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Abstract. In this paper I give a brief overview of recent work on uncertainty inAI,
and relate it to logical representations. Bayesian decision theory and logic are both
normative frameworks for reasoning that emphasize different aspects of intelligent
reasoning. Belief networks (Bayesian networks) are representations of indepen-
dence that form the basis for understanding much of the recent work on reasoning
under uncertainty, evidential and causal reasoning, decision analysis, dynamical
systems, optimal control, reinforcement learning and Bayesian learning. The inde-
pendent choice logic provides a bridge between logical representations and belief
networks that lets us understand these other representations and their relationship
to logic and shows how they can extended to first-order rule-based representa-
tions. This paper discusses what the representations of uncertainty can bring to
the computational logic community and what the computational logic community
can bring to those studying reasoning under uncertainty.

“It is remarkable that a science which began with the consideration of games
of chance should become the most important object of human knowledge...The
most important questions of life are, for the most part, really only problems of
probability.”

“The theory of probabilities is at bottom nothing but common sense reduced
to calculus.”

— Pierre Simon de Laplace (1794–1827)

1 Introduction

There are good normative arguments for using logic to represent knowledge (Nilsson,
1991; Poole, Mackworth & Goebel, 1998). These arguments are usually based on reason-
ing with symbols with an explicit denotation, allowing relations amongst individuals,
and permitting quantification over individuals. This is often translated as needing (at
least) the first-order predicate calculus. Unfortunately, the first-order predicate calculus
has very primitive mechanisms for handling uncertainty, namely, the use of disjunction
and existential quantification.



There are also good normative reasons for using Bayesian decision theory for de-
cision making under uncertainty (Von Neumann & Morgenstern, 1953; Savage, 1972).
These arguments can be intuitively interpreted as seeing decision making as a form of
gambling, and that probability and utility are the appropriate calculi for gambling. These
arguments lead to the assignment of a single probability to a proposition; thus leading to
the notion of probability of a measure of subjective belief. The probability of a propo-
sition for an agent is a measure of the agent’s belief in the truth of the proposition. This
measure of belief is a function of what the agent knows. Probability theory can be seen
as the study of how knowledge affects belief.

It is important to note that decision theory has nothing to say about representations.
Adopting decision theory doesn’t mean adopting any particular representation. While
there are some representations that can be directly extracted from the theory, such as
the explicit reasoning over the state space or the use of decision trees, these become in-
tractable as the problem domains become large; it is like theorem proving by enumerating
the interpretations. Adopting logic doesn’t mean you have to enumerate interpretations
or generate the semantic tree (Chang & Lee, 1973), nor does adopting decision theory
mean you have to use analogous representations.

First, I will talk about knowledge representation, in which tradition this representa-
tion is built. Then I will introduce belief networks. The ICL will then be presented from
three alternate viewpoints: as a semantic framework in terms of choices made by agents,
in terms of first-order belief networks (Bayesian networks) and as a framework for a
abduction and argumentation. I then discuss work on diagnosis, dynamical systems and
learning from the uncertainty point of view and relate it to logical representations.

1.1 Knowledge Representation

In order to understand where this work fits in, Figure 1 (from (Poole et al., 1998)) shows
the knowledge representation (KR) view. Given a problem we want a solution to, we
find a representation for the problem; using this representation we can do computation
to find an answer that can then be interpreted as a solution to the problem.
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Fig. 1.Knowledge Representation Framework

When considering representations, there are a number of often competing consider-
ations:



– The representation should be rich enough to be able to contain enough information
to actually solve the problem.

– The representation should be as close to the problem as possible. We want the
representation to be as “natural” as possible, so that a small changes in the problem
result in small changes in the representation.

– We want the representation to be amenable to efficient computation. This does not
necessarily mean that the representation needs to be efficient in the worst case
(because that usually invalidates the first consideration). Rather we would like to be
able to exploit features of the problem for computational gain. This means that the
representation must be capable of expressing those features of the problem that can
be exploited computationally.

– We want to be able to learn the representation from data and from past experiences
in solving similar problems.

Belief networks (or Bayesian networks) (Pearl, 1988) are of interest because they provide
a language that is represents the sort of knowledge a person may have about a domain,
because they are rich enough for many applications, because features of the represen-
tation can be exploited for computational gain, and because they can be learned from
data. Unfortunately, the underlying logic of belief networks is propositional. We cannot
have relations amongst individuals as we can, for example, in the first-order predicate
calculus.

2 Belief Networks

Probability specifies a semantic construction and not a representation of knowledge. A
belief network (Pearl, 1988) is a way to represent probabilistic knowledge. The idea is
to represent a domain in terms of random variables and to explicitly model the inter-
dependence of the random variables in terms of a graph. This is useful when a random
variable only depends on a few other random variables, as occurs in many domains.
Belief networks form the foundation from which much of the work on uncertainty in AI
is built.

Suppose we decide to represent some domain using the random variables1 x1, . . . , xn.
Let’s totally order the variables. It is straightforward to prove:

P(x1, . . . , xn)

= P(x1)P (x2|x1)P (x3|x1, x2) · · ·P(xn|x1 · · · xn−1)

=
n∏

i=1

P(xi |x1, . . . , xi−1)

For each variablexi suppose there is some minimal setπxi
⊆ {x1, . . . , xi−1} such that

P(xi |x1, . . . , xi−1) = P(xi |πxi
)

1 Or in terms of propositions. A proposition is a random variable with two possible valuestrue
andfalse(these are called Boolean random variables). In examples, I will often writex = true

asx andx = f alse as¬x.



That is, once you know the values of the variables inπxi
, knowing the values of other

predecessors ofxi in the total ordering will not change your belief inxi . The elements
of the setπxi

are known as theparents of variablexi . We sayxi is conditionally
independentof its predecessors given its parents. We can create a graph where there
is an arc from each parent of a node into that node. Such a graph, together with the
conditional probabilities forP(xi |πxi

) for each variablexi is known as abelief network
or aBayesian network(Pearl, 1988; Jensen, 1996).

Example 1.An example belief network is given in Figure 2. The parents ofprojec-
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Fig. 2.A belief network for an overhead projector (we discuss the node in bold)

tor_lamp_onarepower_in_projectorand lamp_works. Note that this graph does not
specify howpower_in_projectordepends onprojector_lamp_onand lamp_works. It
does, however, specify thatpower_in_projectoris independent ofpower_in_building,
alan_reading_bookand the other non-descendent given these parents. Separately we
need a specification of how each variable depends on its parents.

There are a few important points to notice about a Bayesian network:

– By construction, the graph defining a Bayesian network is acyclic.
– Different total orderings of the variables can result in different Bayesian networks

for the same underlying distribution.
– The size of a conditional probability table forP(xi |πxi

) is exponential in the number
of parents ofxi .



Typically we try to build belief networks so that the total ordering results in few par-
ents and a sparse graph. Belief networks can be constructed taking into account just
local information, the information that has to be specified is reasonably intuitive, and
there are many domains that have concise representations as belief networks. There
are algorithms that can exploit the sparseness of the graph for computational gain
(Lauritzen & Spiegelhalter, 1988; Dechter, 1996; Zhang & Poole, 1996), exploit the
skewness of distributions (Poole, 1996a), use the structure for stochastic simulation
(Henrion, 1988; Pearl, 1987; Dagum & Luby, 1997) or exploit special features of the
conditional probabilities (Zhang & Poole, 1996; Poole, 1997b; Jordan, Ghahramani,
Jaakkola & Saul, 1997). They can be learned from data (Heckerman, 1995).

Notice that there is nothingcausalabout the definition of a belief network. However,
there have been much work on relating belief networks and causality (Pearl, 1999; Pearl,
2000). There are a number of good reasons for this:

– If the direct clauses of a variable are its parents, one would expect that causation
would follow the independence of belief networks. Thus if you wanted to represent
causal knowledge a belief network would be appropriate.

– There is a conjecture that representing knowledge causally (with direct causes as
parents) results in a sparser network that is more stable to changing contexts. This
seems to be born out by experience of many people in building these networks.

– A causal network also lets us predict the effect of an intervention: what happens of
we change the value of a variable. This is important when we want an agent to affect
the value of a variable (e.g., to decide whether to smoke).

However, it must be emphasised that a belief network can represent non-causal relation-
ships as well.

3 The Independent Choice Logic

The independent choice logic (ICL) is a knowledge representation that can be seen in a
number of different ways (see Figure 3):

– It is a way to add Bayesian probability to the predicate logic. In particular we want
to have all uncertainty to be handled by probabilities (or for decision problems, as
choices of various agents). So we start with logic programs, which can be seen as
predicate logic with no uncertainty (no disjunctive assertions), and have independent
choices that have associated probability distributions.A logic program specifies what
follows from the choices made.

– It is a way to lift Bayesian networks into a first-order language. In particular a
Bayesian network can be seen as a deterministic system with “noise” (independent
stochastic) inputs (Pearl, 1999; Pearl, 2000). In the ICL, the deterministic system
is modelled as a logic program. Thus we write the conditional probabilities in rule
form. The noise inputs are given in terms of independent choices.

– It is a sound way to have probabilities over assumptions. Explaining observations
means that we use abduction; we find the explanations (set of hypotheses) that
imply the observations, and from these we make predictions. This reasoning is
sound probabilistic inference in the ICL.
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Fig. 3. ICL Influences

The ICL started off as Probabilistic HornAbduction (Poole, 1991a; Poole, 1991b; Poole,
1993a; Poole, 1993b) (the first three had a slightly different language). The independent
choice logic extends probabilistic Horn abduction in allowing for multiple agents making
choices (Poole, 1997a) (where nature is a special agent who makes choices probabilis-
tically) and in allowing negation as failure in the logic (Poole, 2000a).

3.1 The Language

In this section we give the language and the semantics of the ICL. This is simplified
slightly; the general ICL allows for choices by various agents (Poole, 1997b) which lets
us model decisions in a decision-theoretic (single agent) or game-theoretic (multiple
agents) situation.

We assume that we have atomic formulae as in a normal logical language (Lloyd,
1987). We use the Prolog convention of having variables in upper case, and predicate
symbol and function symbols in lower case.

A clauseis either an atom or is of the form

h ← a1 ∧ · · · ∧ ak

whereh is an atom and eachai is an atom or the negation of an atom.
A logic program is a set of clauses. We assume the logic program is acyclic2 (Apt

& Bezem, 1991).
An atomic choiceis an atom that does not unify with the head of any clause. An

alternative is a set of atomic choices. Achoice spaceis a set of alternatives such that
an atomic choice can be in at most one alternative.
2 All recursions for variable-free queries eventually halt.We disallow programs such as{a ← ¬a}

and{a ← ¬b, b ← ¬a}. We want to ensure that there is a unique model for each logic program.



An ICL theory consists of

F the facts, an acyclic logic program
C a choice space

P0 a probability distribution over the alternatives inC. That isP0 : ∪C → [0, 1] such
that

∀χ ∈ C
∑

α∈χ

P0(α) = 1

Example 2.Here is a meaningless example:

C = {{c1, c2, c3}, {b1, b2}}
F = {f ← c1 ∧ b1, f ← c3 ∧ b2,

d ← c1, d ← ¬c2 ∧ b1,

e ← f, e ← ¬d}
P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2
P0(b1) = 0.9 P0(b2) = 0.1

3.2 Semantics

The semantics is defined in terms of possible worlds. Here we present the semantics for
the case of a finite choice space, where there are only finitely many possible worlds. The
more general case is considered in other places (Poole, 1997b; Poole, 2000a).

A total choice for choice spaceC is a selection of exactly one atomic choice from
each alternative inC.

There is apossible world for each total choice. What istrue in a possible world
is defined by the atoms chosen by the total choice together with the logic program. In
particular an atom is true if it in in the (unique) stable model3 of the total choice together
with the logic program (Poole, 2000a). The measure of a possible world is the product
of the valuesP0(α) for eachα selected by the total choice.

The probability of a proposition is the sum of the measures of the possible worlds in
which the proposition is true.

Example 3.In the ICL theory of example 2, there are six possible worlds:

w1 |= c1 b1 f d e P (w1) = 0.45
w2 |= c2 b1 ¬f ¬d e P (w2) = 0.27
w3 |= c3 b1 ¬f d ¬e P (w3) = 0.18
w4 |= c1 b2 ¬f d ¬e P (w4) = 0.05
w5 |= c2 b2 ¬f ¬d e P (w5) = 0.03
w6 |= c3 b2 f ¬d e P (w6) = 0.02

The probability of any proposition can be computed by summing the measures of the
worlds in which the proposition is true. For example

P(e) = 0.45+ 0.27+ 0.03+ 0.02 = 0.77

3 The acyclicity of the logic program and the restriction that atomic choices don’t unify with the
head of clauses guarantees there there is a single model for each possible world.



3.3 ICL and Belief networks

It may seem that, with independent alternatives, that the ICL is restricted in what it can
represent. This is not the case; in particular it can represent anything the is representable
by a Belief network. Moreover the translation is local, and (if all variables and alternatives
are binary) there is the same number of alternatives as there are free parameters in the
belief network.

Example 4.If we had Boolean variablesa, b andc, whereb andc are the parents ofa,
we will have rules such as

a ← b ∧ ¬c ∧ aifbnc

whereaifbncis an atomic choice whereP0(aifbnc) has the same value as the conditional
probability asP(a|b, ¬c) in the belief network. This generalizes to arbitrary discrete
belief networks in the analogous way (Poole, 1993b).

This representation lets us naturally specify context-specific independence (Boutilier,
Friedman, Goldszmidt & Koller, 1996; Poole, 1997b), where, for example,a may be
independent ofc whenb is false but be dependent whenb is true. Context-specific inde-
pendence is often specified in terms of a tree for each variable; the tree has probabilities
at the leaves and parents of the variable on the internal nodes. It is straightforward to
translate these into the ICL.

Example 5.In the belief network of Figure 2, we can axiomatize howpower_in_projector
depends onprojector_lamp_onandlamp_works:

projector_lamp_on ←
power_in_projector ∧
lamp_works ∧
projector_working_ok.

projector_lamp_on ←
power_in_projector ∧
¬lamp_works ∧
working_with_f aulty_lamp.

We also have the alternatives:

{projector_working_ok, projector_broken}
{working_with_f aulty_lamp, not_working_with_f aulty_lamp}

The ICL lets us see the relationship of Belief networks to logical languages. The
logic programs are standard logic programs (they can even have negation as failure
(Poole, 2000a)). Viewing them as logic programs gives us a natural way to lift belief
networks to the first-order case (i.e., with logical variables universally quantified over
individuals).



3.4 ICL, Abduction and Logical Argumentation

The ICL can also be seen as a language for abduction. In particular, if all of the atomic
choices are assumable (they are abducibles or possible hypotheses). Anexplanation4

for g is a consistent set of assumables that impliesg.A set of atomic choices is consistent
if there is at most one element in any alternative.

An explanation can be seen as an argument based on explicit assumptions about what
is true. Each of these explanations has an associated probability obtained by computing
the product of the probabilities of the atomic choices that make up the explanation. The
probability ofg can be computed by summing5 the probabilities of the explanations for
g (Poole, 1993b; Poole, 2000a).

If we want to do evidential reasoning and observeobs, we compute

P(g|obs) = P(g ∧ obs)

P (obs)

In terms of explanations, we can first find the explanations forobs (which would give us
P(obs)) and then try to extend these explanations to also explaing (this will give usP(g∧
obs)). Intuitively, we explain all of the observations and see what these explanations also
predict. This is similar to proposals in the nonmonotonic reasoning community to mix
abduction and default reasoning (Poole, 1989; Shanahan, 1989; Poole, 1990).

We can also bound the prior and posterior probabilities by generating only a few of
the most plausible explanations (either top-down (Poole, 1993a) or bottom-up (Poole,
1996b)). Thus we can use inference to the best explanations to do sound (approximate)
probabilistic reasoning.

3.5 Reasoning in the ICL

To do reasoning in the ICL we can either do

– variable elimination (marginalization) to simplify the model (Poole, 1997b). We
sum out variables to reduce the detail of the representation. This is similar to partial
evaluation in logic programs.

– Generating some of the explanations to bound the probabilities (Poole, 1993a; Poole,
1996a). If we generated all of the explanations we could compute the probabilities
exactly, but there are combinatorially many explanations.

– Stochastic simulation; generating the needed atomic choices stochastically, and es-
timating the probabilities by counting the resulting proportions.

4 We need to extend the definition of explanation to account for negation as failure. The expla-
nation of¬a are the duals of the explanations ofa (Poole, 2000a).

5 This assumes the bodies for the rules for each atoma are mutually exclusive. This is a common
practice in logic programming and the rules obtained from the translation from belief networks
have this property. We need to do something a bit more sophisticated if the rules are not disjoint
(Poole, 2000a).



4 Relating Work in Other Fields

4.1 Reasoning about actions

In this section I will review some of the work about actions outside of the logic camp.
See Shanahan (1997) for a review of the logicist approach to representing actions; I do
not have the space to review this here.

Much work in AI, dynamical systems, stochastic control, and operations research is
built on the motion of a Markov process (see for example (Luenberger, 1979; Bertsekas,
1995; Boutilier, Dean & Hanks, 1999)), where there is a state variable that depends on
the previous state and the action being carried out. In general, we don’t observe the state,
but only get to observe what our sensors provide. When an agent makes a decision the
only information available is the history of observations and actions.

One case with no control is the hidden Markov model (HMM); this can be seen as a
simple belief network as in Figure 4. In this figurest is random variable representing the

S0 S1 S2 St

O0 O1 O2 Ot

...

Fig. 4.Belief network corresponding to a hidden Markov model

state at time6 t andot is a random variable representing the observation at timet . The
probabilities we need to specify areP(s0), P(st |st−1) andP(ot |st ). These represent the
initial state, the system dynamics and the observation model respectively.

We can use the general mechanism to convert this to a logic program. The result
looks like:

state(S, T ) ← T > 0 ∧ state(S1, T − 1) ∧ trans(S1, S)

where there is an alternative for each statesi

{trans(si, s0), trans(si, s1), . . . , trans(si, sn)}
where the states ares0, s1, . . . , sn. We only need to include those transitions that have
a non-zero probability. Omitting the zero probabilities can be exploited in sparse matrix
computations.
6 This is either fixed time steps or is based on the times of interesting events. In the latter case

T + 1 is the time of the next interesting event (or the state that results from the action). There
is also a large body of work on continuous time dynamical systems that I won’t review.



We don’t want to specify each state by name, but would rather describe the properties
of states. That is we describe the states in terms of random variables (or propositions). In
the probabilistic literature this is known as dynamic belief networks (or dynamic Bayes
networks) (Dean & Kanazawa, 1989; Dean & Wellman, 1991). In a dynamic belief
network we divide the state into a number of random variables and then specify how
each variable depends on values at the same7 and previous times.

In the ICL, the direct translation results in rules like:

a(T ) ← a1(T − 1) ∧ . . . ∧ ak(T − 1) ∧ b1(T ) ∧ . . . br (T ) ∧ n(T )

where theai andbi are literal fluents andn(T ) is an atomic choice (there is a different
atomic choice for each combinations of theai andbj ).

When we have a control problem, (such as in Markov decision processes) we have
to choose the actions based on the information available (the history of actions of and
observations). In this case, using the same representation as we used for conditional
probabilities, a policy in the ICL is represented as a logic program that specifies what
an agent will do based on its history (Poole, 1997a). We can also use conditional plans
to represent policies (Poole, 1998; Bacchus, Halpern & Levesque, 1999).

There are many dimensions on which to compare different representations for dy-
namics:

– deterministic versus stochastic dynamics; whether an action from a state results in
a known state or results in a distribution over states.

– goal versus values; whether we can only say that some goal needs to be achieved,
or we give a cardinal rating of all of the resulting states, (for example rating how
bad a possible undesirable state is).

– finite stage versus infinite stage; whether we plan for a specific given number of
future actions or for an indeterminate number of future actions.

– fully observable versus partial observability; whether the agent gets to observe (or
knows) the actual state it is in when it has to decide what to do, or whether it has
only limited and noisy sensors of the state.

– explicit state space versus states described in terms of properties (using random
variables or propositions); whether there is a single state variable or the state is
factored into a number of random variables.

– zeroth-order versus first-order; whether we can quantify over individuals or not.
– given dynamics and rewards versus dynamics and rewards acquired through inter-

action with the world; whether we must learn through trial and error the dynamics
and the value or whether the dynamics is provided.

– single agent versus multiple agents
– perfect rationality versus bounded rationality; whether we can assume that the agent

has unbounded computation or whether it must act within time and space limitations
(Simon, 1996; Horvitz, 1989; Russell & Subramanian, 1995; Russell, 1997).

7 We need to be able to specify how variables depend on other variables at the same time to
account for correlated action effects. This could also be achieved by inventing new variables
(that represent a common cause that makes two effects correlated). Of course, we still must
maintain the acyclicity of the resulting belief network.



For each of these choices, the left-hand alternative is simpler than the right-hand one.
We know how to build agents that only have a few of the right-hand sides. However,
when we have more of the right-hand sides, we know that the problems are much more
computationally difficult.

For example, when there stochastic dynamics, values, infinite stages and partially ob-
servable, we get partially observable Markov decision processes (POMDPs) (Cassandra,
Kaelbling & Littman, 1994). Even the most efficient exact algorithms known (Cassandra,
Littman & Zhang, 1997) can only work for a few hundred states8. Interestingly, these
exact algorithms are essentially backward conditional planning algorithms, where mul-
tiple conditional plans are maintained. The difficult problem is to determine which plans
stochastically dominate others (see Poole, 1998, for a review).

Similarly, where there are multiple agents, determining locally optimal solutions
for each agent (Nash equilibria) is exponentially more difficult than the corresponding
single-agent case (Koller & Megiddo, 1992).

(a) (b) (c) (d) (e) (f)
CP DTP IDs RL HMM GT

Stochastic dynamics ✔ ✔ ✔ ✔ ✔

Values ✔ ✔ ✔ ✔

infinite stage ✔ ✔ ✔ ✔

partially observable ✔ ✔ ✔

random variables ✔ ✔ ✔ ✔ ✔

first-order ✔

dynamics not given ✔ ✔

multiple agents ✔

bounded rationality

– (a) classical planning (e.g., Strips (Fikes & Nilsson, 1971) or the Situation Calculus (McCarthy
& Hayes, 1969))

– (b) decision-theoretic planning (Boutilier, Dearden & Goldszmidt, 1995; Boutilier et al., 1999)
– (c) influence diagrams (Howard & Matheson, 1984)
– (d) reinforcement learning (Sutton & Barto, 1998; Kaelbling, Littman & Moore, 1996; Bert-

sekas & Tsitsiklis, 1996)
– (e) hidden Markov models (Jurafsky & Martin, 2000; Rabiner, 1989)
– (f) game theory: the extensive form of a game (Von Neumann & Morgenstern, 1953; Or-

deshook, 1986; Myerson, 1991; Fudenberg & Tirole, 1992)

Fig. 5.Comparing Models of Dynamics

Figure 5 shows various representations and how they differ on the dimensions above.
What is important to notice is that they share the same underlying notion of dynamics
and the translation into belief networks (and ICL) is like that of the HMMs).

8 There are excellent online resources on POMDPs by Tony Cassandra
(http://www.cs.brown.edu/research/ai/pomdp/index.html ) and Michael
Littman (http://www.cs.duke.edu/˜mlittman/topics/pomdp-page.html ).



Reinforcement learning (Sutton & Barto, 1998; Kaelbling et al., 1996; Bertsekas &
Tsitsiklis, 1996) is an interesting case of the general paradigm of understanding dynamics
under uncertainty. While there has been much work with states described in terms of
properties, virtually all of this learns the the value function (or the state transition function
and the reward function) in terms of neural networks. There is one notable exception;
Chapman & Kaelbling (1991) use decision trees (which can easily be converted into
rules) to represent value functions (Q-functions).

One other interesting comparison is with hidden Markov models that have been used
extensively in speech recognition (Rabiner, 1989; Jurafsky & Martin, 2000). In other
work, Hobbs, Stickel, Appelt & Martin (1993) use a language similar to the independent
choice logic (but with “costs” that are added; these costs can be seen a log-probabilities)
to represent a way to combine syntax, semantic and pragmatic preferences into a coherent
framework. The ICL show a way how these two, seemingly unrelated pieces of work
can be combined into a coherent framework.

4.2 Model-based diagnosis

There is a large body of work on model-based diagnosis using belief networks and
decision analysis tools based on these such as influence diagrams (Henrion, Breese
& Horvitz, 1991). Essentially we write a forward simulation of the system, making
explicit the possible faults and the uncertainty involved in the working of normal and
faulty components. In terms of the ICL, we write a logic program that implies the outputs
from the inputs, the status of the components and the stochastic mechanisms. There is a
strong relationship between the search methods for belief networks and the traditional
methods for model-based diagnosis (Poole, 1996a).

4.3 Bayesian Leaning

There is a large body of work on learning and belief networks. This means either:

– Using the belief network as a representation for the problem of Bayesian learning
of models (Buntine, 1994). In Bayesian learning, we want the posterior distribution
of hypotheses (models) given the data. To handle multiple cases, Buntine uses the
notion of plates that corresponds to the use of logical variables in the ICL (Poole,
2000b). Poole (2000b) shows the tight integration of abduction and induction. These
papers use belief networks to learn various representations including decision trees
and neural networks, as well us unsupervised learning.

– Learning the structure and probabilities of belief networks (Heckerman, 1995). We
can use Bayesian learning or other learning techniques to learn belief networks. One
of the most successful methods is to learn a decision tree for each variable given
its predecessors in a total ordering (Friedman & Goldszmidt, 1996; Chickering,
Heckerman & Meek, 1997), and then search over different total orderings. It is
straightforward to translate from these decision trees to the ICL.

The ICL can also be compared to the stochastic logic programs of Muggleton (1995).
Stochastic logic programs allow for annotated logic programs of the form:

p : h ← a1 ∧ . . . ∧ ak



This can be seen as similar to the ICL rule:

h ← a1 ∧ . . . ∧ ak ∧ np

wherenp is an atomic choice withP0(np) = p. The definition of stochastic logic
programs has problems with programs such as:

1.0 : a ← b ∧ c

0.5 : b

1.0 : c ← b

Intuitively a should have probability one half (as it is true wheneverb is true, andb is
true half the time). Stochastic logic programs double-countb, which is used in the proof
for a twice. The use of atomic choices lets us not double count, as we keep track of the
assumptions used (and only use them once in the set of assumptions for a goal). The
semantics of the ICL is simpler than the semantics for stochastic logic programs; all of
the clauses in the ICL have their standard meaning.

The ICL has the potential to form the basis for an integration of inductive logic
programming (Muggleton & De Raedt, 1994; Quinlan & Cameron-Jones, 1995; Mug-
gleton, 1995) with reinforcement learning and leaning of belief networks.

5 Conclusion

This paper has provided a too-brief sketch of work in uncertainty in AI. I aimed to show
that belief networks provide a way to understand much of the current work in stochastic
dynamical systems, diagnosis and learning under uncertainty. The ICL provides a bridge
between that work and the work in the logic community. Eventually we will need to
build systems with first-order representations and reason about uncertainty, dynamics
and learning. Hopefully I have provided some idea of how this could be achieved. There
is still much work to be done.
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