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1 Logic and Monotonicity

In nonmonotonic reasoning we want to reach conclusions that we may not
reach if we had more information. There seem to be two ways to handle
this; we could change the logic to be defeasible, or we could allow there to
be some premises of the logical argument that may not be allowed when
new information is received. Default logic is a formalisation of the latter; it
provides rules that add premises to logical arguments. The advantages of this
framework are its simplicity, its naturalness, its power and the abundance of
applications.

Suppose we have a logical argument that Tweety flies, based on Tweety
being a bird, and the fact that “birds fly”. If we subsequently learn that
Tweety is an emu, then the conclusion (that Tweety flies) is wrong, but the
logical proof is still valid. The logical argument is valid; the conclusion is
incorrect, so one of the premises is incorrect. The incorrect premise is “birds
fly”. We don’t want to use this premise when the object under consideration

*Tnvited to appear in Gabbay and Hogger (Eds.) Handbook of Logic for Artificial
Intelligence and Logic Programming.
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is an emu. The idea that there are premises that we want to use some of the
time, but not all of the time is the basis of default logic and its derivatives.
Default logic provides a set of rules for adding premises to logical arguments.
“Defaults function as meta-rules whose role is to further complete un under-
lying incomplete first order theory” [Reiter, 1980, section 2.2]. Default logic
was invented by Reiter [Reiter, 1980], and has been most fully investigated by
Etherington [Etherington, 1987b]. Poole, Goebel and their colleagues have
empirically investigated a simple case of default logic [Poole et al., 1987;
Poole, 1988b]. Besnard [Besnard, 1989] gives a comprehensive overview of
theoretical work in default logic.

Section 2 presents a framework for default reasoning in which defaults pro-
vide logical formulae that can be used as premises if they can be consistently
added by the use of “default rules”. These default rules can take into ac-
count the derivability of some formulae and the consistency of other formulae
[Reiter, 1980]. Section 3 provides many examples of both the power of, and
the assumptions behind, the framework. Section 4 discusses the semantics
of the resulting systems. A fixed point and a minimal model semantics are
given. Section 5 gives comparisons with other formulations of nonmonotonic
reasoning. Implementing default reasoning systems is discussed in section 6.
Section 7 considers when we can guarantee the existence of extensions. Com-
plexity of default reasoning is discussed in section 8, empirical investigations
are discussed in section 9, applications that have been built on this frame-
work are presented in section 10, and variations that have been suggested
are given in section 11.

2 Reiter’s Logic for Default Reasoning

We assume we are given a standard first order language over a countable
alphabet [Enderton, 1972]. By a formula we mean a well formed formula in
this language. By an instance of a formula we mean a substitution of terms
in this language for free variables in the formula. A ground instance is one
that contains no free variables.

A default theory is a pair A = (D, F') where:

I a set of closed formulae, called the “facts”;
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D a set of “defaults” of the form
Q(T) : ﬁl(f)v e ﬁm(f)

w(T)

where a(T), 51(T), ..., Bu(T), w(T) are formulae whose free variables are
amongst those of .

The default rules specify formulae that can be used as premises of a
logical argument. The above rule means, intuitively that a ground instance
of w(T) can be used if the corresponding instance of «(T) is proved and the
corresponding instances of (3;(T) are consistent with everything believed.

Definition 2.1 In the default
Q(T) : ﬁl(f)v e ﬁm(f)

w(T)

a(T) is the precondition of the default; w(T) is the consequent of the
default; and the 3,(T) are the justifications of the default.

Definition 2.2 A default is closed if it does not contain any free variables.
A default is open otherwise.

Definition 2.3 An instance of a default is obtained by uniformly substi-
tuting ground terms for the free variables in the default.

Definition 2.4 A default is normal if it is of the form:

such that VZ (%) = w(7). This normally happens when 3(7) is w(Z) A v(7)
for some formula (7).

Formally, the rule for specifying when a conclusion of a default can be
added to an argument is defined in terms of an extension.
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Definition 2.6 Given a default theory A = (D, F'), consider a sequence of
formulae Sg, Sy, 52, ..., where S = U2,S;, So = F, and

a(T) : f1(@), ..., Bm(T)

w(T)

Si-l—l =5, U {w(E) :

is an instance of a default in D,

a(c) follows from S;,
3;(2) is consistent with S, for all j,1 <7 <m}

An extension of A = (D, I} is the set of logical consequents of S.

An extension provides a set of consequences of a default theory. An
instance of the consequent of a default can be used as the premise of a
logical argument if

1. we can prove the instance of the precondition from facts and previously
assumed consequents. This enforces a groundedness of assumptions; we
don’t allow circularity in the derivation of a default consequent.

2. the justifications are consistent with the union of the consequents. Note
that the (3;(¢) have to be consistent with S, the union of the S;.

One other definition that is useful is to consider the set of consequents of
a set of defaults that can be used to imply some goal.

Definition 2.7 If ¢ is a closed formula, F is an explanation of ¢ from
A = (D, F) if FE is the set of consequents of some D', a set of instances
of elements of D such that F U F' = g, F U F entails the preconditions of
D', and all of the justifications of D’ are consistent with some extension of

A = (D, F') that contains F.

In other words, an explanation of ¢ is the set of consequents of defaults
that are needed to imply ¢. The definition also ensures that the explanation
is in some extension. “g can be explained” is equivalent to “g is in some
extension”. This is useful as an explanation is a minimalist notion; we only
need to find a set of conclusions to prove a goal, the preconditions of the rules,
and some reason that the defaults used can be extended to an extension.

The default framework is about arguments, rather than about prediction.
An extension is “a set of beliefs which are in some sense “justified” or “rea-
sonable” in light of what is known about the world” [Etherington, 1987b]
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rather than a prediction of what is true. Different applications may want to
make different uses of the conclusions.
Two main ways to use such a system for prediction have been proposed:

brave In brave prediction we predict what is in some arbitrarily chosen
extension [Reiter, 1980; Etherington, 1987a]. Choosing a different ex-
tension may change what is predicted.

skeptical In sceptical prediction we predict what is in all extensions. We
thus predict only what we can explain even if an adversary chooses the

defaults [Poole, 1989a).

3 Examples

In this section we show a series of examples that are intended to show the
different features of defaults. We start with the simplest forms of defaults,
namely normal defaults without preconditions.

Following tradition we use the example of representing the default “birds
fly”. The example will be complicated slightly by having an exceptional class
of baby birds for which we want to make no assumptions about their flying
ability. That is we want to represent “birds fly, except for baby birds”.

3.1 Normal Defaults

Example 3.1 The “birds fly” example can be represented using the simplest
form of defaults as follows:!

: birdsfly(:z;)}
birds fly(x)
F={ Vabirdsfly(z)Abird(z) = flies(z),

D ={

'We are using the idea of “naming defaults” [Poole, 1988a). If this is the only place that
the predicate “birdsfly” appears, then the default and the first two facts can be replaced
by

sbird(z) = flies(x) A —baby(x)
bird(x) = flies(x) A —baby(x)

D={ }

and all conclusions that do not involve the predicate birdsfly will be unchanged.
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Va bird(x) A baby(x) = —birds fly(x)
bird(Tweety),

baby( Polly),

bird( Polly),

—flies(Fred)}

flies(Tweety) can be explained using the explanation FU{birds fly(Tweety)}.
We cannot explain flies(Polly) as birds fly(Polly) is not consistent with the
facts. We can explain =bird(Fred), using F' U birds fly(Fred). We can also
explain bird(t) = flies(t) A =baby(t) for every ground term ¢ (except for
t = Polly).

The next example shows how the use of preconditions can be used to
reduce the number of conclusions:

Example 3.2 Consider the following normal default representation of “birds
fly, but baby birds are exceptional”:

bird(z) : flies(x) A ~baby(x)
flies(x) A —baby(x)

F={ bird(Tweety),

baby( Polly),

bird( Polly),

—flies(Fred)}

D ={ }

Here we can explain flies(Tweety) and —baby(Tweety), by assuming the
default for © = Tweety. We still cannot explain flies(Polly), and can no
longer explain =bird(Fred), nor bird(t) = flies(t)\—baby(t) for an arbitrary
ground term t.

The difference between these representations is that in example 3.2, we
must derive that « is a bird before we can use the default (we have to “know”
that the individual is a bird), whereas in example 3.1 we could use the default
for any individual. There are a number of consequences of this difference:

Example 3.3 Suppose we add
bird(Oscar) V bird(Sylvester)
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to the facts F' of example 3.1.
From the representation of defaults in example 3.1 we could conclude

flies(Oscar) V flies(Sylvester)

(assuming both birds fly(oscar) and birds fy(sylvester)).

From example 3.2 we cannot conclude anything about the flying ability of
Oscar or Sylvester. The reason is that we can prove neither bird(Oscar) nor
bird(Sylvester), and so the default is not applicable for either individual.

Example 3.4 [Makinson, 1988]

R ={ 2L
p .
p\/q-ﬂp}
—p
ro={1
Fy ={ pVaq}

In this example, there is one extension of (Fy, R), namely Th({p})®. There
are two extensions of (Fy, R), namely Th({p}) and Th({=p,q}).

Notice here that the only element of F,, namely p V ¢ is in the only
extension of (Fy, R). pis in the only extension of (Fy, R), but is not in one
of the extensions of (Fy, R).

This example is interesting [Makinson, 1988] because it demonstrates that
normal defaults (with preconditions) satisfy neither “cumulative monotony”
(if 2 and y both follow from the facts, then if we add y to the facts, we still
derive & — here y is pV ¢ and x is =p) nor “cumulative transitivity” (if we can
derive x by adding a derived consequent to the facts, then we can derive =
without the derived consequent — here = is =p and the derived consequence
is pV ¢) when consequence is interpreted in the “brave” sense of prediction.

3.2 Non-Normal Defaults

The following example shows how we can use semi-normal defaults in order
to prevent the conclusion —baby(Tweety).

2If S is a formula Th(S) is the set of logical consequents of S.
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Example 3.5 Consider the semi-normal default

bird(z) : flies(x) A ~baby(x)
flies(x)

Using the same facts as in example 3.2, we can now explain flies(Tweety) by
assuming the default for x = T'weety, but can no longer explain =baby(Tweety).

D ={ }

Not concluding —baby(Tweety) is, however, done at a cost:

Example 3.6 Consider the default of example 3.5, together with the facts

F ={ bird(Pete),
bird(Mary),
baby(Pete) V baby(Mary)}.

We can now explain flies(Mary) A flies(Pete). The disjunctive exception
was not strong enough to block either default (or the use of both defaults).

This example shows that in some sense we have to “know” the individ-
ual is exceptional before the default is blocked. Semi-normal defaults are
most applicable where the knowledge of the exception is important, as in the
following example:

Example 3.7 [Ftherington]| People who are employed should get paid unless
you know that they did not work:

D o—{ employed(x) : get _paid(x) N worked(x)

9

get _paid(x)

F ={ employed(David),

employed(John),

—worked(David) V —worked(John)}

In this example the conclusion that both David and John should get paid is
not unreasonable (particularly if you don’t want to be sued).
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Example 3.8 Note that the use of disjunctive exceptions does not require
explicit disjunctions. Consider the following defaults:

bird(z) : flies(x) A ~baby(x)

b=A flies(x) ’
small(z) : cries(z) A baby(:z;)}
cries(x)
F={ bird(Tweety),
small(Tweety)}

In this case, when Tweety is a small bird, there is one extension containing
flies(Tweety) A cries(Tweety)

We have to know whether Tweety is a baby or not in order to block one of
the defaults.

Example 3.9 In order to solve the “problems” of using the contrapositive in
example 3.1 and of the disjunctive exception of example 3.3, Brewka [Brewka,
1989a) suggested representing “birds fly” as the semi-normal default

s flies(x)
bird(z) = flies(x)

Using this default we can no longer conclude =bird(F'red) given = flies(Fred)
(as in example 3.1), but we can still conclude flies(Oscar)V flies(Sylvester)
from bird(Oscar) V bird(Sylvester).

Using the same trick as in example 3.6 (namely disjoining the excep-
tion of the semi-normal default), we can create another peculiar example for
Brewka’s suggestion. We cannot conclude =bird(Fred) given = flies(Fred),
nor can we conclude —bird(George) given = flies(George), however this de-
fault lets us conclude —bird(Fred) VvV —bird(George) given = flies(Fred) Vv
= flies(George).

In following example, the semi-normal default may be more appropriate
than the corresponding normal default:
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Example 3.10 [Etherington, 1987a] Someone who has a motive, and may
be guilty, should be a suspect:

has-motive(x) : suspect(x) A guilty(z)

suspect(x)
The corresponding normal default:

has-motive(x) : suspect(x) A guilty(z)

suspect(x) A guilty(x)

is much less reasonable. We don’t also want to conclude that all suspects are
guilty. Disjunctive exceptions also seem reasonable for this example; if we
know both Pete and Mary have motives and that we know one is not guilty,
it is reasonable to conclude that they both are suspects.

The next example gives one possible use for multiple justifications in
default rules, and so for default rules that are not even semi-normal.

Example 3.11
“p,p
u

Using this default we conclude u only if we cannot conclude p or —=p. u may
be interpreted as “unknown whether p”. We probably don’t want to make
this into a semi-normal default.

3.3 Equality

In this set of examples we show how equality is affected by default reason-
ing. Note that defaults add syntactic premises to logical theories, these can
include statements of equality and inequality. There is no need for unique
names assumptions (assuming different terms denote different objects).

Example 3.12 Defaults that do not contain equality can be used to derive
inequalities:

o oip(e)
=1 p(z) J
Fo={ -p(A)}

Here we can conclude p(B) from which it logically follows that A # B.
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Example 3.13 We can make default assumptions about equality; for exam-
ple we can have a default that embodies the unique names assumption:

cx#y
T #y

From this we conclude that any terms that cannot be shown to denote the
same individual do not denote the same individual.

Example 3.14 Defaults can also be used to imply equality. For example, a
detective may assume that a series of murders were committed by the same
person unless that can be shown not to be:

murderer(z) A murderer(y):x =y
r=Y

(Jill the_ripper),

(Night_stalker),

murderer( Rambo_follower),

red_haired( Rambo_follower),

—red_haired(Night_stalker)}

D ={

}

F =1 murderer

murderer

Here there are two extensions, one containing
Jill the_ripper = Night_stalker
and the other containing

Jill the_ripper = Rambo_follower.

3.4 Skolemization

The definition of defaults given so far differs from Reiter’s defaults [Reiter,
1980][section 7.1], in that Reiter allows for Skolem functions to be used as
instances of defaults, whereas we have assumed here that we can only have
terms of the language before Skolemization. The difference can be seen in
the following example:
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Example 3.15

o oip(e)
D=1 p(l’)}
Fo={ -pla),

(Ve p(z)) = g}
In the reading given in this paper we cannot derive g.

Reiter’s default logic tells us to Skolemize first, and then allow the sub-
stitution of ground terms for variables in the default:

o ip(e)

=1 p(l’)}

Fg ={ -pla),
p(C) =g}

Reiter’s default logic allows the conclusion of ¢, by using the default for
x = (', where (' is the introduced Skolem constant.

[ would argue that we should not be able to derive ¢ (as it is simply not
true that Va p(z)), and thus that Reiter’s solution is not correct. This issue
is discussed further in [Poole, 1987].

4 Semantics

So far we have defined default logic in terms of providing premises for logical
arguments. In this section we provide various forms of semantics for the most
expressive forms of defaults.

4.1 Fixed Points

Fixed point semantics provides a definition of a set of consequences.
We give the fixed-point semantics for [Reiter, 1980]’s general defaults®.

Theorem 4.1 (Reiter80, theorem 2.1) An extension is the smallest set
E satisfying

3Reiter used this as his definition of extension, and derived the other definition. We
believe that the other definition is a more natural definition of an extension.
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1. FCFE
2. Th(E)=F
3. 1f o )
oz(c) : ﬁl(c)v 7ﬁm(c)
w(@)
is a ground instance of a default and «(¢) € F and —3;(¢) ¢ E then
w(e) € E.

Proof: First of all we should show that an extension satisfies
the three points. The first and second are trivial. For the third,
if a(T) € F, then for some 7, S; E a(T), and so by construction
w(T) € Sit1, so w(T) € E.

Suppose there is a set E’' that is a subset of extension S and
satisfies the above formulae. It is easy to check that, by induction,

S; C E' for all i. Thus S =U2,5; C E',and so S = F'. O

4.2 Stable Model Semantics

One interesting subcase of default logic occurs when F'is a conjunction of
atoms, and the consequent of each default is an atom, the justifications of
defaults are all negations of atoms, and the preconditions of defaults are
conjunctions of atoms. That is, all of the defaults are of the form

R AN AN T e T/ TS RO 17 0

o

where the «; are all atoms. In this case, extensions are the consequences
of conjunctions of atoms, and can be identified with interpretations. The
default rule can be put in correspondence with the Prolog (with negation as
failure) clause

AQ P — ULy aaey Uy ™ Uy 1y aaey ™ -

where ~ a means the proof for a finitely fails. The correspondence between
the default rule and the Prolog clause and the correspondence between a fixed
point and an interpretation, form the basis behind stable model semantics
[Gelfond and Lifschitz, 1988]. Note that originally stable model semantics
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was based on autoepistemic extensions [Moore, 1985], rather than default ex-
tensions defined here. The differences are due to the groundedness demanded
of default extensions [Konolige, 1987]. This difference means that the default
extensions are better at defining the stable models.

4.3 Minimal Models

Intuitively default logic has given a way to specify premises in a logical
argument. Default logic has a “maximal model” semantics in that ¢ is in
an extension iff g is true in every model of that extension. The set of models
of extensions is a subset of the set of models of F. This correspondence
allows us to give a maximal model semantics to default logic.

The presentation here follows that in [Etherington, 1987a] which builds
on the work in [Etherington, 1987¢; Lukaszewicz, 1985]. Sets of models are
compared rather than individual models as in other frameworks [Shoham,
1987]. Sets of models are needed as we need to capture derivability, which is
needed for both ensuring that preconditions are met, and for ensuring that
justifications are consistent.

The maximal model semantics can be defined as follows.

Definition 4.2 If M, and M, are sets of models of F', we say that M; >,
M if there is a default of the form

a: By, ..., B
“

(an instance of an element of D) such that for all M € My, « is true in M,
and for each ¢ such that 1 <7 < n, there exists M € M, such that 3; is true
in M and

My = {M € M, such that v is true in M}

Let >p be the transitive closure of >%.

Let M be the set of models of F.

Intuitively, we start with M and find a maximal non-empty model set
greater than M. The reason that this is correct is that we are considering
the set of models of the S; in the definition of an extension (definition 2.6)
rather than the formulae S;. The only difference is that the 3; needs to be
consistent with the resulting fixed point. In the model-based view this is
accomplished by a notion of stability:
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Definition 4.3 A set 7 of models of F' is stable for D if there is a set R’
of instances of elements of D such that Z > M., and for each

a: By, ..., B c R
“

for each i, 1 <i < n, there is some M; € T such that M; = 3.

Theorem 4.4 (Etherington) ¢ is in an extension iff g is true in all mem-
bers of a stable maximal model set greater than M.

Proof idea: By construction, a stable, minimal model set less
than M is exactly the set of models of an extension. ¢ logi-
cally follows from an extension iff it is true in all models of the
extension. See [Etherington, 1987a, theorems 3.2 and 3.3] O

We say M is a minimal model if M is a member of some stable, minimal
model set greater than M.

Corollary 4.5 ¢ is in every extension iff g is true in every minimal model.

Proof idea: By construction, a minimal non-empty model set
less than M is the set of models of an extension. O

4.4 Epistemic Semantics

Lin and Shoham [Lin and Shoham, 1990] have developed an epistemic seman-
tics for both Default Logic and Autoepistemic Logic. They use a modal logic
with two operators, K (“known”) and A (“assumed”). Given a standard
Kripke semantics of these symbols, they develop a preference over Kripke
interpretations.

Kripke interpretation M; is preferred over M;, written M; T Ms, if
{o: My | Ad} = {¢: My = Ad}! and {¢: My |E Ko} C{¢: My | Ko}

Kripke interpretation M is a preferred model of formulae S if M is a
minimal model of S and {¢: M |E K¢} = {¢: M E Ao}.

They form a logic GK, with entailment defined by ® Egr ¢ if ¢ holds

in all preferred models of ®.

4The ¢ range over base formulae.
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Default theory A = (D, F) is translated into Agx as follows. If p € F

then Kp € Agk. Default
Pidi, 540
r

is translated into Agx as
KpA—-A-¢ A+ N—=A-qg, = KR
The following theorem is proved in [Lin and Shoham, 1990].

Theorem 4.6 A consistent set of sentences F is a default extension of A

iff there is a preferred model M of A such that B ={¢: M = K¢}

4.5 Sceptical Prediction

A simpler form of semantics can be obtained for sceptical prediction for the
case of normal defaults without preconditions. In this case there are no
“provability” conditions that we need to be concerned about.

In this case [Poole, 1988b], an explanation of g from (D, F) is a set
of instances of conclusions of defaults such that F U C |= g and F U C is
consistent.

Theorem 4.7 If all of the defaults are normal defaults without prerequisites,
the following are equivalent:

1. ¢ is in all extensions of (D, I).

2. There is a set C of explanations of ¢ from (D, I') such that V¢, cc ~C;
cannot be explained from (D, F').

3. ¢ is true in all minimal models of F', where the ordering on interpreta-
tions is defined by M; <p M, if the assumptions violated in M; are a
subset of the assumptions violated by M,. That is, if

{de D : My E-d} Cc{de D : M, ~d}

where D’ is the set of ground instances of conclusions of defaults in D.
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Proof: 1 = 2. Let C be the set of all explanations of ¢. If
C is an explanation of V.o =C;, then €' can be extended to
an extension F, in which ¢ goes not appear. Thus if g is in all
extensions, no such F exists.

2 = 1. Suppose 2 is true. Given such a C, every extension con-
tains one element of C (otherwise the extension is an explanation
of the disjunct in 2). ¢ follows from F' U C, for all C' € C thus ¢

is In every extension.

3 = 1. Suppose ¢ is not in extension F. F is consistent and does
not entail ¢, so there is a model M of K A —~g. M is a model of
F.,as ' C E. M is minimal, as if there is some M’ < M, there
is some d € D' such that d ¢ E, d is consistent with £ (as M’ is
a model of F' A d), which is a contradiction to the maximality of
the extension F. Thus ¢ is not true in all minimal models.

1 = 3. Suppose g is not true in minimal model M. Let F be the
set of consequences of FU{d € D' : M = d}. F is an extension,
as I is consistent (M is a model of E), and if some d € D', d ¢ F,
then F | —d (otherwise £ A d has a model M’, in which case
M' < M, a contradiction to the minimality of M). ¢ is not in
extension F (as it is not a consequence of F, as it is false in a

model of F). O

The minimal model definition of theorem 4.7 is subtly but importantly dif-
ferent to the minimal models definition of circumscription [McCarthy, 1980;
Lifschitz, 1985], with no fixed predicates. We are minimising over the syn-
tactic forms of the models (the sets we are comparing are sets of ground
atomic formulae). In Circumscription, the minimization is in the seman-
tic domain (minimising over individuals rather than over constants). We
do not require the unique names assumptions (as, for example, the viola-
tion set {ab(a),ab(b)} cannot be reduced by making @« = b). This syntactic
minimisation is also why we can minimise equality; the minimisation occurs
before the terms have assigned to individuals. We can thus affect this assign-
ment. When minimising in the semantic domain, the minimisation occurs
after terms have been assigned to individuals; thus the minimisation cannot
affect equality [Etherington et al., 1985], and the unique names hypothesis
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is needed (as, for example, the violation set {ab(a), ab(b)} can be reduced by
making a = b).

Theorem 4.7 can be traced to a number of sources. If we let 3’ be the cir-
cumscriptive version of 3, which are the same under the unique names and do-
main closure assumptions. 1 < 3’ is due to Etherington [Etherington, 1987b;
Etherington, 1987a). 1 < 2 is due to Poole [Poole, 1989a). 2 < 3’ is due
to Przymusinski [Przymusinski, 1989] and Ginsberg [Ginsberg, 1989]. The
form of 3 presented here adapted from Geffner [Geffner, 1989], by removing
the priorities. 1 & 3, as far as [ know, is new to this paper.

5 Relationship to other Formalisms

5.1 Autoepistemic Logic

Autoepistemic logic [Moore, 1985] is a logic that allows an agent to rea-
son about their own knowledge and ignorance. Konolige [Konolige, 1987]
has shown the equivalence between closed defaults and a form of “strongly
grounded” autoepistemic logic.

Konolige showed that every autoepistemic formula is equivalent to a con-
junction of formulae in the form

(LaAN=L=pi Ao A=L=G,) = w

where L¢ is read as ¢ is known, and that this, interpreted in terms of strongly
grounded extensions, is the same as the default

o [y, ,ﬁm

w

See chapter 77 of this handbook for details on the form of autoepistemic
logic that is equivalent to default logic.

5.2 Circumscription

Circumscription [McCarthy, 1980; Lifschitz, 1985; McCarthy, 1986] is a way
to specify that the only exceptions to a formula are those that are known
(see chapter 77?7 of this handbook for full details). It is generally given
[McCarthy, 1986] as a second order formula. Circumscription can also be
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defined semantically as determining what is true in all of the models that
minimise the extent of some formula [McCarthy, 1980; Lifschitz, 1985].

Etherington [Etherington, 1987b; Etherington, 1987a) has shown the re-
lationship between default logic and circumscription. He shows that mini-
mizing the predicate P, with all other predicates varying, in circumscription
corresponds to the use of the default ::5(;)) as long as the facts entail domain
closure and unique names axioms. See t(he discussion in section 4.5.

Some major differences are that circumscription cannot be used to affect
equality [Etherington, 1987a, Theorems 5.7 and 5.8], and so cannot be used
for the examples of section 3.3 in this chapter.

One of the things that circumscription can do which default logic, as

defined here, cannot do is to conclude universal conclusions. For example,
by minimising p(x), but knowing p(a), circumscription can conclude

Vo o # a = —p(x).

Default logic cannot conclude the universal formula, but can only conclude
—p(t) for each ground term ¢ that is different to a. Poole [Poole, 1987] has
investigated the problem of allowing syntactically more general instances
of defaults. Lifschitz [Lifschitz, 1990] has suggested that the variables in
open defaults should refer to individuals in the domain rather than being
syntactic. He has developed a version of default logic that allows for universal
conclusions, but at the expense of not being able to affect equality.

6 Implementation

In this section we discuss a number of proposals of how default reasoning can
be implemented. The main problem with implementing default logic is that
we need to check consistency of the antecedents with an extension. There
are two main approaches that have been suggested.

1. The first is by “forward-chaining” to produce an extension. This can
only be used where the extensions are finitely representable, for exam-
ple, in the propositional case.

2. The second is to “backward-chaining” to determine whether some propo-
sition is in some extension (or in all extensions). This has been sug-
gested in the semi-monotonic cases (adding defaults cannot remove
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conclusions) where consistency with only the defaults used is adequate
for consistency with an extension.

6.1 Forward Chaining Default Prover

A forward-chaining default prover [Etherington, 1987a) follows the definition
of an extension. We non-deterministically choose a default whose precondi-
tion has been derived, and whose justifications are consistent with what has
been derived (either by finding a model, or by finite failure using a complete
inference system), and then infer the consequent of the default. This choice
may have to be undone if some justifications used are not consistent with
some subsequent default.

Junker and Konolige [Junker and Konolige, 1990] have developed a proof
procedure based on translating default logic into a truth maintenance system.
They develop a finite representation for extensions of closed default theories,
and develop a correspondence between the fixed point of a TMS and the
representation for an extension.

6.2 Backward Chaining Default Prover

In this section we show how a theorem prover (see e.g., [Chang and Lee,
1973]) can be used to determine whether some formula can be explained
using normal defaults. This is based on Reiter’s implementation [Reiter,
1980, section 7.2].

The algorithm for normal defaults can be given the following abstract
definition to explain ¢ from (D, F):

1. Try to prove g from F'U CONS(D), where CONS(D) is the set of
consequents of rules in D. Make R the set of instances of rules in D
used in the proof.

2. Ground R (substitute a new constant for each of the free variables in

R). We thus have created a ground proof of ¢ from AU CONS(R).

3. Using the same algorithm explain the precondition for each default in
R. Let RT be the union of all of the defaults used in the derivation of
g and all preconditions of defaults.



Default Logic 21

4. Try to prove AANCONS(R") is inconsistent. If a complete search fails
to find a proof of inconsistency, R is an explanation for g.

This algorithm was first given by Reiter [Reiter, 1980, section 7.2]. [Poole
et al., 1987] gives a Prolog interpreter for normal defaults without prerequi-
sites. [Poole, 1991a] shows how explanation can be implemented by compiling
into Prolog.

6.3 Sceptical Prediction

The above procedures considered whether some proposition is in some ex-
tension. We should also consider the question of whether some proposi-
tion is in all extensions. The idea behind implementing this [Poole, 1988a;
Kautz and Selman, 1989] is that proposition ¢ is in all extension if it is in
an extension even when an adversary can choose the default. ¢ is not in all
extensions if there is an extension which does not contain g; if we can show
that an adversary cannot generate such an extension, then g must be in all
extensions.

For the forward chaining default provers, to determine if ¢ is in all ex-
tensions we try to generate an extension in which ¢ does not appear. When
there is a choice of which default to choose, we let an adversary choose the
default. If an adversary can generate an extension which does not contain
g, then ¢ is not in all extensions. If we can demonstrate that there are no
choices for the adversary which lead to an extension not containing ¢, then
¢ is in all extensions.

For the backward chaining default provers, we use the results of theorem
4.7. These have only been built for normal defaults without prerequisites.

This result can be transformed into a procedure to compute membership
in all extensions [Poole, 1989a; Ginsberg, 1989; Przymusinski, 1989]. If we
assume that we can compute explanations (section 6.2), then we find expla-
nations of ¢ and then fail to find explanations for the negation of the disjunct
of the justifications of the explanations of g.

Example 6.1 Consider the following example®
crh(z) :qd(z) : hs(x)

b =A rh(z)’ qd(z)’ hs(z)’

>This example is based on an example by Matt Ginsberg, which is based on an example
due to Ray Reiter.



Default Logic 22

thp(z) :dp(x) : qr(l‘)}
hp(x) ™ dp(x) ™ qr(z)

F={ Vaxrepublican(x) A rh(z) = hawk(x),
Vo quaker(z) A qd(z) = dove(x),
Va hawk(x) A hs(x) = support-star-wars(z),
Va hawk(z) A hp(x) = politically-motivated(z),
Va dove(x) A dp(x) = politically-motivated(x)
Vo quaker(z) A gr(z) = religious(x)}
Va = (dove(x) A hawk(x)),
quaker(dick),
republican(dick) }

Consider the process of trying to determine support-star-wars(dick). There
is one explanation for it namely,

FU{rh(dick),hs(dick)}

There is one set of ground instances of defaults which, if an adversary had
chosen, would make this argument inapplicable:

Fu{qd(dick)}

Thus pro-star-wars(dick) is not in all extensions.
Consider determining politically-motivated(dick). There are two explana-
tions for it:

F U {qd(dick),dp(dick)}
F U {rh(dick), hp(dick)}
There is no explanation for the negation of the disjunction of the explanations

F A ((gd(dick) A dp(dick)) vV (rh(dick) A hp(dick)))

and so politically-motivated(dick) is in all extensions.
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7 When does an extension exist?

One of the most important questions to investigate is when we can guarantee
an extension exists. This question has been investigated by Etherington
[Etherington, 1987a, pp. 84-88].

Etherington noticed that the only time there is no extension is when there
are defaults such that the justification of one default is inconsistent with the
consequent of a default that must subsequently be applied.

Example 7.1 The following has no extensions:

a:bNe c:—b
D :{ b b}

C -

F ={ a}

Notice here that the justification of the first default is denied by the second
default and the second default must be applied after the first.

Etherington [Etherington, 1987a) defined a notion of ordered default
theories that disallows the above sort of circularity, and showed that every
ordered, semi-normal default theory has at least one extension.

8 Complexity

Default logic, in general, is not even semi-decidable. Normal logical conse-
quence is semi-decidable, but when the proof can involve a consistency check,
the resulting system may be (depending on the underlying logic) undecidable.

When we consider propositional default logic, determining whether some
proposition follows from some facts and default rules is decidable, but NP-
complete.

Kautz and Selman [Kautz and Selman, 1989] have investigated the com-
plexity of propositional, disjunction-free default logic under various syntactic
restrictions. They considered the three problems:

1. finding an extension;
2. determining if a given proposition is true in some extension and

3. determining if a given proposition is true in all extensions.
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They found that the three kinds of problems are strictly ordered in diffi-
culty.

The first and simplest, finding an extension, is NP-complete for unary de-
faults (defaults with a single un-negated precondition, a literal consequent,
and a justification that is either just the consequent or, if the consequent is
positive, the consequent and a single negative literal). If this restriction is
strengthened to be disjunction-free, ordered theory there is an O(n?) algo-
rithm.

Determining if a given literal is in any extension is NP-hard for either
disjunction free normal theories or unary ordered theories. There is, however,
an O(n) algorithm for to determine if a given literal appears in any extension
of a Horn default theory (normal defaults with only positive literals in the
prerequisite).

For the most difficult of these problems, it is co-NP-hard to determine
if a given literal appears in every extension even for Horn default theories.
There is an O(n?) algorithm to determine if a given literal appears in every
extension of a normal unary theory.

9 Empirical Investigations

Theorist, developed by Poole and Goebel and their associates [Poole et al.,
1987; Poole, 1988a) is an empirical framework in which to investigate logic-
based hypothetical reasoning. It is an attempt to test the conjecture that
commonsense reasoning can be captured by allowing user specified hypothe-
ses that can be used in an argument if consistent. Theorist is deliberately the
simplest hypothetical reasoning system based on first order predicate calcu-
lus. The user-specified hypotheses can either be treated as normal defaults
without prerequisites for default reasoning, as possible causes in abductive
reasoning or as possible components in design.

Towards the goal of an empirical framework for default and abductive
reasoning, efficient implementations [Poole et al., 1987; Poole, 1991a] have
been built, representational methodologies [Poole, 1990] (discussing how to
“program” the logic) and various applications have been developed (see next
section). In an effort to push the framework to its limits, and to enable
refutable hypotheses, much of the work has concentrated on showing how to
use the system to solve problems.
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Results that have come from the empirical investigation have included
how the “lottery paradox” naturally arises in default reasoning [Poole, 1991h],
and how a system that just considers the logical content of the facts, and
has modular defaults, cannot have an automatic preference for more specific
defaults [Poole, 1991b]. The latter can be seen, in the propositional case, by
considering the defaults “mammals don’t fly” and “bats fly” with the facts
being bat and bat = mammal. By specificity we would want to conclude fly.
The facts are logically equivalent to the facts mammal and mammal = bat,
from which, by specificity we would conclude —bat. Thus the logical con-
tent of the facts do not convey all the information necessary for the default
conclusion.

10 Applications

Default logic has been used to formalise many applications.

Etherington and Reiter [Etherington and Reiter, 1983; Etherington, 1987a]
and Poole [Poole, 1988a] both discuss how inheritance hierarchies can be for-
malised in default logic. Etherington and Reiter uses the semi-normal default

A(z): B(z) AN =Cy(x)=...—~Ch(x)
B(x)

to represent an arc from node A to (possibly negated) node B that is can-
celled by arcs from nodes Cy...C,,. Poole [Poole, 1985] gave a proposal to
automatically prefer more specific arguments over more general ones. This
proposal has been further developed by Simari and Loui [Simari and Loui,
1990]

Reiter [Reiter, 1987] and Poole [Poole, 1988b; Poole, 1989b] show how
default logic can be used for diagnosis. In particular, normality of compo-
nents is assumed as a default. Abnormalities in an extension correspond to
a diagnosis. When there are possible faults we have the absence of faults as
a default. Faults are only concluded if needed.

Poole [Poole, 1990] discusses applications in diagnosis, image interpreta-
tion, plan recognition and commonsense reasoning.

Jones and Tubman [Jones and Poole, 1985; Tubman, 1986] have used a

version of Theorist for the diagnosis of children with learning disabilities.
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Goebel and Goodwin [Goebel and Goodwin, 1987] show how default logic
can be used for planning and temporal prediction. They have considered how
chronological minimization can be implemented in Theorist.

In natural language, Mercer [Mercer, 1987; Mercer, 1990] and Csinger
[Csinger and Poole, 1989] have considered how default logic can be used to
formalise the problem of presupposition in natural language. Perrault [Per-
rault, 1987] has used default logic for a formalization of speech act theory.
Van Arragon [van Arragon, 1990] uses nested default reasoning for user mod-
elling. Dunin-Keplitz [Dunin-Keplitz, 1984] has used default reasoning for
resolution of anaphora. Saint-Dizier has used default logic for formalizing
generalized quantifiers [Saint-Dizier, 1988].

11 Variations

One of the features of a reasoning formalism is how naturally it permits vari-
ations. Here we only give pointers to these variations, rather than describing
them in detail.

Lukaszewicz [Lukaszewicz, 1988] gives an alternate definition of extension
for Reiter’s defaults. In Lukaszewicz’s system there is always an extension for
a set of defaults. Extensions are defined in such a manner that justifications
cannot be denied by “subsequent” defaults. Justifications of defaults have to
be consistent with the justifications and consequents of all of the defaults in
the extension. In a similar idea, Poole [Poole, 1988a] has proposed the idea
of constraints that have to be consistent with default conclusions, but are
not part of the default conclusions.

In response to examples such as examples 3.3, 3.4, 3.6 and 3.8 in section
3 (first raised in [Poole, 1988a], [Makinson, 1988] and [Poole, 1989c]), there
have been some recent proposals to allow for case analysis in preconditions
and justifications of defaults [Brewka, 1991; Delgrande and Jackson, 1991;
Gelfond et al., 1991; Schaub, 1991]. There is a close relationship amongst
these proposals as well as to the use of constraints in [Poole, 1988a).

Poole [Poole, 1985] discusses how a preference for explanations can be
used for the automatic preference of more specific defaults over more gen-
eral defaults. Goebel and Goodwin [Goebel and Goodwin, 1987] show how
“chronological minimization” (preferring defaults that occur earlier in time),
as explanation preference, can be used for temporal reasoning. Neufeld and
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Poole [Neufeld and Poole, 1987] discuss one way to incorporate probability
into default reasoning.

Jones and Poole [Jones and Poole, 1985] and Brewka [Brewka, 1989b]
show, in quite different ways, how we can do default reasoning in hierarchies
of defaults.

Goodwin and Goebel [Goodwin and Goebel, 1988] show how we often

want to produce conditional explanations in planning applications.
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