitative lot-
tery paradox given in [Poole, 1989a) can be expressed
as:
K =1 VX IX)ANdi(X) = (X)), fori=1.n,
VX =(e1(X) Ao ANen (X))}
H ={ di(X), fori=1.n}

C(di(X)) =

Given b(t), we can predicty d;(t) (and so ¢;(t)) for
any i. We predict the conjunctions of these conclusions
while they are consistent. For example, we predicty

b(X), fori=1..n

@) A A1) Acipi(E) A A ()

for each j. The reason is that the only argument
against each d;(t) is

{di (1), ooy din(t), digy (1), ooy di(2)

and this is an argument against d; given only the con-
text of the default.

We do not however predict the conjunction of all of
the ¢;(t), as this is inconsistent and so cannot even be
explained.

4 Refinement of Conditioning

Example 4.1 Consider the following facts and de-
faults:

K ={ wunistudent(X) Ausa(X) = adult(X),

uni_student(X) A usne(X) = —employed(X),

adult(X) A ae(X) = employed(X)}
usa(X), usne(X),ae(X)}

Clusa(X)) =
C(usne(X))
Clae(X))

uni_student(X)
uni_student(X)
adult(X)

Using the previous definition of prediction, given
uni_student(fred), we predict

adult(fred) A memployed(fred)
However, given
uni_student(fred) A adult(fred)

we do not, predict —employed(fred). The counter ar-
gument, ae(fred) cannot be ignored. While we cannot
prove mae(fred) from any default and its context, we
can predict ~ae(fred) from the context of either de-
fault.

Example 4.2 Suppose we are given the background
knowledge of example 3.2, and the contingent knowl-
edge,

G = ll_emu(tweety) N —in_air(tweety)

There is an explanation of emu(tweety), namely by
assuming
{mbe(tweety)}

There is an explanation of memu(tweety), by assuming

{bf(tweety), nf(tweety)}

The negation of this counter argument is not proven
from the context of any default and that default,
but —bf(tweety) is predicted from the context of
mbe(tweety).

This leads us to the next definition of prediction
which allows us to predict even more. The idea 1s
to extend the definition so that a counter argument
needs to just predict the negation of the defaults. This
is defined recursively to ensure that the definition 1s
well-grounded.

Definition 4.3 We predict; g given G if there is a
set & of explanations of ¢ from (K A G, H) such that
there does not exist a counter argument. Scenario S
of (K AG, H) is a counter argument if V¢ € £ Id € ¢
such that

1. KAGAdE-S and
2. we do not predict;_; —.S given C(d) A d.

We predicty g given Aif KAA|=g.

Definition 4.4 We predict g given G if there is some
¢ such that we predict; g given G.

In this definition predict; i1s the same as the previ-
ous definition; each higher integer allows us to predict
more.

In example 4.1 we predicty —memployed(fred) given

uni_student(fred) A adult(fred)
In example 4.2 we predicty emu(tweety) given

l_emu(tweety) A —in_air(tweety)

5 Pragmatics

Contexts are intended to be the cases under which we
know the assumption is applicable. The “normal case”
is where the default “p’s are ¢’s” is represented as the
fact

VX p(X) Ad(X) = q(X)

with the default d(X) and the context information
C(d(X)) = p(X)

There is nothing in the theory to force this use of
contexts. There are two extremes of contexts that are
interesting. Tf C(d) is uniformly false, prediction be-
comes equivalent to membership in one extension (as
all counter arguments are ignored). If C(d) is uniformly
true, prediction is equivalent to membership in all ex-
tensions.

One pragmatic idea is that if “a’s are ¢’s” and “b’s
are not ¢’s”, then we have a conflict if we know some-
thing is both an @ and a b. If we prefer the first default
over the second, we want to say that the second de-
fault is not applicable if a is true. This can be done

by:

K ={ andi=>e¢
bAdy = —e
a = —da}
H ={ di,dy}
C(di) = a
C(da) = b

If we are given a, we predict c. If we are given b, we
predict —e. If we are given a A b we predict ¢, using
assumption di. Notice that if we are given nothing,
then we predict —a (assuming dz). This is reasonable
as because b's are not ¢’s we are implicitly assuming
—a. If we are given a, we do not predict —b, which
is again reasonable as we are not making any implicit
assumptions about b (given a we predict ¢ whether or
not b is true).

This may be a simplistic way to handle causal rea-

soning (see [Geffner, 1989] for a more sophisticated
theory), but is good enough, with specificity, to han-
dle some tricky examples:
Example 5.1 (Geffner, 1989) Suppose we get up
in the morning and find that we have left the lights
on in the car and want to determine whether the car
will start. We are given that the car normally starts
if we turn the key, and normally does not start if the
battery was flat (even if we turn the key), and that
the battery is flat, by default if the lights were on.
Following the above methodology, this can be stated
as

turn_key N\ key_starts = starts
batt_flat A batt_prevents = —starts
batt_flat = —key_starts
lights_were_on A drained = batt_flat}
H =/{ keystarts bali_prevents,drained}

K ={

C(key_starts) =
C(batt_prevents) =
C(drained) =

turn_key
batt_flat

lights_were_on
If we are given just turn_key, we predict
starts N\ =batt_flat N —lights_were_on

as there is only one extension and no counter argu-
ments.
If we were given

turn_key A lights_were_on

we predict batt_flat and —starts. The only potential
counter argument to drained is {key_starts} which
can be ignored due to specificity; we thus derive
batt_flat. We also predict —s, using explanation

drained, batt_prevents

The only counter arguments contain key_starts which
is ignored by specificity.

Example 5.2 (Hanks and McDermott, 1986)
Consider the celebrated “Yale Shooting Problem”; we
follow the methodology given above:

K =1 VT loaded(T) Nlp(A,T) = loaded(do(A,T)),
VT alive(T) A ap(A, T) = alive(do(A, T)),
Vioaded(T) = —alive(do(shoot, T)),
Vioaded(T) = —ap(shoot, T}

H ={ Ip(AT),ap(AT)}
C(lp(A, 7)) = loaded(T)
Clap(A,T)) = alive(T)

G

loaded(0) A alive(0)

The only thing “tricky” thing here 1s to cancel the
persistence of alive when we shoot with the gun loaded.

We can explain —alive(do(shoot, do(wait, 0))), with
{Ip(wait, 0)}. The only counter arguments to
Ip(wait,0) is {ap(shoot,do(wait,0))}, which can
be ignored due to specificity as its negation fol-
lows from Ip(wait,0) A C(lp(wait,0)). We do
not predict alive(do(shoot, do(wait,0))), as there
is a valid counter argument to the assumption
ap(shoot, do(wait, 0)).

While the above methodology works for these ex-
amples, there are some problems for which it does not
work (see [Geffner, 1989]). There is a strong feeling
that the main problems in default reasoning have to
do with properly characterising specificity and causa-
tion.

6 Comparison with other systems

One of the main goals of this research is to draw a
bridge between those systems that treat defaults as
statements of conditionals [Geffner; 1988, Delgrande,
1988], and those that treat defaults as propositional
assumptions [McCarthy, 1986, Poole, 1988]. The for-
mer have nice properties with respect to specificity,
but need a form of irrelevance to allow chaining and
ignoring irrelevant properties. The latter ignore irrel-
evant details and allow chaining, but do not handle
specificity well. This paper i1s an attempt to consider
what needs to be added to the assumption based sys-
tems to allow the natural specification of specificity.
The solution to the problems of specificity is also much
more natural than the solution of using global prior-
ities, particularly as no one is prepared to say where
such global priorities come from or what they mean.
This sort of conditioning knowledge seems like the sort
of knowledge one would have about a default.

The most interesting comparison of this work 1s with
the addition of irrelevance to e-semantics. The defini-
tion of ignoring in predict; is almost identical to the
definition of irrelevance in [Geffner, 1988]. Both of the-
ses systems fail for example 4.2, and the ignoring for
the general definition of prediction in this paper is al-
most identical to the irrelevance of [Geffner and Pearl,
1989]. The resulting systems are, however, different.
For example, because we are using normal logical con-
nectives, we can use the contrapositive of defaults. The
two systems get the same result on Geffner’s examples
(for example the “solution” to the Yale shooting prob-
lem in example 5.2 follows a similar idea to the solution
presented in [Geffner, 1988]). It seems as though there
is something important about the irrelevance that is
independent of the underlying probability theory.

The use of conditioning can be motivated in a sim-
ilar manner to the notion of “all T know” of Levesque
[Levesque, 1990]. They are, however very different.
Levesque makes no distinction between background
and contingent knowledge. If someone just tells us
that “T'weety is an emu” we can use that as our contin-
gent knowledge and say that this is all we know (con-
tingently) about Tweety. As part of what Levesque
“only knows” about Tweety includes all tautologies
about Tweety, instances of general information (such
as “square(tweety) = rectangle(tweety)”) and de-
rived information (such as bird(tweety)). Levesque
makes no attempt to automatically use specificity.

This work should also be contrasted to the work in
inheritance systems [Touretzky, 1986, Thomason and
Horty, 1988, Stein, 1989]. We are trying to add a no-
tion of specificity to a general logic system, and want

the non-defeasible statement “emus are birds” to be
exactly the logical statement YX emu(X) = bird(X).
This work 1s most closely related to the sceptical in-
heritance of [Stein, 1989]; both allow for membership
in all extensions with a notion of specificity. This work
allows for a much more expressive language than the
networks used for the inheritance theory.

This work has many similarities and differences to
[Poole, 1985). In that work the important context was
the context of the more general default, whereas, in
this paper the important context is the one of the more
specific default. The main problem with that paper
was in the underlying reasoning paradigm in which
the specificity was added; this problem has recently
been addressed [Simari and Loui, 1990]. In [Poole,
1985], the user was not required to specify the context
of the defaults, as they are in the system described in
this paper. It seems to be an advantage rather than a
disadvantage to be able to specify a context in which
a default 1s known to be applicable. As shown in the
previous section, this extra pragmatic knowledge can
be used to advantage in many cases.

7 Conclusion

In this paper we analysed some problems that arise
from prediction based on membership in all exten-
sions. This problem was diagnosed as being due to
peculiar counter arguments. A solution was proposed
that is based on a very simple idea of conditioning.
This is particularly nice, as the conditioning knowl-
edge required is local to a default, and seems to be
very natural (as opposed to other solutions based on
cancellation or global priorities).

Acknowledgements

Thanks to Hector Geffner and Andrew Csinger for
valuable discussions on the topic of this paper. This

research was supported under NSERC grant OP-
POO44121.

References

[Delgrande, 1988] J. P. Delgrande, “An approach to
default reasoning based on first-order conditional
logic: revised report”, Artificial Intelligence, 36(1)
63-90.

[Etherington, 1988] D. Etherington, Reasoning with
Incomplete Information, Pitman, Morgan Kauf-
mann.

[Fahlman, 1979] S. E. Fahlman, NETL: A System
for Representing and Using Real-World Knowledge,
MIT Press, Cambridge, MA.

[Geﬂner, 1988] H. Geffner, “On the Logic of De-
faults”, Proc. AAAI-88, 449-454.

[Geffner, 1989] H. Geffner, Default Reasoning: Causal
and Conditioning Theories, Ph.D. thesis, Computer
Science, UCLA.

[Geffner and Pearl, 1989] H. Geffner and J. Pearl, “A
Framework to reason with Defaults”, to appear De-
feasible Reasoning and Knowledge Representation,
Kluwer Publisher.

[Ginsberg, 1989] M. Ginsberg, “A circumscriptive
theorem prover”, Artificial Intelligence, 39 209-230.

[Hanks and McDermott, 1986] S. Hanks and D. Mec-
Dermott, “Default reasoning, non-monotonic logics,

and the frame problem”, Proc. AAAI-86, 328-333.

[Inoue and Helft, 1990] K. Inoue and N. Helft, Theo-
rem Provers for Circumscription, Proc. CSCSI-90.

[Levesque, 1990] H. Levesque, “All T Know: A Study
in Autoepistemic Logic”, to appear Artificial Intel-
ligence.

[Loui, 1987] R. P. Loui, “Defeat among arguments: a
system of defeasible inference”, Computational In-

telligence, 3(2) 100-106.

[Loui, 1990] R. P. Loui, “Ampliative Inference, Com-
putation and Dialectic”, in J. Pollock and R. Cum-
mins (Eds.) AT and Philosophy, M.I.T. Press.

[McCarthy, 1986] J. McCarthy, “Applications of Cir-
cumscription to Formalising Common Sense Knowl-

edge”, Artificial Intelligence, 28(1) 89-116.

[Neufeld and Poole, 1988] E. M. Neufeld and D. L.
Poole, “Probabilistic Semantics and Defaults”, Pro-
ceedings of the Fourth Workshop Uncertainty in Ar-
tificial Intelligence, University of Minnesota, 275-
282.

[Pearl, 1988] J. Pearl, Probabilistic Reasoning in In-
telligent Systems: Networks of Plausible Inference,
Morgan Kaufmann, 1988.

[Poole, 1985] D. L. Poole, “On the Comparison of
Theories: Preferring the Most Specific Explana-
tion”, Proc. IJCAI-85, 144-147.

[Poole, 1988] D. L. Poole, “A Logical Framework for
Default Reasoning”, Artificial Intelligence, 36(1),
27-47.

[Poole, 1989a] D. Poole, “What the lottery paradox
tells us about default reasoning”, Proceedings of the
First International Conference on the Principles of
Knowledge Representation and Reasoning, Toronto,

333-340.

[Poole, 1989b] D. Poole, “Explanation and Prediction:
An Architecture for Default and Abductive Reason-
ing”, Computational Intelligence, 5(2) 97-110.

[Poole, 1990] D. Poole, “The effect of knowledge on
belief: conditioning, specificity and the lottery para-
dox in default reasoning”, Technical Report, Com-
puter Science, University of British Columbia.

[Popl, 1973] H. Popl, “On the mechanisation of Ab-
ductive Logic”, Proc. IJCAI-73, 147-152.

[Przymusinski, 1989] T. C. Przymusinski, “An algo-
rithm to compute circumscription”, Artificial Intel-

ligence, 38(1) 49-73.
[Simari and Loui, 1990] G. R. Simari and R. P. Loui,

“Confluence of argument systems: Poole’s rules re-
visited”, to appear, 3rd Workshop on Nonmono-
tonic Reasoning, Lake Tahoe, June 1990.

[Stein, 1989] .. A. Stein, “Skeptical Inheritance:
Computing the Intersection of Credulous Exten-

sions” | Proc. IJCAI-89, 1153-1158.

[Thomason and Horty, 1988] R. H. Thomason and
J. F. Horty, “Logics for Inheritance Theory”,
Proc. Second International Workshop on Non-
Monotonic Reasoning.

[Touretzky, 1986] D. S. Touretzky, The Mathematics
of Inheritance Systems, Morgan Kaufmann.

