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Abstract

One of the key challenges in building intelligent agents is closing the
gap between logical and statistical Al, so that we can have rich representa-
tions including objects, relations and uncertainty, that we can effectively
learn and carry out inference with. Over the last 25 years there has been
a considerable body of research into combinations of predicate logic and
probability forming what has become known as statistical relational artifi-
cial intelligence (StaR-AI). We overview the foundations of the area, give
some research problems, proposed solutions, outstanding issues, and clear
up some misconceptions that have arisen. We discuss representations, se-
mantics, inference, learning and applications, and provide references to
the literature.

1 Introduction

Over the last 25 years there has been a considerable body of research into
combining first-order logic and probability, evolving into what has come to be
called statistical relational AI, which can be defined as:

the study and design of intelligent agents with imperfect sensors that
act in noisy worlds composed of objects, where there can be complex
relations among the objects.

This paper aims at reviewing the foundations of the area, motivating the issues,
justifying some choices that have been made and giving some open problems.
Laying bare the foundations will hopefully inspire others to join us in exploring
the frontiers and the yet unexplored areas.

One of the barriers to understanding this area is that it builds from multi-
ple traditions, which often use the same vocabulary to mean different things.
Common terms such as “variable”, “domain”, “relation”, and “parameter” have



Example  Author Thread Length ~ WhereRead  UserAction
€1 known new long home skips
e unknown new short work reads
es unknown  follow_up long work skips
e4 known follow_up  long home skips

@)

Individual Property Value

joe likes resort_14
joe dislikes resort_35
resort_14 type resort
resort_14 near beach_18
beach_18 type beach
beach_18 covered_in  ws

ws type sand

ws color white

0

Figure 1: Two examples for datasets one can take advantage of to capture
characteristics of interest of their unknown underlying probability distribution.

come to have accepted meanings in mathematics, computing, logic and prob-
ability, but their meanings in each of these areas is different enough to cause
confusion.

Both predicate logic (e.g., the first-order predicate calculus) and Bayesian
probability can be seen as extending the propositional logic, one by adding re-
lations, individuals and quantified variables, the other by allowing for measures
over possible worlds and conditional queries. Relational probabilistic models',
which form the basis of statistical relational AI, can be seen as combinations of
probability and predicate calculus to allow for individuals and relations as well
as probabilities.

To understand the needs for such a combination, consider learning from
the two datasets in Figure 1 (taken from [106]). Dataset (a) is the sort used
in traditional supervised and unsupervised machine learning and data mining.
Standard textbook supervised learning algorithms can learn a decision tree, a
neural network, or a support vector machine to predict UserAction. A belief
network learning algorithm can be used to learn a representation of the distri-
bution over all of the features. Dataset (b), from which we may want to predict
what Joe likes, is different. Many of the values in the table are meaningless

1Here we use this term in the broad sense, meaning any models that combine relations and
probabilities.



names that can’t be used directly in supervised learning. Instead, it is the re-
lationship among the individuals in the world that provides the generalizations
from which to learn. For example, we may want to learn that Joe likes resorts
that are near sandy beaches. Learning from such datasets has been studied
under the umbrella of inductive logic programming [84, 74, 18] mainly because
logic programs provide a good representation for the generalizations required
to make predictions. Specifically, inductive logic programming (ILP) is a re-
search field at the intersection of machine learning and logic programming. It
forms a formal framework for relational learning and has introduced practical
algorithms for inductively learning relational descriptions (in the form of logic
programs) from examples and background knowledge. ILP is one of the foun-
dations of StaR-Al, as it provides a toolbox of techniques for structure learning
in relational domains.

One confusion about the area stems from the term “relational”; after all most
existing datasets are, or can be, stored in relational databases. The techniques
of relational probabilistic models are applicable to cases where the values in the
database are names of individuals, and it is the properties of the individuals and
the relationship between the individuals that are modeled. It is sometimes also
called multi-relational learning, as it is the interrelations that are important.
This is a misnomer because, as can be seen in Figure 1 (b), it is not multiple
relations that cause problems (and provide opportunities to exploit structure),
as a single triple relation can store any relational database (in a so-called triple-
store).

The term statistical relational Al comes from not only having probabilities
and relations, but that the models are derived from data and prior knowledge.

2 Motivation

Artificial intelligence (AI) is the study of computational agents that act intel-
ligently [106, 115]. The basic argument for probability as a foundation of Al
is that agents that act under uncertainty are gambling, and probability is the
calculus of gambling in that agents who don’t use probability will lose to those
that do use it [130]. While there are a number of interpretations of proba-
bility, the most suitable is a Bayesian or subjective view of probability: our
agents do not encounter generic events, but have to make decisions in particular
circumstances, and only have access to their percepts and their beliefs.

In probability theory, possible worlds are described in terms of so-called
random variables (although they are neither random nor variable). A random
variable has a value in every world. We can either define random variables
in terms of worlds or define worlds in terms of random variables. A random
variable having a particular value is a proposition. Probability is defined in
terms of a non-negative measure over sets of possible worlds that follow some
very intuitive axioms.

In Bayesian probability, we make explicit assumptions and the conclusions
are logical consequences of the specified knowledge and assumptions. One par-



ticular explicit assumption is the assumption of conditional independence. A
Bayesian network [93] is an acyclic directed graphical model of probabilistic de-
pendence where the nodes are random variables. A Bayesian network encapsu-
lates the independence: a variable is conditionally independent of other variables
that are not its descendants in the graph given its parents in the graph. This
has turned out to be a very useful assumption in practice. Undirected graphical
models [93] encapsulate the assumption that a variable is independent of other
variables given its neighbours.

These motivations for probability (and similar motivations for utility) do not
depend on non-relational representations. We also want to be able to reason
about individuals? and relationships among individuals. In statistical relational
AT, we want to condition on properties of individuals and relations among indi-
viduals and make probabilistic predictions about properties and relationships.
We often want to build the models before we know which individuals exist in a
domain, so that the models can be applied to diverse populations.

The key property that is exploited is that of exchangeability: those individ-
uals about which we have the same information should be treated identically.
Formally, this means we can exchange the names, and still get the same proba-
bilities. This implies that before we know anything particular about any of the
individuals, they all should share their probabilistic parameters. Results from
Statistics, particularly the celebrated De Finetti’s theorem [17, 54], motivate
the forms of possible models (if we allow the population to be unbounded).

3 Representation

Statistical relational models are typically defined in terms of parameterized
random variables [101] which are often drawn in terms of plates [7]. A parame-
terized random variable corresponds to a predicate (atom) or a function symbol
in logic. It can include logical variables (which form the parameters). In the
following examples, we will write logical variables (which denote individuals) in
upper case, and constants, function and predicate symbols in lower case. We
assume that the logical variables are typed, where the domain of the type, the
set of individuals of the type, is called the population.

Parameterized random variables are best described in terms of an example.
Consider the case of diagnosing students’ performance in adding multi-digit
numbers of the form

I To
+ Y1 Yo
22 21 &

2Individuals are things. They are also called “objects”, but that terminology is often
confusing to people who have been brought up with object-oriented programming, where
objects are data structures and associated methods. For example, a person individual is a
real person and not a data structure that encapsulates information about a person. We can
be uncertain about the properties of a person, but a computer is not uncertain about its data
structures.
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Figure 2: Belief network with plates for multidigit addition
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Figure 3: Plate representation of the grades model

A student, given values for the z’s and the y’s, provides values for the z’s.
The aim is to determine whether the students have mastered addition from
observations of their performance.

Whether a student gets the correct answer for z; depends on z;, y;, the
value carried in and whether she knows addition. Whether a student gets the
correct carry depends on the previous z, y and carry, and whether she knowns
how to carry. This dependency can be seen in Figure 2. Here z(D,P) is a
parameterized random variable. There is a random variable for each digit D
and each problem P. A ground instance, such as z(ds, problemsz), is a random
variable that may represent the third digit of problem 57. Similarly, there is a z-
variable for each digit D, problem P, student S, and time 7. The plate notation
can be read as duplicating the random variable for each tuple of individual the
plate is parameterized by.

As another example, Figure 3 gives a plate representation of a model to pre-
dict the grades of students in courses. In this figure, S is a logical variable that
denotes a student and C' is a logical variable that denotes a course. Parameter-
ized random variable gr(S, C) denotes the grade of S in course C, parameterized
random variable 7(S) denotes the intelligence of student S, and d(C') represents
the difficulty of course C'. Note that this figure redundantly includes the log-
ical variables in the plates as well as arguments to the parameterized random
variables.

Such parametrized models represent their grounding, where there is an in-
stance of each random variable for each assignment of an individual to a logical
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Figure 5: Plate representation of the grades model, with shared parameters
explicit

variable. Figure 4 shows such a grounding where there are three students Sam
(s), Chris (¢) and Kim (k) and two courses (cl and ¢2).

For the plate model of Figure 3 with n students and m courses, there are nm
instance of the grade random variable, n instances of the intelligence random
variable and m instance of the difficulty random variable. Thus there are nm +
n + m random variables in the grounding.

Note the independence assumptions in this example: The intelligence of the
students are independent of each other give no observations. The difficulty of
the courses are independent of each other, given no observations. The grades
are independent given the intelligence and the difficulty. Given no observations,
the grades are dependent on each other. Given observations on grades, the intel-
ligence variables and the difficulty variables can be completely interdependent.

While we have given directed models here, the same principles also apply to
undirected models. The basic principle used by all methods is that of parameter
sharing: the instances of the parameterized random variables created by sub-
stituting constants for logical variables share the same probabilistic parameters.
The various languages differ in how to specify the conditional probabilities of
the parametrized random variables given their parents, or the other parameters
of the probabilistic model. Often in plate models [7, 52], the numerical parame-
ters are made explicit, to emphasize that the parameters do not depend on the
individuals.



Figure 5 shows the plate model of Figure 3 with the numerical parameters
pulled out. 6; specifies the shared prior probability of i(.S), 84 specifies the
prior probability of d(C), and 6, specifies the numerical parameters of the
conditional probability P(gr(S, C)|i(S), d(C)). The figure makes explicit that
these numerical parameters do not depend on the individuals.

The first relational probabilistic languages either had explicit languages for
constructing the ground network [6, 41] or defined templates for prior and con-
ditional probabilities [49] directly in term of tables, and required a combination
function (such as noisy-and or noisy-or) when the number of parents depends on
the number of individuals. Tables with combination functions turn out to be not
a very flexible representation as they cannot represent the subtleties involved in
how one random variable can depend on others.

For example, in the addition example of Figure 2, the carry for digit D,
namely ¢(D, P,S, T) depends, in part, on ¢(D — 1, P, S, T), that is, on the
carry from the previous digit. There is a special case for the first digit.

Another complex example is to determine the probability that two authors
are collaborators, which may depend on whether they have written papers in
common, or even whether they have written papers apart from each other. That
is collaborates(A;, A2) may depend on whether there is some paper P such that
author(Ay, P) and author(As, P), and a representation has to be able to specify
what happens when there is more than one paper that they are co-authors of.
It may also depend on other co-authors who may have collaborated with each
of them. Any such rules are only applicable if A7 # Ao, that is if A; and A, are
different people. Examples such as these require more sophisticated languages
than the plate models specified above.

To represent such examples, it is useful to be able to specify how the logical
variables interact, as is done in logic programs. The independent choice logic
(ICL) [99, 103] (originally called probabilistic Horn abduction [96, 98]) allows
for arbitrary (acyclic) logic programs (including negation as failure) to be used
to represent the dependency. The conditional probability parameters are repre-
sented as independent probabilistic inputs to the logic program. A logic program
that represents the above example is given in Chapter 14 of [106]. This idea also
forms the foundation for Prism [119, 120], which has concentrated on learning,
and for Problog [21], a project to build an efficient and flexible probabilistic
logic programming language.

Other languages are based on entity-relationship models [34, 47], fragments
of first-order logic [83, 58, 73], or even in terms of programming languages such
as in IBAL [95] or Church [42]. Undirected models, exemplified by Markov
logic networks (MLNs) [113], have a similar notion of parameterized random
variables, but the probabilities are represented as weights of first-order clauses.
These models also mean their grounding, but for MLNs the grounding is a
Markov network rather than a Bayesian network (see Pearl [93] for a discussion
of the relationship between Bayesian and Markov networks).

All approaches mentioned so far assume finitely many parameters to spec-
ify the prior probabilistic model. So-called nonparametric Bayesian approaches
such as NP-BLOG [8], infinite (hidden) relational models [56, 141], and rela-



tional Gaussian processes [14, 144, 143, 127] allow for infinitely many param-
eters, for example because there could be an unbounded number of classes of
individuals (or parametrized random variables with an unbounded range). As
computers can only handle finite representations, these models require some
process to specify how these parameters are generated.

4 Representational Issues

Many probabilistic relational representation languages already exists; see e.g. [19,
38, 22] for overviews. Rather than listing and describing the properties of the
various proposal, we here descrive some issues that arise in designing represen-
tation language.

4.1 Desiderata of a Representation Language

Often a good representation is a compromise between many competing objec-
tives. Some of the objectives of a representation language, include:

prediction accuracy: is it able to generalize to predict unseen examples?
Thus the representation should be able to represent the generalized knowl-
edge of the domain.

compactness: is the representation of the knowledge succinct? This is related
to prediction accuracy, as it is conjectured that a compact representation
will be best able to generalize. It is also related to introducing latent
random variables, as the reason that we introduce latent variables is to
make a model simpler.

expressivity: is it rich enough to represent the knowledge required to solve the
problems required of it? Can it deal with discrete and continuous random
variables? Can it deal with domains evolving over time?

efficient inference: can it to solve all/average/some problems efficiently? Can
it efficiently deal with latent variables?

understandability: can someone understand what has been learned?

modularity : can parts of the representation be understood or learned sepa-
rately? This has two aspects:

e the ability to conjoin models that are developed independently. If
different teams work on individual parts of a model, can these parts
easily be combined? This should be able to be done even if the teams
do not know their work will be combined and even if the teams have
developed both directed and undirected models.

e the ability to decompose a model into smaller parts for specific ap-
plications. If there is a big model, can someone take a subset of the



model and use it? Can someone take advantage of a hierarchical
decomposition into weakly interacting parts?

ability to incorporate prior knowledge: if there is domain knowledge that
has been acquired in a research community, can it be incorporated into
the model?

interoperability with data: can it learn from multiple heterogeneous data
sets? Heterogeneous can mean having different overlapping concepts, de-
rived from different contexts, at different levels of abstraction (in terms
of generality and specificity) or different levels of detail (in terms of parts
and subparts). It should also be able to incorporate causal data that
has arisen from interventions and observational data that only involved
passively observing the world.

latent factors: can it learn the relationship between random variables if the
relationship is a function of observed and unobserved (latent) characteris-
tics, potentially in addition to contextual factors? Can it even introduce
latent factors on the fly?

The promise of statistical relational AI is to automate decisions in com-
plex domains. For complex domains, there are many diverse relevant pieces of
information that cannot be ignored. For a system to be relied on for critical life-
or-death decisions or ones that rely on large economic risks, the system needs
to be able to explain or at least justify its recommendations to the people who
are legally responsible, and these recommendations need to be based on the
best available evidence (and preferably on all available evidence that is possibly
relevant). Of course, not all of the existing representations have attempted to
achieve all of these desiderata.

Sections 4.2-4.6 present some issues that have arisen in the various represen-
tations. Whether these turn out to be unimportant or whether one choice will
prevail is still an open question.

4.2 Directed versus undirected models

In a manner similar to the difference between Bayesian networks and Markov
networks [93], there are directed relational models (e.g., [99, 103, 47, 73]) and
undirected models (e.g., [131, 113, 44, 138]). The main differences between these
are:

e The probabilities of the directed models can be directly interpreted as
conditional probabilities. This means that they can be explained to users,
and can be locally learned if all of the relevant properties are observed.

e Because the probabilities can be interpreted locally, the directed repre-
sentations are modular. The probabilities can be acquired modularly, and
need not change if the model is expanded or combined with another model.



e For inference in directed models, typically only a very small part of the
grounded network needs to be used for inference. In particular, only the
ancestors of the observed and query relations need to be considered. This
has been characterized as abduction [97], where the relevant probabilities
can be extracted from proofs (in the logical sense) of the observations and
queries.

e The directed models require the structure of the conditional probabili-
ties to be acyclic. (A specification of P(A|B) and P(B|A) is typically
inconsistent, and sometimes does not specify a unique distribution.) For
relational models, this is problematic if we have conditional probabilities
of the form:

P(foo(X)|foo(Y)...)
To make this acyclic, we could totally order the individuals, and enforce
a “less than” operation. However, this means that the individuals are no
longer exchangeable. One example where this arises is if we wanted to
specify the probability that friendship is transitive:

P(friends(X,Y)|3Z friends(X, Z), friends(Z, Y))
Naive ways to incorporate such rules do not work as expected.

Undirected models, such as Markov logic networks [113], do not have a problem
with acyclicity, but the weights of the undirected models cannot directly inter-
preted as probabilities, and it is often very difficult to interpret the numbers
at all. However, as many of the applications where we may want to predict
relations have a relation on some individual depending on relations on other
individuals, the undirected models tend to be more effective for these domains.

It is an open research question to allow directed models to handle cyclic
dependencies and to allow the undirected models to be modular and explainable.

4.3 Factors and Clauses

In graphical models, the next highest level of data structure is the factor or
potential [125, 146, 33]. Factors represent functions from the domains of sets of
variables into other values (typically reals). For example, a factor on random
variables { A, B, C'} is a function from dom(A) x dom(B) x dom(C) — R, where
dom(A) is the domain of random variable 4, and R is the set of real numbers.
Factors can represent conditional probabilities, utilities, arbitrary potentials,
and the intermediate results of computation. An alternative to using an explicit
representation of full factors is to represent the value of one assignment to
variables, or to any Boolean function of assignments to values, such as using
clauses [15]; this enables local structure to be exploited including context-specific
independence and zero parameters [9, 116].

In relational representations the corresponding representation is a parame-
terized factor or parfactor [101], which is a triple

(C,V, 1)

10



where C' is a set of inequality constraints on logical variables, V is a set of
parameterized random variables and ¢ is a factor on V. Note that ¢ will be the
factor that is used for all assignments of individuals to logical variables in V. If
the factor represents a clause, the table specifies just a single number, and then
V is written as a first-order clause as for example done in MLNs.

4.4 Parametrizing Atoms

Poole [96, 98] first noticed that probabilities over atoms was adequate to repre-
sent any (conditional) probability distribution. By making these atoms assum-
able, the probability of any proposition could be computed through abduction:
determining which of these assumable atoms were needed to imply the propo-
sition. More recently, inference methods based on MLNs and model counting
[40, 134], have used probabilities on atoms to allow probabilistic inference to
be implemented by model counting. These proposed methods, although super-
ficially similar, have very different properties when combined with languages
that allow for probabilities on rules or clauses.
Suppose we want to have rules with probabilities:

a<+b:p
a$bAc:py

Both methods create atoms n; and np with P(nq) = p; and P(ng) = pa. Poole’s
method, which we will call the “independent choice” model, results in the rules:

a<—bAm
a<bAcAny

which is equivalent to:
a+bA(mVecAng)
This means its completion:
a+ (bAm VOAcAN)

The method of Gogate and Domingos [40], Van den Broeck et al. [134] (the
MLN method) would result in:

(a<b)m
(a< bAC)+ no

In the independent choice method, n; and ns can be independent.

In the MLN method, n; and ny cannot be independent as ns logically implies
n1. In the independent choice method p; and ps can be arbitrarily assigned,
whereas in the MLN method, P(ny) > P(n1). Moreover, if b has a low probabil-
ity, then ny and mp both have a high probability as they represent the material
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implication which is true whenever b is false. As such, in the MLN method, p;
and po are close to each other when b has a low probability. However, in the in-
dependent choice method, they represent conditional probabilities and can have
arbitrary probabilities. Sato [119, 120] has done extensive work on learning for
the independent choice case.

What seems to be a slight different in the reading of rules has a big effect
on the semantics. The independent choice method allows a simple semantics
in terms of independent atomic choices and a logic program that gives the
consequences of the choices [98, 99]. The semantics of Gogate and Domingos
[40], Van den Broeck et al. [134] does not assume independent atoms, but appeals
to the maximum entropy assignment, which makes it much more difficult to
interpret the numbers.

4.5 Aggregators vs Combining Rules

Suppose binary parametrized random variable a is connected to binary parametrized
random variable b(X) which contains an extra logical variable, X. In the
grounding, a is connected to an unbounded number of instances of b(X). A
directed model where b(X) is a child of a produces a naive Bayesian model in
the grounding with a separate factor for each instance. An undirected model
with a potential for ¢ and a pairwise potential for each factor, gives the same
model. In both of these models the joint probability is the product of factors.
However, for a directed model with b(X) as a parent of a, in the grounding a
has a unbounded number of parents. There are two main approaches to deal
with this “multiple-parent” problem: aggregators and combining rules. Com-
mon ways to aggregate [34, 90, 94] include logical operators such a noisy-or,
noisy-and, or ways to combine the probabilities. This requirement for aggre-
gation occurs in a directed model whenever a parent contains an extra logical
variable.

For a positive model (with no zero probabilities) the aggregation model
that corresponds to the naive Bayesian model is a logistic regression model. In
particular, suppose that the joint probability is a product of factors:

P((I, blw"abn) X Hf(av bz) X g(a)

where b; is b(k;) for some enumeration of the population of size n.
Then, writing a = true as a and a = false as —a.

_ P(a7b17"'7bn)
P(a’|b17”.,bn)_ P(avbla"'vbn)+P(_'a’7b17"'7bn)
1
~ 14+ 1/TT; fla bi) /f(=a, bi) x g(a)/g(—a)
1

14+ e~ X/ (abi)+i(a)

12



where J(a,b;) = log(f(a, b,)/f(~a,b,)) and §(a) = logg(a)/g(~a). We can
then represent f(a,b;) as wh; and g(a) as w’ (as a is fixed). In a standard
graphical model, n is fixed and it does not matter how the values of b; are
represented. However, in a relational model where n can vary, the details of the
representation affect how the model changes with n.

For example, suppose we have a logistic regression model that represents: a
is true if and only if b is true for more than 5 individuals out of a population of
10. Now consider what this model predicts when the population size is 20. If the
values of b are represented with 0 = false and 1 = true, this model will have a
true if b is true for more than 5 individuals out of a population of 20. However,
if the values of b are represented with —1 = false and 1 = true, this model will
have a true if b is true for more than 10 individuals out of a population of 20.
If the values of b are represented with 1 = false and 0 = true, this model will
have a true if b is true for more than 15 individuals out of a population of 20.
Different choices can result in arbitrary thresholds for the population.

While the dependence on population may be arbitrary when a single pop-
ulation is observed, it affects the ability of a model to predict when multiple
populations are observed. For example, suppose we want to model whether
someone is happy depends on the number of their friends that are mean to
them. One model could be that people are happy as long as they have more
than 5 friends who are not mean to them. Another model could be that people
are happy if more than half of their friends are not mean to them. A third model
could be that people are happy as long as fewer than 5 of their friends are mean
to them. These three models coincide for people with 10 friends, but make
different predictions for people with 20 friends. A particular logistic regression
model (or a naive Bayesian model) is only able to model one of the dependencies
of how predictions depend on population, and so cannot properly fit data that
does not adhere to that dependence. One way to fit various dependencies is to
always include the property 1 which has the value 1 for each individual (in the
naive Bayesian model, this needs to be observed). Another, as typically used
in Markov logic networks, is to have separate parameters for the positive and
negative cases. Each of these can model linear dependence on population.

While aggregators assume that the parents of a random variable “collec-
tively” influence the target, combining rules [50, 86, 58] take the opposite view
i.e., they assume “independence of causal influence,” (ICI) in that each parent
of a random variable influences the target independently. This is to say that,
combining rules capture the notion of causal independence [46] in directed mod-
els. In this view, multiple causes on a target variable can be decomposed into
several independent causes whose effects are combined to yield a final value.
Each parent or set of related parents produces a different value for the child
variable, all of which are combined using a deterministic or stochastic function.
Depending on how the causes are decomposed and how the effects are combined,
we can express the conditional distribution of the target variable given all the
causes as a function of the conditional distributions of the target variable given
each independent cause using a combining rule. When analyzing the difference

13



between directed vs undirected models, it is important to understand how to
represent causal independencies in undirected models. A first-step in this direc-
tion has been taken by Natarajan et al. [87] where an algorithm for converting a
directed model with combining rules to an equivalent MLN has been presented.

For a particular class of combining rules called decomposable combining rules,
it can be shown that there is an equivalent class of aggregators. Learning
in the presence of combining rules have been considered previously [50, 86]
where the EM-based algorithms use the value-based aggregation functions. At
a fairly high level, decomposable combining rules are functions that yield the
same target distribution irrespective of the order of the parents. The most
common ones used in the literature are mean, weighted mean and noisy-or
combining rules [86, 50, 58]. For these combining rules there are equivalent
aggregators. For example, mean can be represented as a stochastic choice using
an uniform distribution over the parent values, weighted mean corresponds to a
stochastic choice given the weight distribution while noisy-or has a value-based
interpretation [93] and a distribution based interpretation [86]. On the other
hand, for an arbitrary combining rule, determining an equivalent aggregator is
still an open question.

4.6 Probability-Specificity Tradeoff

It is often not clear whether highly complex but specific logical structures with
extreme probabilities (close to 0 or 1) or simpler but less-specific logical struc-
tures with arbitrary distributions form better models. In many domains such
as medical domains, using specific rules with probabilities close to 0 or 1 allows
for easy interpretation. In such cases, the more “probabilistic” a rule becomes,
the harder it is to interpret. On the other hand, from an inference perspec-
tive, algorithms based on sampling and belief propagation perform better if the
rules are not nearly deterministic. Similar to the classic “bias-variance” trade-
off in machine learning, there seems to be a probability-specificity tradeoff in
probabilistic logic methods.

If prediction accuracy were the only criterion for preference of models, whether
more specific and hence deterministic or more probabilistic models is better de-
pends on the loss function. In terms of Ockham’s razor of preferring simpler
models, it isn’t clear how to trade off the complexity of deterministic rules
with stochastic predictions, as we usually do not use the optimal information-
theoretic encoding for probabilities or for the structure.

5 Inference

Inference in probabilistic relational models refers to computing the posterior
distribution of some variables given some evidence.

A standard way to carry out inference in such models is to try to generate
and ground as few of the parameterized random variables as possible. E.g., in
the ICL, the relevant ground instances can be carried out using abduction [97].

14



Lifted Inference

Graph based Search
[39, 40, 51, 134]
Exact Approximate PreProcessing
[101, 25, 82, 65] [126, 79]
66, 11, 123, 24, 13]
Deterministic Sampling Interval
Approximation  [81, 109, 145] [23]
[128, 57, 124, 62]
[114, 88, 45, 1]

Figure 6: Classification of the current Lifted Inference Methods
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[X]=n

(a) (b) (c)

Figure 7: Lifted Inference Example. (a) Parfactor consists of two predicates a
and b. (b) The case when summing out b. All ground instances of b can be
grouped together. (c¢) The case when eliminating a. All ground instances of b
are now connected.

More recently, there has been work on lifted probabilistic inference [101,
25, 128, 82|, where the idea is to carry out probabilistic reasoning at the lifted
level, without grounding out the parameterized random variables. Instead, we
count how many of the probabilities we need, and when we need to multiply
a number of identical probabilities, we can take the probability to the power
of the number of individuals. Lifted inference turns out to be a very difficult
problem, as the possible interactions between parameterized random variables
can be very complicated. Nevertheless, there is already substantial work on
lifted inference.

A taxonomy of lifted inference methods is presented in Figure 6. At a fairly
high-level, lifted inference algorithms can be understood as being inspired by
graphical models (shown as graph based in the Figure) or by logical approaches
(shown as search based). It should be mentioned that graph vs search based
classification is orthogonal to exact vs approximate classification. But, since the
search based methods [39, 40, 51, 134] are more recent and fewer in number, we
grouped them as a separate class and focus in this section mainly on the graph
based methods. The graph based methods can be divided into ezact inference
methods (which are based on variable elimination), approzimate methods and
methods for pre-processing the data.

To understand the exact inference methods, consider a simple parfactor on
{{},{a, b(X)}, t), where the population of X has size n (see Figure 7(a)). When
summing out all instances of b(X) (as shown in Figure 7 (b)), we can note that
all of the factors in the grounding have the same value and so can be taken
to the power of n, which can be done in time logarithmic in n [101], whereas
the grounding is linear in n. This operation invented by Poole [101] was called
inversion elimination by de Salvo Braz et al. [25]. However, if we were to sum
out @ instead (as in Figure 7 (c¢)), in the resulting grounding all instances of
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Figure 8: Illustration of lifted BP algorithm. From left to right, the steps
of the lifted inference algorithm taken to compress the factor graph assuming
no evidence. The shaded/colored small circles and squares denote the groups
and signatures produced running the algorithm. On the right-hand side, the
resulting compressed factor graph is shown. On this network a modified BP
algorithm is ran.

b(X) are connected, and so there would be a factor that is of size exponential in
n. de Salvo Braz et al. [25] showed how, rather than representing the resulting
factor, we only need to the count of the number of instances of b(X) which
have a certain value, and so the subsequent elimination of 5(X) can be done in
time polynomial in n (this is linear in n if 5(X) is binary, and if b(X) has k
values, the time is O(n*~1)). Milch et al. [82] proposed counting formulae as a
representation of the intermediate lifted formulae. All of these algorithms need
to ground a population in certain circumstances.

In a distinct yet related work, Sen et al. [123] propose the idea of lifted
variable elimination where computational trees are used to group together in-
distinguishable individuals. These indistinguishable individuals are determined
by identifying shared factors (i.e., factors that compute the same function and
have the same input and output values). This idea was later extended by the
same group to approximate inference [124]. Choi et al. [13] addressed the prob-
lem of lifted inference in continuous domains. Their approach assumes that the
model consists of Gaussian potentials. Their algorithm marginalizes variables
by integrating out random variables using inversion elimination operation. If
the elimination is not possible, they consider elimination of pairwise potentials
and the marginals that are not in pairwise form are converted to pairwise form
and then eliminated.

The approximate methods can be further classified into deterministic approx-
imation methods that are based on variational methods such as belief propa-
gation, sampling based methods, and interval methods. The deterministic ap-
proximate methods group random variables and factors in to sets if they have
identical message passing computation trees [128, 57, 62]. Consider the factor
graph presented in Figure 8 with three nodes A, B and C sending identical
messages to the neighbors. As can be seen from the figure, since nodes A and C
send and receive the same message, they can be clustered together. B cannot

17



be grouped with A or C since it sends twice the same message and hence is
considered to be different from the other two. The resulting compressed graph
is shown in the end. These methods have been successfully applied to several
different problems and extended in several ways [88, 62, 45, 1].

There are sampling methods developed based on MCMC for certain for-
malisms such as MLNs [109] and BLOG [81]. Zettlemoyer et al. [145] ex-
tended particle filters to logical setting. Braz et al. [23] proposed a method
that starts from the query, propagates intervals instead of point estimates and
incrementally grounds the lifted network. Lastly, there are some methods for
pre-processing [126, 79] that reduce the network size drastically so that ground
inference can be performed efficiently on the reduced network.

The search based methods form the dual to the graph-based methods in
analogy to how variable elimination is the dynamic programming variant of
search-based recursive conditioning [16]. The method by Gogate and Domin-
gos [40] reduce the problem of lifted probabilistic inference to weighted model
counting in a lifted graph. Another recent approach to lifted inference compiles
the lifted graph into a weighted CNF and then runs weighted model counting on
the compiled network [134]. Both these approaches were developed in parallel
and have promising potential to lifted inference.

Lifted inference has come a long way since Poole’s lifted variable elimination
and is currently a very active area of research inside Statistical Relational AI
as can be evidenced by a surge in the number of algorithms and applications in
the last few years. For instance, belief propagation based methods have been
successfully applied to model counting [57], social networks [62] and content
distribution problems [62]. Nath and Domingos used an approximate version of
Lifted Belief Propagation for video segmentation [88]. Ahmadi et al. [1] applied
the lifted evidence message passing to problems such as PageRank and Kalman
Filters. In a related work, Choi et al. [12] developed Relational Gaussian Models
to model large dynamic systems and developed an exact inference for Lifted
Kalman filters. Sen et al.’s [123, 124] lifted variable elimination has been used
for efficient inference in probabilistic data bases. Other applications of lifted
inference techniques include information extraction and retrieval, semantic role
labeling, citation matching and entity resolution [81, 109, 128, 126, 114, 89, 40].
Lifted inference in continuous models have been applied to market analysis [13].

6 Learning

Consider a single relation, that records the grade for students in courses®:

3In a real dataset, each student would be identified by unique (meaningless) identifier, such
as a student number. Similarly a course would also have a unique identifier, and there would
be some way to get the information about the department, number, and term taken. In a real
database there would be much more information about each course and each student.
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Student | Course | Grade
Sam cs245 85
Chris cs222 55
Sam cs222 76
Chris cs333 65

The aim might be to predict how Sam would do on another course, say cs333.
This problem has been studied in terms of reference classes [111], where it has
been advocated to use the narrowest reference class for which there are adequate
statistics [69]. Here that might mean to use the grade of Sam, the average grade
in the course cs333 or some mix of all reference classes. Suppose that the average
grade of all students in all courses was 65, and that the average grade of Sam
was 80 and the average grade of cs333 was also 80. One might think to predict
somewhere between 65 and 80, as that is the range of the statistics available.
However, it is likely that Sam will get a higher grade than 80; after all Sam is
a well-above-average student and cs333 is an easy course?.

In the simplest case, we have a model such as in Figure 3, where all of
the relations have been observed. In such cases, parameter sharing can lead to
learning conditional probabilities by counting or by adapting supervised learning
techniques [119, 34, 61]. For example, the maximum likelihood value for the
shared parameter P(gr(S, C) = ali(S) = high, d(C) = low) could be the ratio
of counts

{(S,C):gr(S, C) = a,i(S) = high, d(C) = low}|
{(S, C) :i(S) = high, d(C) = low}| '

This produces the probability that a randomly chosen student-course pair with
a highly intelligent student and a low difficulty course, will have an “a” grade.
This will typically produce a low probability in a large data base, as most
students have not taken most courses. This might be what is wanted. If however,
we want to predict how a intelligent student would do on an easy course, we
should only consider the courses students have taken, and then the maximum
likelihood value for P(gr(S, C) = ali(S) = high,d(C) = low) would be the
ratio: (8. C) = gr(S., C) = a,i(8) = high, d(C) = low}|
(S, C) : i(S) = high, d(C) = low,3G ¢gr(S,C) = G}|

Typically, however, we don’t directly observe the difficulty of courses and the
intelligence of students. A more sophisticated way to model such predictions
is in terms of latent (hidden or unobserved) variables. For example, one could
adopt the model of Figure 3, but where i(S) and d(C) are latent variables. Of
course, when these are unobserved variables, it may not be the intelligence of
the students and the difficulty of the courses that are discovered by the learning;
a learner will discover whichever categorizations best predict the observations.
Note that inducing properties of individuals is equivalent to a (soft) clustering

41t could also be the case that the average for cs333 is high because cs333 is only taken by
the top students. We would also like the learning system to discover this.
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of the individuals. For example, if there are three values for (), assigning
a value to i(s) for each student s is equivalent to assigning s to one of three
clusters. The use of latent variables allows for much greater modelling than can
be done with reference classes [10].

Although the difficulty of the courses and the intelligence of the students are
a priori independent, they become dependent once some grades are observed.
For example, if students s and ¢ have taken a course in common (and the
difficulty of the course is not observed), i(s) and i(c) are dependent, and if ¢
and £ have also taken another course in common, all three random variables are
interdependent. Thus inference in these models quickly becomes intractable.
Since inference is a key step in learning (for computing the expected counts®)
learning such models is intractable.

Next to estimating the parameter from data, we may also select the model
structure, i.e., a set of parameterized factors from data [119, 35, 20, 67]. This can
be viewed as adapting traditional inductive logic programming (ILP) techniques
to take uncertainty explicitly into account. Whereas ILP typically employs some
0 — 1 score to evaluate hypotheses (the number of correctly covered examples),
learning probabilistic relational models employs some probabilistic score such
as (pseudo) likelihood (the likelihood of correctly covering the examples).

With this in mind, the vanilla structure learning algorithm for probabilis-
tic relational models might be sketched as a greedy hill-climbing search algo-
rithm [20, 22]. Assuming some data given, we take some initial theory Tj, say
gr,i, and d are not inter-connect by any edges, as starting point and compute
the parameters maximizing some score such as the (pseudo) likelihood. Then,
we use so-called refinement operators to compute neighbours of Ty. A refine-
ment operator takes the current theory, makes small, syntactic modifications to
it, and returns a copy of the modified theory. Whereas for Bayesian networks,
typical refinements are adding, deleting, or flipping single edges, for relational
models, we instead add or delete single literals to formulas, negate them, or in-
stantiate respectively unify variables in them. For instance we may hypothesise
that the grade gr(S, C) of student S in course C depends on the intelligence
i(.9) of the student S. This essentially corresponds to adding, deleting, or flip-
ping multiple edges in the underlying ground graphical model. In our case, we
add an edge for each student S and course C' pair. Now, if the score for one of
the neighbours, say H, is larger then the currently best theory Ty, we take H
as new current best theory 73 and iterate. The process is continued until no
further improvements in score are obtained.

Recently, there have been some advances to this vanilla learning approach,
especially in the case of Markov Logic networks. For instance, we may view a
given set of examples (a relational database) as a hypergraph. A hypergraph is a
straightforward generalization of a graph, in which an edge can link any number

5In the presence of missing data or latent factors, the maximum likelihood estimate typi-
cally cannot be written in closed form. It is a numerical optimization problem, and all well
known algorithms such as the Expectation-Maximization (EM) algorithm or gradient-based
methods involve nonlinear, iterative optimization and multiple calls to inference for computing
the expected counts.
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of nodes, rather than just two. Now, the constants appearing in an example are
the nodes and ground atoms are the hyperedges. Each hyperedge is labeled with
the predicate symbol of the corresponding ground atom. Nodes (constants) are
linked by a hyperedge if and only if they appear as arguments in the hyperedge.
Now, any path of hyperedges can be generalized into conjunctions of relational
atoms by variablizing their arguments. Mihalkova and Mooney [78] as well as
Kok and Domingos [68] proposed to use relational path finding [112] for learning
Markov logic networks. Each path is turned into a set of conjunctions of atoms
for which we estimate the weights.

Another recent advance is triggered by the insight that finding many rough
rules of thumb of how to change probabilistic models locally can be a lot easier
than finding a single, highly accurate model. For relational dependency net-
works, for example, one can represent the conditional probability distribution
associated with each predicate as a weighted sum of regression models grown in
a stage-wise optimization using gradient boosting [85]. This functional gradient
approach has also successfully been used to train conditional random fields for
labeling relational sequences [44] and to learn relational policies [60]. The ben-
efits of a boosted learning approach are manifold. First, being a nonparametric
approach the number of parameters grows with the number of training episodes.
In turn, interactions among random variables are introduced only as needed, so
that the potentially large search space is not explicitly considered. Second, such
an algorithm is fast and straightforward to implement. Existing off-the-shelf
regression learners can be used to deal with propositional, continuous, and rela-
tional domains in a unified way. Third, it learns the structure and parameters
simultaneously, which is an attractive feature as learning probabilistic relational
models is computationally quite expensive.

We may also take a quite different path to learning. Whereas we can find
the most likely model given the data [119, 35] using for example the vannila
structure learning approach sketched above, we may also take a Bayesian per-
spective and average over all models. From a Bayesian point of view, learning
is just a case of inference: we condition on all of the observations (all of the
data), and determine the posterior distribution over some hypotheses or any
query of interest. Starting from the work of Buntine [7], there has been con-
siderable work in using relational models for Bayesian learning [52]. This work
uses parameterized random variables (or the equivalent plates) and the prob-
abilistic parameters are real-valued random variables (perhaps parameterized).
Dealing with real-valued variables requires sophisticated reasoning techniques
often in terms of MCMC and stochastic processes. Although these methods
use relational probabilistic models for learning, the representations learned are
typically not relational probabilistic models.

What is important about learning is that we want to learn general theories
that can be learned before the agent know the individuals, and so before the
agent knows the random variables.

Statistical relational models have been used for estimating the result size of
complex database queries [37], for clustering gene expression data [122], and for
discovering cellular processes from gene expression data [121]. The have also
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been used for understanding tuberculosis epidemiology [36]. Probabilistic re-
lational trees have discovered publication patterns in high-energy physics [77].
They have also been used to learn to rank brokers with respect to the probability
that they would commit a serious violation of securities regulations in the near
future [90]. Relational Markov networks have been used for semantic labeling
of 3D scan data [2]. They have also been used to compactly represent object
maps [76] and to estimate trajectories of people [75]. Relational hidden Markov
models have been used for protein fold recognition [59]. Markov logic networks
have been proven to be successful for joint unsupervised coreference resolution
and unsupervised semantic parsing using Markov logic networks [107, 108]. Non-
parametric relational models have been used for analysing social networks [140],
for classification [14], link prediction [143] and for learning to rank search re-
sults [63, 139]. Most exciting, non-parametric relational models that perform
probabilistic inference over hierarchies of flexibly structured representations can
address some of the deepest questions about the nature and origins of human
thought, see [132] and references in there.

7 Actions

There is also a large body of work on relational representations of actions under
uncertainty. The initial work in this area was on representations, in terms of
the event calculus [99] or the situation calculus [100, 3]°. Representing actions
in uncertain domains is challenging because to plan, an agent needs to be con-
cerned, not only about its current uncertainty and its percepts, but also about
what information will be available for future decisions. These models combined
perception, action and utility to form first-order variants of fully-observable and
partially-observable Markov decision processes.

Later work has concentrated on how to do planning with such representations
either for the fully observable case [5, 117, 136] or the partially observable case
[137, 118]. The promise of being able to carry out lifted inference much more effi-
ciently is slowly being realized. In essence, symbolic dynamic programming — a
generalization of the dynamic programming technique for solving propositional
Markov decision processes — exploits the symbolic structure in the solution
of relational and first-order logical Markov decision processes through a lifted
version of dynamic programming. It constructs a minimal logical partition of
the state space required to make all necessary value distinctions.

Consider for instance an agent acting in a simple variant of the BoxWorld
problem [142]. There are several cities such as london, paris etc., trucks truck,
trucks etc., and boxes box;, boxs etc. The agent can load a box onto a truck

e load(Box : b, Truck : t, City : c):

SThese two papers are interesting because they make the opposite design decisions on
almost all of the design choices. For example, whether an agent knowns what situation it is
in, and whether a situation implies what is true: we can’t have both for a non-omniscient
agent.

22



— Success Probability: if (BozIn(b, ¢) A TruckIn(t, ¢)) then .9 else 0
— Add Effects on Success: {BoxOn(b,t)}
— Delete Effects on Success: {BozIn(b, c)}

or unload it and can drive a truck from one city to another. Only when a
particular box, say box bozx;, is in a particular city, say paris, the agent receives
a positive reward.

e Reward:
— if (BoxzIn(b, paris) then 10 else 0

The agent’s task is now to find a policy for action selection in each relational
situation that maximizes its reward over the long term. In our example, the
agent may figure out the following. To get box b to paris, the agent drives a
truck to the city of b, loads box; on the truck, drives the truck to paris, and
finally unloads the box box; in paris. This is achieved through the operations of
first-order decision-theoretic regression and symbolic maximization. While the
details and implementations of these operations are depending on the relational
MDP framework used, see e.g. [5, 117, 136], and hence are beyond the scope
of the present paper, one should note that the operations are exactly the lifted
versions of the traditional dynamic programming solution to Markov decision
processes. In our running example, applying them to the 0-stages-to-go value
function, i.e., the reward function given previously, yields the following 1- and
2-stages-to-go value functions in the BOXWORLD domain (in case notiation as
used by [117]; —=“ indicating the conjunction of the negation of all higher value
partitions):

3b.BozIn(b, paris) :19.0
vCase! = —“A3b, t. TruckIn(t, paris) A BozOn(b,t) : 9.0
-« : 0.0
3b.BozIn(b, paris) :27.1
vCase? — —“A3b, t. TruckIn(t, paris) A BoxOn(b,t) : 17.1
=“A3b, ¢, t.BozOn(b, t) A TruckIn(t,c) : 8.1
¢ : 0.0

After sufficient iterations, the t-stages-to-go value function converges. The key
features to note are the state and action abstraction in the value and policy
representation that are afforded by the first-order specification and solution of
the problem. That is, this solution does not refer to any specific set of do-
main objects, such as City = {paris, berlin, london}, but rather it provides a
solution for all possible domain object instantiations. And while classical dy-
namic programming techniques could never solve these problems for large do-
main instantiations (since they would have to enumerate all states and actions),
a domain-independent lifted solution to this particular problem is quite simple
due to the power of state and action abstraction.

23



Since the basic symbolic dynamic programming approach, a variety of exact
algorithms have been introduced to solve MDPs with relational and first-order
structure. First-order value iteration [48, 55] and the relational Bellman al-
gorithm [64] are value iteration algorithms for solving relational MDPs. In
addition, first-order decision diagrams have been introduced to compactly rep-
resent case statements and to permit efficient application of symbolic dynamic
programming operations to solve relational MDPs via value iteration and pol-
icy iteration [136]. All of these algorithms have some form of guarantee on
convergence to the (e-)optimal value function or policy. Furthermore, a class of
linear-value approximation algorithms have been introduced to approximate the
value function as a linear combination of weighted basis functions. First-order
approximate linear programming [117] directly approximates the relational value
function using a linear program. Other heuristic solutions for instance induces
rule-based policies from sampled experience in small-domain instantiations of
relational MDPs and generalizes these policies to larger domains [31]. In a sim-
ilar vein, Gretton and Thiebaux [43] used the action regression operator in
the situation calculus to provide the first-order hypothesis space for an induc-
tive policy learning algorithm. One can also turn the relational MDP into a
structured dynamic Bayesian network representation and predict the effects of
action sequences using approximate inference and beliefs over world states [71].
Recently, Lang and Toussaint [70] and Joshi et al. [53] have shown that success-
ful planning typically involves only a small subset of relevant objects and have
shown how to make use of this fact to speed up symbolic dynamic programming
significantly.

Solvers for relational MDPs have been successfully applied in decision-theoretic
planning domains such as BlocksWorld, BoxWorld, ZenoWorld, Elevators, Drive,
PitchCatch and Schedule comparing well to or even outperforming proposi-
tional counterparts. Related techniques have been used to solve path planning
problems within robotics and instances of real-time strategy games, Tetris, and
Digger.

Finally, there is also work on relational reinforcement learning, see [129, 135]
for overviews, where an agent learns what to do before knowing what individ-
uals will be encountered, and so before it knows what random variables exist.
As an example, consider the idea of having household robots, which just need
to be taken out of their shipping boxes, turned on, and then do some cleaning
work. This ”"robot-out-of-the-box” has inspired research in robotics as well as in
machine learning and artificial intelligence. Without a compact knowledge rep-
resentation that supports abstraction by and unification of logical placeholders,
and in turn generalization of previous experiences to the current state and poten-
tial future states, however, it seems to be difficult — if not hopeless — to explore
one’s home in reasonable time. There are simply too many objects a household
robot may deal with such as doors, plates, boxes and water-taps. To deal with
this ”curse of dimensionality”, a number of model-free [29, 27, 28, 26, 110, 60)
as well as model-based, see e.g. [92, 71], relational reinforcement learning ap-
proaches have been developed. A key insight is that the inherent generalization
of learnt knowledge in the relational representation has profound implications
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also on the exploration strategy: what in a propositional setting would be con-
sidered a novel situation and worth exploration may in the relational setting
be an instance of a well-known context in which exploitation is promising [72].
For instance, after having opened one or two water taps in the kitchen, say
wt(objl),in(objl, k1), k(kl) and wt(0bj2),in(0bj2, k2),k(k2), to fill the sink
with water, the household robot can expect other water-taps to behave similarly.
Thus, the priority for exploring water-taps in kitchens wt(X), in(X, V), k(Y) in
general should be reduced and not just the one for wt(objl), in(objl, k1), k(k1)
and wt(0bj2),in(obj2, k), in(k2). Moreover, our information gathered about
water-taps wt(X), in(X,Y),k(Y) so far should also transfer to water-taps in
laundries, say wt(0bj3), in(0bj3,11),1(I11) since we have also learned something
about wt(X),in(X,Y). Without extensive feature engineering this would be
difficult — if not impossible — in a propositional setting. We would simply
encounter a new and therefore unexplored situation.

In general, robotics is an emerging application area for StaRAI techniques [4,
133]. As robots are starting to perform everyday manipulation tasks, such as
cleaning up, setting a table or preparing simple meals, they must become much
more knowledgeable than they are today. Typically, everyday tasks are specified
vaguely and the robot must therefore infer what are the appropriate actions to
take and which are the appropriate objects involved in order to accomplish these
tasks. These inferences can only be done if the robot has access to general world
knowledge.

8 Identity and Existence Uncertainty

The previously outlined work assumes that an agent knows which individuals
exist and can identify them. The problem of knowing whether two descriptions
refer to the same individual is known as identity uncertainty [91, 102]. This
arises in citation matching [91] when we need to distinguish whether two ref-
erences refer to the same paper and in record linkage [30], where the aim is to
determine if two hospital records refer to the same person (e.g., whether the
current patient who is requesting drugs been at the hospital before). To solve
this, we have the hypotheses of which descriptions refer to the same individuals,
and which refer to different ones. If there are n descriptions, an assignment of
equality to these descriptions corresponds to a partitioning of the descriptions
(each description in a partition corresponds to the same individual, and differ-
ent partitions correspond to different individuals). The number of partitions on
n elements is the Bell number, which grows faster than any exponential.

The problem of knowing whether some individual exists is known as exis-
tence uncertainty [80, 102]. This is challenging because when existence is false,
there is no individual to refer to, and when existence is true, there may be
many individuals that fit a description. We may have to know which individ-
ual a description is referring to. In general, determining the probability of an
observation requires knowing the protocol for how observations were made. For
example, if an agent considers a house and declares that there is a green room,
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the probability of this observation depends on what protocol they were using:
did they go looking for a green room, did they report the colour of the first
room found, did they report the type of the first green thing found, or did they
report on the colour of the first thing they perceived?

9 Ontologies and Semantic Science

Data that are reliable and people care about, particularly in the sciences, are
being reported using the vocabulary defined in formal ontologies [32]. The next
stage in this line of research is to represent scientific hypotheses that also refer
to formal ontologies and are able to make probabilistic predictions that can be
judged against data [104]. This work combines all of the issues of relational
probabilistic modelling as well as the problems of describing the world at mul-
tiple level of abstraction and detail, and handling multiple heterogenous data
sets. It also requires new ways to think about ontologies [105], and new ways
to think about the relationships between data, hypotheses and decisions.

10 Conclusions

Real agents need to deal with their uncertainty and reason about individuals and
relations. They need to learn how the world works before they have encountered
all the individuals they need to reason about. If we accept these premises,
then we need to get serious about relational probabilistic models. There is a
growing community under the umbrella of statistical relational learning that is
tackling the problems of decision making with models that refer to individuals
and relations. While there have been considerable advances in the last two
decades, there are more than enough problems to go around to establish what
has come to be called statistical relational Al
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