in, Working Notes AAAI Spring Symposium 1995 --- Extending Theories of Actions: Formal Theory and Practical ApplicationsStanford,]

Sensing and Acting in the Independent Choice Logic*
David Poolef

Department of Computer Science
University of British Columbia
2366 Main Mall
Vancouver, B.C., Canada V6T 174
poole@cs.ubc.ca
http://www.cs.ubc.ca/spider/poole

Abstract

This paper shows how agents that sense and
act can be represented within the independent
choice logic, a semantic framework that al-
lows for independent choices (made by various
agents including nature) and a logic program
that gives the consequence of choices. This rep-
resentation can be used as a (runnable) speci-
fication for agents that observe the world and
have memory, as well as a modelling tool for
dynamic environments with uncertainty. The
general idea is that an agent is a (not necessar-
ily deterministic) function from sensor readings
(observations) and remembered values into ac-
tions. Actions and observations are both rep-
resented as a propositions and a logic program
specifies how actions follow from experiences.
The state of an agent is what needs to be re-
membered about the past so that actions are a
function of current observations and the state.
There is a clean semantics, the overall frame-

2. The output of the ‘planner’ should be suitable for

actually controlling a robot. It has to be more than
a sequence of steps (or even an if-then-else program)
that is the output of traditional planners. Here we
consider reactive agents that have internal state.

. It should have a clean semantics, both for the object

level plan and for the representation of the problem
(that includes uncertainty).

. The same language should be able to be used for

modelling the agent and for modelling the environ-
ment. It should not be infeasible to run the agent
specification to implement a situated agent (that
gets sensor readings from the world and acts in the
world). We should be also able to run the model of
the agent in its environment to simulate a system.

. The representation should not force too many un-

realistic assumptions about the environment (e.g.,
that effects can all be anticipated; that nature is
deterministic or that only a single action can occur
at any time).

work it 1s representationally powerful, and rea-
sonably efficient code can be generated from
the agent specifications, even if generating op-
timal agents (which is well defined for the case

In this paper we outline a semantic framework for deci-
sion theoretic planning, and a representation for sensors
and actions. The highlights of this approach are:

1. We have a representation for multi-agent reason-

1

of a single agent in an uncertain environment)
is computationally infeasible in general.

Introduction

This paper is part of a project to combine logic with
probability /decision /game theory to design agents that
can act effectively in a real world (whether it be a phys-
ical world, a diagnostic/treatment world or a softworld).
The design goals of this work are:

1. To provide a decision theoretic framework that can

be used to build agents (robots) that can be shown
to be optimal (as in (Russell et al., 1993)) — or at
least to have a specification of the expected utility
of an agent.

*This work was supported by Institute for Robotics and
Intelligent Systems, Project IC-7 and Natural Sciences and
Engineering Research Council of Canada Operating Grant

OGPOO44121.

tScholar, Canadian Institute for Advanced Research

ing under uncertainty that consists of independent
choices that are made by various agents, and an
acyclic logic program that gives the consequences of
the choices. This is an extension of the strategic
form of a game (Von Neumann and Morgenstern,
1953), and allows for conditional plans (strategies).
We can write logic programs to model the world.
This is an extension of probabilistic Horn abduc-
tion (Poole, 1993) to include multiple agents and
negation as failure.

. Within the logic, actions are represented as proposi-

tions indexed by time that means that the agents are
doing that action at that time. Nature is regarded
as a special agent — this lets us model exogenous
random events, noisy sensors, etc.

. Agents adopt strategies. A strategy is a function

from sensor values (observations) and remembered
values into actions. These functions are represented
as acyclic logic programs.

in, Working Notes AAAI Spring Symposium 1995 --- Extending Theories of Actions: Formal Theory and Practical ApplicationsStanford,]

4. We can write logic programs (with negation as fail-
ure) to model agents and the environments. It may
seems as though this is too weak a logic, as we can-
not represent disjunction. Disjunction is a form
i1s uncertainty — we have a very powerful mecha-
nism for modelling uncertainty using the indepen-
dent choices that renders disjunction unnecessary
(this is a hypothesis we are testing anyway).

5. This framework is a representation for decision
theory that generalises Bayesian networks(Poole,
1993), influence diagrams and the strategic (nor-
mal) form of a game (and so also the extensive form
of a game).

6. While we can use either discrete time or continuous
time, in this paper we use a discrete representation
of time. See (Poole, 1995b) for a description of con-
tinuous time in this framework where the output can
be a continuous function of the input (and remem-
bered events). (Poole, 1995b) shows how ‘events’
can derived from continuous time, how remembered
events can be used to record ‘intentions’, and how
accumulation (integration over time) and differenti-
ation over time can be modelled.

7. In order to highlight conditional actions, and infor-
mation producing actions (which are not different
sorts of actions here), we show how to represent the
widget example of (Draper et al., 1994).

1.1 Agents

An agent is something that acts in the world. An agent
can, for example, be a person, a robot, a worm, the
wind, gravity, a lamp, etc. Purposive agents have
preferences, they prefer some states of the world to other
states, and act in order to (try to) achieve worlds they
prefer. The non-purposive agents are grouped together
and called “nature”. Whether an agent is purposive or
not 1s a modelling assumption that may or may not be
appropriate. For example, for some applications it may
be appropriate to model a dog as purposive, and for
others 1t may suffice to model a dog as non-purposive.

A policy or strategy is a specification of what an
agent will do under various contingencies. A plan is a
policy that includes either time or the stage of the plan
as part of the contingencies conditioned on.

Note that beliefs, desires, intentions, commitments
etc., (Shoham, 1993) are not essential to agenthood. It
may, however, be the case that agents with beliefs, de-
sires, intentions etc (that, for example, communicate by
way of speech acts (Shoham, 1993)) perform better (by
some measure) than those that do not. We don’t want
to define agenthood to exclude the possibility of formu-
lating and testing this empirical claim.

Our aim is to provide a representation in which we
can define perception, actions and preferences for agents.
This can be used for to define a policy, the notion of
when one policy is better (according to that agent’s pref-
erences) and so what is an optimal policy for an agent.
Once we have defined what an ‘optimal’ agent 1s, we can
use exact and approximation algorithms to build policies
for agents to use in the world.

Agents can have sensors, (possibly limited) memory,
computational capabilities and effectors. Agents reason
and act in time.

An agent should react to the world — it has to condi-
tion its actions on what is received by its sensors. These
sensors may or may not reflect what is true in the world®.
We have to be able to consider sensors that may be noisy,
unreliable or broken and we also need to consider ambi-
guity (about the world) from sensors. We condition on
what we know, even if it is very weak such as “sensor
a appears to be outputting value v»”. Similarly actua-
tors may be noisy, unreliable, slow or broken. What we
can control is what message (command) we send to our
actuators.

In this paper we provide a representation that can
be used to model the world, agents (including available
sensors and actuators) and goals (in terms of the agents
utilities in different situations) that will allow us to de-
sign optimal (or approximately optimal) agents.

1.2 Game Theory

Game theory (Von Neumann and Morgenstern, 1953;
Fudenberg and Tirole, 1992) is a general theory of multi-
agent reasoning under uncertainty. The general idea is
that there is a set of players (agents) who make moves
(take actions) based on what they observe. The agents
each try to do as well as they can (maximize their util-
ity).

Game theory 1s intended to be a general theory of
economic behaviour (Von Neumann and Morgenstern,
1953) that is a generalization of decision theory. The
use of the term ‘game’ here is much richer than typi-
cally studied in AT text books for ‘parlour games’ such
as chess. These could be described as deterministic
(there are no chance moves by nature), perfect informa-
tion (each player knows the previous moves of the other
players), zero-sum (one player can only win by making
the other player lose), two-person games. Fach of these
assumptions can be lifted (Von Neumann and Morgen-
stern, 1953).

A game is a sequence of moves taken sequentially or
concurrently by a finite set of agents. Nature is usually
treated as a special agent. There are two main (essen-
tially equivalent in power (Fudenberg and Tirole, 1992))
representations of games, namely the extensive form and
the normalized (Von Neumann and Morgenstern, 1953)
(or strategic (Fudenberg and Tirole, 1992)) form of a
game.

The extensive form of a game is in terms of a tree;
each node belongs to an agent, and the arcs from a node
correspond to all of the possible moves (actions) of that
agent. A branch from the root to a leaf corresponds to
a (possible) play of the game. Information availability is
represented in terms of information sets which are sets
of nodes that an agent cannot distinguish. The aim is
for each agent to choose a move (action) at each of the
information sets.

1Of course if there is no correlation between what a sensor
reading tells us and what is true in the world, and the utility
depends on what is true in the world (as it usually does),
then we may as well ignore the sensor.

in, Working Notes AAAI Spring Symposium 1995 --- Extending Theories of Actions: Formal Theory and Practical ApplicationsStanford,]

In the strategic form of a game each player adopts a
strategy, where a strategy is “a plan ... which specifies
what choices [an agent] will make in every possible sit-
uation” (Von Neumann and Morgenstern, 1953, p. 79).
This is represented as a function from information avail-
able to the agent’s move.

The framework below should be seen as a representa-
tion based on the normalized (Von Neumann and Mor-
genstern, 1953) (or strategic (Fudenberg and Tirole,
1992)) form of a game, with a possible world correspond-
ing to a complete play of a game. We have added a logic
program to give the consequences of the play. This al-
lows us to use a logical representation for the world and
for agents.

Where there are agents with competing interests, the
best strategy is to often a randomized strategy. In these
cases the agent decides to randomly choose actions based
on some probability distribution.

2 The Independent Choice Logic

The independent Choice Logic (ICL) specifies a way to
build possible worlds. Possible worlds are built from
choosing propositions from sets of independent choice
sets, and then extending these ‘total choices’ with a logic
program.

There are two languages we will use: Lp of facts
which for this paper we consider to be the language of
acyclic logic programs that can include negation as fail-
ure (Apt and Bezem, 1991), and the language Lg of
queries which we take to be arbitrary propositional for-
mulae (the propositions corresponding to ground formu-
lae of the language Lr). We write f ¢ where f € Lp
and ¢ € Lg if ¢ is true in the unique stable model of
f or, equivalently, if ¢ follows from Clark’s completion
of ¢ (the uniqueness of the stable model and the equiva-
lence for acyclic programs are proved in (Apt and Bezem,
1991)). See (Poole, 1995a) for a detailed analysis of nega-
tion as failure in this framework, and for an abductive
characterisation of the logic.

An independent choice logic theory is a tuple

(C,F, A, controller, Py) where

C called the choice space, is a set of sets of ground
atomic formulae, such that if {y1, x2} C C and x; #
X2 then x1 N x2 = {}. An element of C is called an
alternative. An element of an alternative is called
an atomic choice. An atomic choice can appear in
at most one alternative.

F called the facts, 1s an acyclic logic program such that
no atomic choice unifies with the head of any rule.

A is a finite set of agents. There is a distinguished agent
0 called ‘nature’.

controller is a function from C — A. If controller(x) =
a then agent a is said to control alternative y. If a
is an agent the alternatives controlled by a is given
by controls(a) = {x € C : controller(x) = a}.

Py is a function Ucontrols(0) — [0, 1] such that Vy €
C 1f.c0ntroller().<). = 0 then Zaex Py(e) = 1. I.e.,
Py is a probability measure over the alternatives
controlled by nature.

The independent choice logic specifies a particular se-
mantic construction. The semantics 1s defined in terms
of possible worlds. There is a possible world for each
selection of one element from each alternative. What
follows from these atoms together with F are true in
this possible world.

Definition 2.1 Given independent choice framework
theory (C, F), a selector function is a mapping 7 : ¢ —
UC such that r(x) € x for all x € C. The range of se-
lector function 7, written R(7) is the set {r(x) : x € C}.

Definition 2.2 For each selector function 7 there is a
possible world w;. If f is a formula in language Lg,
and w; is a possible world, we write w, = f (read f 1s

true in possible world w;) if FUR(7) |~ f.

The uniqueness of the model follows from the acyclic-
ity of the logic program (Apt and Bezem, 1991).

An independent choice logic theory is utility com-
plete if for each agent a € A such that a # 0 and for
each possible world w, there is a unique number u such
that w, = wutility(a,u). The logic program will have
rules for utility(a, u).

Definition 2.3 If (C, F, A, controller, Py) is a ICL the-
ory and a € A, a # 0, then a strategy for agent a is a
function Py : Ucontrols(a) — [0, 1] such that

Vx if controller(x) = a then Z Py(a) = 1.
aex

In other words, strategy P, is a probability measure over
the alternatives controlled by agent a.

Definition 2.4 A composite choice on x C C is a set
consisting of exactly one element (atomic choice) from
each y € k.

Definition 2.5 A pure strategy for agent a is a
strategy for agent a such that the range of P, is {0,1}.
In other words, P, selects a member of each element of
controls(a) to have probability 1, and the other mem-
bers thus have probability 0. A pure strategy for agent
a thus corresponds to a composite choice on controls(a).

Definition 2.6 A strategy is a function from agents
(other than nature) into strategies for the agents. If o
is a strategy and a € A, a # 0 then o(a) is a strategy
for agent a. We write o(a) as PJ to emphasise that o

induces a probability over the alternatives controlled by
agent a. [We also define PJ = Py.]

Definition 2.7 If ICL theory (C, F, A, controller, Py) is
utility complete, and o 1s a strategy, then the expected
utility for agent a # 0, under strategy o is

g(a, o) = Zp(a,) x u(r, a)

(summing over all selector functions 7) where
u(r,a) = uwif wy = utility(a, u)
(this is well defined as the theory is utility complete),

and
p(O’, T) = H Pcaontroller(x)(T(X))'
XEC
p(o,) is the probability of world 7 under strategy o,
and u(r, a) is the utility of world w, for agent a.

in, Working Notes AAAI Spring Symposium 1995 --- Extending Theories of Actions: Formal Theory and Practical ApplicationsStanford,]

Given this semantic structure we can mirror the defi-
nitions of game theory (Von Neumann and Morgenstern,
1953; Fudenberg and Tirole, 1992). For example, we can
define the Nash equilibrium and Pareto optimal as fol-
lows:

Definition 2.8 Given utility complete ICL theory
(C, F, A, controller, Py), strategy o is a Nash Equilib-
rium if no agent can increase its utility by unilaterally
deviating from ¢. Formally, ¢ is a Nash equilibrium
if for all agents a € A, if o, is a strategy such that
oa(a’) = o(a’) for all @’ # a then ¢(a,0,) < £(a,0). o4
here is a strategy that is the same as strategy o for all
agents other than a.

One of the great results of game theory is that ev-
ery finite game has at least one Nash equilibrium (we
may need non-pure (randomised) strategies) (Fudenberg
and Tirole, 1992). For a single agent in an uncertain
environment, a Nash equilibrium is an optimal decision
theoretic strategy.

Definition 2.9 Given utility complete ICL theory
(C,F, A, controller, Py), strategy o is Pareto optimal
if no agent can do better without some other agents
doing worse. Formally, o is Pareto optimal if for all
strategies o', if there is some agent a € A such that
£(a,c’) > e(a, o) there is some agent a’ € A such that
g(d, o) < e(d, o).

Other definitions from game theory can also be given
in the logic of this paper. What we are adding to game
theory is the use of a logic program to model the agents
and the environment, and to provide a way to express
independence (in the same way that probabilistic Horn
abduction (Poole, 1993) can be used to represent the
independence assumptions of Bayesian networks (Pearl,

1988)).

3 Agent Specification Module

So far we have modelled agents by naming them and
specifying which choices they control. It helps to do more
than this; we want to provide some structure that makes
it easy to model actual agents. Not every logic program
and set of assignments of agents to choices will make
sense. Agents have input and outputs; they have some
values that they cannot see, and some internal values
that only they can see. We model them by giving a logic
program that gives the relationship between the inputs
and outputs. This logic program can use the internal
values and sense values but cannot use those values the
agent has no access to (i.e., cannot sense or otherwise
determine).

Agents specification modules will not give any extra
power to the formal framework set up. It will, however,
allow us to modularise our knowledge, and use common
computer science techniques like information hiding, ab-
stract data types and modular program design.

A fluent is a function that depends on time. Each
fluent has an associated set called the range of the flu-
ent. A propositional fluent is a fluent with range
{true, false}. Syntactically a fluent it a term in our lan-

guage.

Definition 3.1 An agent specification module for
agent A is a tuple {(Ca, Ia,Oa, Fa) where

Ca 1s the set of alternatives controlled by A. When A
is nature we also include Py as part of the agent
specification module.

14 is a set of fluents, called the inputs, that the agent
can sense. Atom sense(F'l,Val,T) is true if input
fluent F'l has value Val at time 7.

O 18 a set of propositional fluents called the outputs
that specify actuator settings or action attempts at
various times. Atom do(Act, T) is true if the agent
is attempting to ‘do’” action Act at time 7.

Fa 1s an acyclic logic program. Fy specifies how the
outputs are implied by the inputs, the local control-
lables (Ca), and other (local) relations as interme-
diaries. Often 1t is useful to distinguish the propo-
sitions whose value will be referred to in the future
(these form the ‘state’ of the agent).

Nature’s module will be the dual of other modules.
The outputs of nature’s module will be the input of other
agent’s module, and the input of nature’s module will be
the output of other agents.

For each agent we axiomatise how 1t can “react” to the
environment, perhaps depending on some remembered
values.

The sensors that we consider are passive sensors that
(at each time) receive a value from the environment. We
also do not distinguish between information-producing
actions and actions that ‘change the world” — there is
only one type of action. The nature module will specify
the consequence of doing an action.

We can model ‘information-producing actions’ by hav-
ing actions whose effect to make a sensor have a value
that correlates with some value in the world. For exam-
ple, the information producing action ‘look” may affect
what is sensed by the eyes; if the agent doesn’t ‘look’
they will sense the value ‘nothing’, if they do look (in a
certain direction) they may sense what is in that direc-
tion. Of course the ‘look’ action may be unreliable (the
lights may be out), and it may take an arbitrary amount
of time to achieve its effect (as in a medical test).

What is also important is that the agent can only con-
dition on its sense values or on values derived from these
— the agent cannot condition on what it has no access
to (e.g., the true state of the world). Similarly, the agent
can only control what message is sent to its actuators —
what it actually does may be quite different.

N.B. we do not distinguish between the ‘environment’
and the ‘plant’. These are grouped together as the ‘en-
vironment’ here.

4 The Widget Example

In this section we present the example of (Draper et al.,
1994). The example is that of a robot that must pro-
cess a widget. Its goal is to have the widget painted
and processed and then to notify its supervisor that it
is done. Processing consists of rejecting flawed widgets
and shipping unflawed widgets. The robot can inspect
the widget to see it 1t is blemished, which initially corre-
lates with the widget being flawed. Painting the widget

in, Working Notes AAAI Spring Symposium 1995 --- Extending Theories of Actions: Formal Theory and Practical ApplicationsStanford,]

usually results in the widget being painted but removes
blemishes.

AGENT MODULE We first represent the agent.
The agent has one sensor for detecting blemishes. It
has 6 actions (one of which is possible at any time).

Input: sense(blemished, Val, T)

Output: do(reject, T), do(ship,T), do(notify,T),
do(paint, T, do(inspect, T, do(nothing,T).

To handle this example, the agent needs to be able
to remember whether it believes the widget is ok or bad.
The simplest way to do this is to let it believe the widget
is OK until it senses that it is bad?:

bel(ok,0) — true.
bel(ok, T + 1) —
bel(ok,T) A
~sense(blemish,bad, T + 1).
For many of the actions the agent can just choose
to do them. The agent can also choose to re-
ject or ship depending on the sensor value: for each
time T, {do(notify,T), do(paint,T), do(inspect,T),
do(nothing, T), rejectORship(T)} € Ca.
The way to have actions depend on sense values 1s
to write rules that imply what the agent will do under
various contingencies. The agent can decide whether to

reject or ship a widget (or do one of the other actions)
depending on its belief about the widget:

do(reject, T) —
rejectORship(T) A
rejectifOK(T) A
bel(ok,T).
do(reject, T) —
rejectORship(T) A
rejectif BAD(T) A
~bel(ok,T).
do(ship, T) —
rejectORship(T) A
shipifOK(T) A
bel(ok,T).
do(ship, T) —
rejectORship(T) A
shipif BAD(T) A
~bel(ok,T).
What to do under the various sensing situations is
represented as alternatives controlled by the robot:
VT A{rejectifOK(T), shipifOK(T)} € Ca, and
{rejectif BAD(T), shipif BAD(T)} € Ca4.

2Many other representations are possible. What is impor-
tant is that the agent must actually remember some proposi-
tion to be able to use it in the future (it must be able to recall
whether it thinks the widget is OK or bad, so this informa-
tion can be used after it has painted the widget). There are
other axiomatisations where what it remembers is a decision
to be made (and so can be optimised over).

NATURE MODULE: To represent nature’s mod-
ule, we axiomatise how the agents actions affect the
world, how the world affects the senses of the agent.

The widget being painted persists in the world. Paint-
ing the widget can result in the widget being painted
(with probability 0.95). We assume that whether paint-
ing works does not depend on the time (a second paint-
ing will not make the widget more likely to be painted).
Painting only works if it has not already been shipped or
rejected — this disallows the plan to ship or reject then
paint, which is a simpler plan as the agent doesn’t need
to remember anything to execute it.

painted(T + 1) —
do(paint, T') A
paint_works A
~shipped(T) A
~rejected(T).

painted(T + 1) —
painted(T).

Painting succeeds 95% of the time when it can:
{paint_works, paint_fails} € Cy
Py(paint_works) = 0.95, Py(paint_fails) = 0.05
The widget is blemished if and only if it is flawed and

not painted:
blemished(T) —
Fflawed(T) A
~painted(T).
Whether the widget is flawed or not persists:
flawed(T + 1) — flawed(T).
The widget is processed if it is rejected and flawed or
shipped and not flawed:
processed(T) —
rejected(T) A
flawed(T).
processed(T) —
shipped(T) A
~flawed(T).
The widget is shipped if the robot ships it, and being
shipped persists:
shipped(T) — do(ship,T).
shipped(T + 1) — shipped(T).
The widget 1s rejected if the robot rejects it, and being
rejected persists:
rejected(T) — do(reject,T).
rejected(T + 1) — rejected(T).
We axiomatise how what the robot senses is affected by
the robot’s actions and the world:
sense(blemish,bad, T 4+ 1) —
do(inspect, T) A
blemished(T) A
~falsepos(T).

in, Working Notes AAAI Spring Symposium 1995 --- Extending Theories of Actions: Formal Theory and Practical ApplicationsStanford,]

The sensor gives a false positive with probability 0.1.
Unlike whether painting succeeds, we specify here that
the probability of a false positive at each time is inde-
pendent of what happens at other times:

{falsepos(T), not falsepos(T)} € Co
Py(falsepos(T)) = 0.1, Py(not falsepos(T)) = 0.9

30% of widgets are initially flawed:

{[flawed(0), un flawed(0)} € Co
Py(flawed(0)) = 0.3, Py(un flawed(0)) = 0.7

Finally we specify how the utility is dependent on the
world and actions of the agent. The utility is one if the
widget is painted and processed the first time the agent
notifies, and is zero otherwise.

utility(robot, 1) —

do(notify, T) A

~notified_before(T) A

painted(T) A

processed(T).
utility(robot, 0) — ~utility(robot, 1).
notified_be fore(T) — Ty < T Ado(notify, Ty).

One policy for our agent is: {do(inspect,0), do(paint, 1),
rejectORship(2), shipifOK(2), rejectif BAD(2),
do(notify,3)}. This has expected utility 0.925.

This policy is not optimal. Policy: {do(inspect,0),
do(inspect, 1), do(paint,2), rejectO Rship(3),
shipifOK(3), rejectif BAD(3), do(notify,4)} has ex-
pected utility 0.94715. There is no optimal policy for
this example (it is not a finite game so Nash’s theorem
does not apply here), we can add more inspects to keep
raising the expected utility.

The policy without inspecting, {do(paint,0),
rejectORship(l), shipifOK (1), do(notify,2)} has ex-
pected utility 0.665.

Of course we can always define the utility so that the
agent is penalised for taking too much time, e.g., by
making the head of the first utility clause:
utility(robot,1 —T/10) — - --
and something appropriate for the second clause.

Under the revised utility, the first policy above is op-
timal, with expected utility 0.625.

5 Conclusion

This paper has only scratched the surface of the issues.

The current action representation (and its continuous
counterpart (Poole, 1995b)) is simple yet surprisingly
general. For example, it can represent concurrent actions
(see (Poole and Kanazawa, 1994)), and can represent
examples in the range from traditional planning domains
such as the blocks worlds (Poole and Kanazawa, 1994)
to continuous domains like controlling a nonholonomic
magze travelling vehicle (Poole, 1995b).

We are developing this framework to include discov-
ering what to remember (making remembering a propo-
sition a choice that has a cost associated with it), and
discovering what to condition on (not hard wiring the

last two as was done here). Allowing what to condition
on as a choice means expanding the presentation slightly
to let a policy for an agent be an implication from sensor
values and remembered values to actions.

Conspicuous by it absence in this paper is a discussion
on computation. This can mean three things: (1) build-
ing a situated agent that embodies a policy (2) simulat-
ing a policy and environment or (3) finding an optimal
policy. Only the second has been implemented for the
example here. In implementing an agent, we can exploit
the fact that all of the queries will refer to a progres-
sion of time (see (Poole, 1995b)). There is much more
to be done here. Various parts of this project have been
implemented. See my WWW site for details.

References

[1] K. R. Apt and M. Bezem. Acyclic programs. New
Generation Computing, 9(3-4):335-363, 1991.

[2] D. Draper, S. Hanks, and D. Weld. Probabilistic
planning with information gathering and contingent
execution. In Proceedings of the Second Interna-
tional Conference on AI Planning Systems, pages

31-36, Menlo Park, CA, 1994.

[3] D. Fudenberg and J. Tirole. Game Theory. MIT
Press, Cambridge Massachusetts, 1992.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA, 1988.

[5] D. Poole and K. Kanazawa. A decision-theoretic
abductive basis for planning. In S. Hanks,
editor, AAAI Spring Symposium on Decision-
Theoretic Planning, ftp://ftp.cs.ubc.ca/ftp/local/
poole/papers/dtp.ps.gz, March 1994.

[6] D. Poole. Probabilistic Horn abduction and
Bayesian networks. Artificial Intelligence, 64(1):81—
129, 1993.

[7] D. Poole. Abducing through negation as fail-

ure: Stable models within the independent choice
logic. Technical Report, Department of Computer
Science, UBC, ftp://ftp.cs.ubc.ca/ftp/local/poole/
papers/abnaf.ps.gz, January 1995.

[8] D. Poole. Logic programming for robot con-
trol. Technical Report, Department of Computer
Science, UBC, ftp://ftp.cs.ubc.ca/ftp/local/poole/
papers/lprc.ps.gz, 1995.

[9] S. J. Russell, D. Subramanian, and R. Parr. Prov-
ably bounded optimal agents. In Proc. 15th Inter-
national Joint Conf. on Artificial Intelligence, pages
338-344, Chambéry, France, August 1993.

[10] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1):51-92, 1993.

[11] J. Von Neumann and O. Morgenstern. Theory of
Games and Economic Bahavior. Princeton Univer-
sity Press, Princeton, third edition, 1953.

