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Abstract
We analyze the foundations of cyclic causal mod-
els for discrete variables, and compare structural
equation models (SEMs) to an alternative seman-
tics as the equilibrium (stationary) distribution of
a Markov chain. We show under general con-
ditions, discrete cyclic SEMs cannot have inde-
pendent noise; even in the simplest case, cyclic
structural equation models imply constraints on
the noise. We give a formalization of an alterna-
tive Markov chain equilibrium semantics which re-
quires not only the causal graph, but also a sample
order. We show how the resulting equilibrium is a
function of the sample ordering, both theoretically
and empirically.

1 Introduction
Pearl [2009] advocates structural equation models (SEMs) as
a representation for causality. A structural equation model
consists of a deterministic function for each variable in terms
of other variables and (independent) exogenous “noise” in-
puts. In this paper we analyze SEMs for cyclic models. A
modal logic for SEMs was presented by Halpern [2000].

An alternative to the SEMs is an equilibrium model [Strotz
and Wold, 1960], where the causes of each variable form a
transition model of a Markov chain, and we are interested
in the equilibrium distribution of this Markov chain. Strotz
[1960] describes the contribution of that paper as:

If a causal interpretation of an interdependent sys-
tem is possible it is to be provided in terms of a re-
cursive system. The interdependent system is then
either an approximation to the recursive system or
a description of its equilibrium state.

The SEM and the equilibrium structure of Iwasaki and Simon
[1994] can be seen as an equilibrium where the values of the
variables are invariant. In the Markov chain semantics the
equilibrium is on the distribution of the variables.

In this paper we analyze the case where there are proba-
bilistic effects of interventions and the graph of causal depen-
dency can contain cycles. Note that Strotz and Wold [1960]
and Pearl [2009] explicitly consider probabilities, using what

Strotz and Wold [1960] call stochastic variables. Iwasaki and
Simon [1994] do not explicitly include uncertainty.

There are two main reasons why we are interested in cyclic
models:

• We may have information about the effect of interven-
tions that is not acyclic, and we may need to incorpo-
rate this information into a model that also includes non-
interventional data.

• There are models where there is no natural acyclic or-
der. This occurs, for example, in spatial domains and
in relational domains. In spatial domains each loca-
tion in space may depend on its neighbours, for exam-
ple, Crowley and Poole [2011] describe an application
where in the policy of an MDP, the action at each loca-
tion depends on the actions at other neighbouring loca-
tions. These models are causal because the actions are
meant to be carried out by people in the field. Domingos
et al. [2008] give an example where friends of friends
are friends; they give an undirected model, but a causal
model would need to be cyclic. A causal model is ap-
propriate here because we would expect a causal model
to be stable under changing populations.

There is a literature on conditional specifications of distri-
butions where the graph induced by the conditional probabil-
ities is cyclic [Heckerman et al., 2000; Arnold et al., 2001;
Gelman, 2004; Neville and Jensen, 2007]. In each of these,
(approximate) conditional probabilities are input or learned.
In the motivating examples above, the causal probabilities do
not correspond to conditional probabilities, but to the proba-
bilistic effect of interventions.

In this paper we show limitations of standard SEM models
for representing general cyclic causal models, and argue that
an equilibrium semantics often makes more sense. The equi-
librium, however, depends on a sample ordering; even if we
know all of the direct causal effects, it is not enough informa-
tion to compute the equilibrium distribution. We show cases
where we can bound how much different orderings influence
the distribution, and cases where the structure of the cyclic
model induces classes of orderings which result in the same
distributions.
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2 Cyclic Causal Models and SEMs
In this paper, we only consider discrete variables. All exam-
ples use Boolean variables. We write variables in upper case
and values in lower case. For a Boolean variable, X we write
the instantiation X = true as the lower-case of the variable, x,
and X = f alse as ¬x.

We use the do notation of Pearl [2009], where P(x | do(y))
means the probability of x after an intervention to make y true.

A causal model is a directed graph with variables as the
nodes. One of the properties of the causal theories of Pearl is
that causal models are sufficient to predict all combinations
of interventions (including the case of no interventions). For
each variable X , with parents πX , and for each combination of
values, v, to πX , the probabilities P(X | do(πX = v)) specify
the model.
Example 1. Consider the simple cyclic causal model with
two Boolean variables A and B, each dependent on the other.
The causal model can be defined in terms of 4 parameters:

p1 = P(a | do(b))
p2 = P(a | do(¬b))
p3 = P(b | do(a))
p4 = P(b | do(¬a))

These probabilities can be obtained by intervening on one of
the variables and observing the effect on the other variable in
randomized controlled experiments.

A structural equation model M for Boolean variables is a
set of sentences in propositional logic. There is one sentence
for each variable in the model. The sentence describes how
the variable depends on other variables in the model and ex-
ogenous (noise) variables. The exogenous variables have (in-
dependent) probability distributions over them. An interven-
tion X = v on a variable X replaces the sentence for X with a
sentence that specifies that X has value v. We write the result-
ing model as MX=v. An intervention on multiple variables is
equivalent to an intervention on each variable in turn.
Example 2. The causal model of Example 1 can be repre-
sented as a structural equation model M:

a ↔ (b∧u1)∨ (¬b∧u2) (1)
b ↔ (a∧u3)∨ (¬a∧u4) (2)

where each Ui is an exogenous Boolean variable with P(ui) =
pi. We say Ui is a noise variable.

If we intervene to make A = f alse, we replace (1) with ¬a
forming a model M¬a, containing ¬a and equation (2).

Let M be a structural equation model, u a set of instantia-
tions to exogenous variables, and α a propositional formula.
M,u |= α means α is true in all models where M and u are
true.
Example 3. In model M of Example 2,

M,¬u1 ∧¬u2 ∧¬u3 ∧u4 |= ¬a∧b

For the model after intervening to make a = f alse, we have:

M¬a,u4 |= b and M¬a,¬u4 |= ¬b

So when do(¬a) is true, b is true just when u4 is true. Thus
the SEM gives P(b | do(¬a)) = P(u4) = p4, which justifies
the use of the exogenous variable to represent the causal prob-
ability.

An exogenous variable is extreme if its probability distri-
bution contains zeros, and is non-extreme if its probabilities
are all strictly between 0 and 1.

In Pearl’s semantics, the exogenous variables are assumed
to be independent. However this semantics does not work
even for simple cyclic models such as in Example 2 (when
there are no interventions):
Proposition 1. The noise variables U1, . . . ,U4 in the SEM of
Example 2 cannot be non-extreme and independent.

Proof. The instantiation U1 = true, U2 = f alse, U3 = f alse,
U4 = true is logically inconsistent, as it implies (a ↔ b)∧
(b ↔ ¬a), i.e,

M,u1 ∧¬u2 ∧¬u3 ∧u4 |= f alse

and so P(u1∧¬u2∧¬u3∧u4) must have value 0. If the Ui are
independent, this probability is

p1(1− p2)(1− p3)p4 (3)

The only way for a product of real numbers to have value zero
is for at least one of them to be zero.

Note that there is another instantiation that also produces
an inconsistency, namely ¬u1∧u2∧u3∧¬u4. The probability
of this instantiation is:

(1− p1)p2 p3(1− p4) (4)

The non-existence of independent non-zero noise does not
rely on there being two binary variables, but has to do with the
cyclic causality. Suppose there is a discrete random variable
X and an instantiation u to exogenous variables such that

M,u |= X = v → X = v′

where v′ is a different value than v, (i.e, where one value im-
plies another, perhaps through many causal steps) then

M,u |= X )= v

Thus we can derive the following:
Proposition 2. If there is model M, a discrete variable X and
an instantiation u to exogenous variables such that P(ui)> 0
for each ui ∈ u and for all values v of X,

M,u |= (X=v)→ (X=v′)

where v′ is different to v, then the exogenous variables cannot
be probabilistically independent.

Note that proposition 2 does not hold for continuous vari-
ables, where it is possible that some single points have zero
probability (for many distributions all individual points have
zero probability). There has been much work on cyclic
models with continuous variables that happily uses SEMs
[Spirtes, 1995; Dash, 2005; Richardson, 1996; Lacerda et al.,
2008].

There seems to be three solutions to this problem of inter-
preting causal models with cycles:
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• do not allow models that include cycles,
• make the noise dependent, or
• use a different semantics.

Example 4. One way to avoid inconsistency is to make the
noise variables dependent, for example to make u2 → u1,
which makes u2 ∧¬u1 inconsistent. This can be modelled
by making u2 = u1 ∧ u5 for some noise u5. Equation (1) be-
comes:

a ↔ (b∧u1)∨ (¬b∧u1 ∧u5).

This can be reduced to a ↔ (b∨ u5)∧ u1. This is the style
of many of the SEMs of Pearl [2009], for example on page
29. This (with the corresponding equation for B) incorpo-
rates prior knowledge that A and B are positively correlated,
as making one true can only increase the probability of the
other being true. This is not appropriate if it is also possible
that A and B are negatively correlated. It also does not result
in a unique probability for A or for B.

Equilibrium Model Example
An alternative semantics is in terms of the equilibrium dis-
tribution (also called the stationary distribution) of a Markov
chain [Brémaud, 1999]. For Example 1, this semantics is de-
fined in terms of a Markov chain with variables A0,A1, . . . and
B0,B1, . . . , where the superscript represents a time point, with
transition probabilities such as:

p1 = P(at | bt)

p2 = P(at | ¬bt)

p3 = P(bt | at−1)

p4 = P(bt | ¬at−1)

where at is the proposition that A is true at time t. This can be
specified like an SEM, but variables on the right hand sides
can refer to a previous time (in such a way that there are no
cycles in the temporally extended graph). E.g.:

at ↔ (bt ∧ut
1)∨ (¬bt ∧ut

2) (5)

bt ↔ (at−1 ∧ut
3)∨ (¬at−1 ∧ut

4) (6)

where for all t, Ut
i are independently identically distributed

variables with probability pi. The use of the previous time
point avoids cycles in the temporally extended models. In
the Markov chain, the A’s at different times are different vari-
ables. There is no logical inconsistency that leads to the prob-
lem in the proof of Proposition 1.

The aim now is to determine the equilibrium distribution
— the distribution over the variables that does not change in
time. This Markov chain has an equilibrium that satisfies:

P(a) = p1P(b)+ p2(1−P(b)) (7)
P(b) = p3P(a)+ p4(1−P(a)) (8)

Solving the simultaneous equations gives:

P(a) =
p1 p4 + p2(1− p4)

1− (p1 − p2)(p3 − p4)
(9)

P(b) =
p3 p2 + p4(1− p2)

1− (p1 − p2)(p3 − p4)
(10)

which are well defined for all pi ∈ [0,1], except for the two
cases: p1 = 1, p2 = 0, p3 = 1, p4 = 0 (which corresponds
to a ↔ b) and p1 = 0, p2 = 1, p3 = 0, p4 = 1 (which corre-
sponds to a ↔ ¬b). In these cases, there is an equilibrium for
every value in [0,1]. For the rest of this discussion, we ignore
extreme probabilities that give these two cases.

To specify Equations (5) and (6), we not only specified that
A and B are dependent, but also that B depends on the pre-
vious value of A, and A depends on the current value of B.
Intuitively, for each time, we sample B then A.

There are two main motivating reasons for adopting the
equilibrium semantics:
• While we may not want to model time explicitly, there is

often an underlying dynamical system where causes and
effects happen. Because we have assumed non-extreme
probabilities, all the Markov chains have an equilibrium
distribution because they are ergodic and aperiodic. In
the long run, samples from the dynamical system will be
sampled from the equilibrium distribution.

• An equilibrium distribution is a belief state that will not
be changed by more thinking. This is similar to the
way equilibria are justified in game theory [Shoham and
Leyton-Brown, 2008].

3 Markov Chain Equilibrium Models
In this section we define Markov chain equilibrium models as
an alternative to SEMs for representing causal knowledge.

We assume finitely many discrete-valued variables. If X is
a variable, the parents of X are defined to be a minimal set of
variables Y such that for all sets of variables Z where {X}, Y
and Z are disjoint sets, the following condition holds:

P(X | do(Y)) = P(X | do(Y,Z)).
That is, for all interventions where the variables in Y are set
to particular values, changing the value of any other variables
Z does not affect X . This is like the standard definition of
conditional independence, but involves interventions, not ob-
servations. It is easy to show that the set of parents of X is
unique.

We assume that all conditional probabilities are non-
extreme. The non-extreme assumption is reasonable for
learned models, where we may not want to a priori assume
that any transition is impossible, but may not be appropri-
ate for all domains. It simplifies the discussion as all of
the Markov chains are then ergodic and aperiodic, with a
unique equilibrium distribution, independent of the starting
state [Brémaud, 1999].

This parent relation induces a directed graph that can con-
tain cycles, but is irreflexive (there is no arc from a variable
to itself).

Define a causal network to be an irreflexive directed graph
where the nodes are random variables, together with a causal
mechanism for each variable X that consists of a conditional
probability P(X | do(πX )) where πX is the set of parents of X
in the causal network.

To represent an intervention on a variable X , the causal
mechanism for X is replaced by P(X=v) = 1 when we
do(X) = v [Pearl, 2009].
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Figure 1: A causal network, its 2-stage DBN for sample ordering A,B,C,D, its unrolled DBN, and the 2-stage DBN for sample
ordering D,B,C,D

To define the post-intervention semantics, we construct
a two stage dynamic Bayesian network (DBN) [Dean and
Kanazawa, 1989]. A 2-stage DBN specifies for each variable
how the variable at the current stage depends on variables at
the current stage and variables at the previous stage. This
DBN depends on both the causal network and a sample or-
dering which is a total ordering of the variables. For each
variable X , define π−

X to be the set of those parents of X that
are less than X in the sample ordering, and π+

X to be the set
of those parents of X that are greater than X in the sample
ordering. Thus πX = π−

X ∪π+
X .

Intuitively, each Xi, depends on its parents in π−
X at the

current stage, and on its parents in π+
X at the previous stage.

A causal network with variables {X1, . . . ,Xn} and sample
ordering X1,X2, . . . ,Xn defines a decomposition of a discrete-
time Markov chain where the state St at time t can be de-
scribed by the variables Xt

1, . . . ,X
t
n for each time t, and for

each causal variable X for each time t, the Markov chain vari-
able Xt has parents {Yt : Y ∈ π−

X }∪ {Yt−1 : Y ∈ π+
X }. Xt is

independent of all variables Zt ′ for t ′ < t, given these parents
and is independent of all variables Zt where Z <X in the sam-
ple order given these parents in the Markov chain. Thus the
causal network with the sample ordering defines the decom-
position of the state transition function:

P(St | St−1) = P(Xt
1, . . . ,X

t
n | St−1)

=
n

∏
i=1

P(Xi | X1 . . .Xi−1St−1)

=
n

∏
i=1

P(Xi | (π−
Xi
)t(π+

Xi
)t−1) (11)

The conditional probabilities for the Markov chain, the P(Xi |
(π−

Xi
)t(π+

Xi
)t−1), are the P(X | πX ) in the causal network.

Example 5. Consider the causal network in Figure 1 (a). In
this example, the parents of A are B and C, the parents of B
are A and C, the parent of C is D, and the parent of D is C.

Figure 1 (b) shows the 2-stage DBN with sample ordering
A,B,C,D. The left nodes represent the variables at time t −1
and the right nodes represent the variables at time t.

The induced Markov chain is shown as a DBN in Fig-
ure 1 (c), where the structure is repeated indefinitely to the
right. Each of the conditional probabilities is defined as part
of the causal network. Note that in Markov-chain modeling

this DBN is often given directly and is sufficient to model
the distribution. This requires that the relationship between
all the variables and their relative ordering are provided. The
approach presented here deals with the problem of when the
relations are provided, as with a cyclic causal model, but the
ordering is not provided or is arbitrary.

Figure 1 (d) shows the 2-stage DBN for the same causal
network with sample ordering D,C,B,A.

We define the distribution of the causal model (after inter-
ventions) to be the equilibrium (stationary) distribution of the
induced Markov chain.

Given a causal network, when there are multiple sample
orders under discussion, we will write the sample order as a
subscript of the probability such as PDCBA(C).

4 Inference
The inference problem is: given a causal network and a sam-
ple ordering, determine P(X |do(Y ),Z) for some sets of vari-
ables X , Y and Z, which is the posterior distribution of X after
doing Y and then observing Z in the equilibrium distribution1.
This can be computed by replacing the causal mechanisms of
the variables in Y with the intervention values, computing the
equilibrium distribution, conditioning on Z and marginalizing
over the remaining variables.

One way to compute the equilibrium distribution is to sam-
ple from it, sampling each variable in turn according to the
sample ordering. This is an instance of Markov Chain Monte
Carlo (MCMC) sampling [Brémaud, 1999]. In MCMC sam-
pling we sample St from St−1, where St is the state at time
t. The samples generated (after some burn-in period) can be
considered as random samples from the equilibrium distribu-
tion, as long as there are sufficiently many.

MCMC can be carried out using Gibbs sampling. A state
is an assignment of a value to each variable. If variables
are selected according to the sample ordering, the probabil-
ities from the causal model can be directly used to compute
the equilibrium. To see this, suppose the sample ordering is
X1,X2, . . . ,Xn, then we can use the decomposition of equation

1This is what Dash [2005] calls the manipulated-equilibriated
model, but our equilibrium is over distributions. This is not coun-
terfactual reasoning [Pearl, 2009], which would be observing then
doing. In general, there could be arbitrary sequences of observing
and doing, but that is beyond the scope of this paper.

1063



BA

C

A

B

C

A

B

C

(a) (b) (c)

B

A

C

B

A

C

Figure 2: A causal network and two induced 2-stage Bayesian
networks

(11), and note that, when Xi is selected, (π−
Xi
)t(π+

Xi
)t−1 are

the current values of these variables. Thus Gibbs sampling
of each variable using the probabilities of the causal network,
sampled according to the sample ordering, produces samples
from the equilibrium distribution.

Another approach to computing the equilibrium is to use an
iterative inference method, starting with a probability distri-
bution over states and repeatedly using the two-stage DBN to
compute a distribution over the next state. Each variable can
be updated using Equation (11). This converges to the sta-
tionary distribution (note MCMC just gives samples that are
distributed according to the stationary distribution) with geo-
metric convergence [Brémaud, 1999]. This algorithm is poly-
nomial in state space (which is exponential in the number of
variables) as it entails computing the probability of each state.

5 Dependence on Sampling Order
The following example shows that the equilibrium distribu-
tion can depend on the sample ordering:

Example 6. Consider the causal network of Figure 2 (a), with
the causal probabilities:

P(a | do(b)) = 0.1 P(a | do(¬b)) = 0.9
P(b | do(a)) = 0.9 P(b | do(¬a)) = 0.1
P(c | do(a∧b)) = P(c | do(¬a∧¬b)) = 0.9
P(c | do(¬a∧b)) = P(c | do(a∧¬b)) = 0.1

Figure 2 (b) shows the 2-stage DBN with the sample or-
dering A,B,C. Figure 2 (c) shows the 2-stage DBN with the
sample ordering B,A,C.

One way to think about this dependence on sample order-
ing is that doing B tends to change A to be different to B, yet
doing A tends to change B to be the same as A. C has high
probability if A and B have the same value. In the equilibrium
distribution of Figure 2 (b), P(c) = 0.82, whereas in the equi-
librium distribution of (c), P(c) = 0.18. Intuitively, in (b), A
is sampled, then B is sampled, based on that value of A, and
so they tend to have the same value and so C tends to be true.
Whereas in (c), B is sampled, then A is sampled, based on
that value of B, and so they tend to have different values and
so C tends to be false.

By changing the probabilities in this particular causal net-
work, for each sample ordering, the probability distribution
of C in the equilibrium can be made to have an arbitrarily
different non-extreme distribution.

BA

CD

Q

B

A

C

D

Q

B

A

C

D

Q

Figure 3: (a) a causal network and (b) a 2-stage DBN from
Example 8

This was also observed by Lauritzen and Richardson
[2002] in what they called feed-back models. In the rest of
this paper we make some progress towards their challenge
“It would be desirable to have a more precise understanding
of the general relationship between the limiting distribution...
and the conditional specification” [Lauritzen and Richardson,
2002, p. 346].

We can bound the dependence on the sample ordering as a
function of the parameters. The causal network of Figure 2
(a) is a base prototypical case.

Proposition 3. Given the structure of Figure 2 (a) and the
causal probabilities of Example 1, the dependence of the
probability of C on the sample ordering, namely |PABC(C)−
PBAC(C)| is bounded as follows. For all values of C:

|PABC(C)−PBAC(C)|

≤ 2
∣∣∣∣

p1(1− p2)(1− p3)p4 − (1− p1)p2 p3(1− p4)
1− (p1 − p2)(p3 − p4)

∣∣∣∣

Moreover this bound is tight; “≤” approaches equality in the
limit as C approaches the deterministic equivalence function,
C ↔ (A ↔ B) or the exclusive-or, C ↔ (¬A ↔ B).

See the appendix for a proof.
Note that the denominator is the same as the denominators

of equations (9) and (10). It approaches zero (only) as the
problem gets closer to the deterministic inconsistent model.
The numerator is the difference between the probabilities (3)
and (4). This is interesting because it is an exact characteri-
zation of the error, albeit a simple case.

The following two examples show what can occur with ar-
bitrary orderings:

Example 7. Consider a directed model, where A is a coin
toss, B represents whether someone who bet on heads cheers,
and C is the hypothesis that A and B are related. Suppose
the causal model is that A causes B and that together A and B
cause C (with probabilities close to 1). Intuitively the correct
sample order is A,B,C. The sample order B,A,C corresponds
to a delay in the cheering; the cheering is for the previous coin
toss. In this case, the current cheering (for the previous coin
toss) is uncorrelated with the value of the current coin toss.
If C were true when A = B∧ uc, as P(uc)→ 1, the bound of
Proposition 3 gives the exact difference in the probability of
C between the sample orderings in the limit.
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Figure 4: A causal network with a single cycle

Example 8. Consider the cyclic model of Figure 3(a) where
A causes B, B causes C, C causes D, D causes A, and A and
B together cause Q. In the sample ordering D, B, A, C, con-
sidering just these variables, the DBN has two disconnected
components. The B and C variables at one time are connected
to the A and D variables at the previous time, but not at the
current time (see Figure 3(b)). Thus A and B are uncondition-
ally independent (given no observations) in the equilibrium.

We can define a restricted class of sample orderings that is
better behaved than arbitrary orderings. Given a causal net-
work, a faithful sample ordering is a total ordering of the
variables such that
• for every chain in the causal network that is not part of a

cycle, the parents of a variable occur before the variable
in the total order, and

• for every cycle in the causal network, for all but one of
the variables in that cycle, the parents of a node occur
before that node in the total ordering.

Consider the case where, after all interventions, there is a
single directed cycle between a set of variables, and a vari-
able Q that depends (perhaps indirectly) on some subset of
the variables in the cycle. There can be other parents of the
variables in the cycle and other parents of Q, but no other
cycles. An example is shown in Figure 4.
Proposition 4. Suppose there is a causal network with a sin-
gle directed cycle, and σ1 and σ2 are two faithful sample or-
derings where Xj is the variable in the cycle that is before it
parents in σ1 and Xk is the variable that is before its parents
in σ2, then for any proposition Q,

|Pσ1(Q)−Pσ2(Q)|
≤ 2|P(Xj)P(Xk | do(πXk))−P(Xk)P(Xj | do(πXj))|

See the appendix for a proof.
One thing to notice is that if the variables in the cycle are

symmetric in that each variable in the cycle depends on its
parents in the same way, then the difference between the faith-
ful sample orderings is zero.

When there are multiple interacting cycles, the situation
can become very complicated. We investigate one such situ-
ation below.

6 Evaluation
In order to determine the effect of sample ordering on more
complicated domains, we investigated a domain which is an
abstraction of a larger class of domains and yet small enough

L1L0

L7

L2 L3 L4 L5

L6 L8 L9 L10 L11

Figure 5: Network N : A spatial example

to be able to compute the equilibrium exactly (to within ma-
chine precision) by iterating through the transition dynamics
until convergence.
Example 9. We investigate the sensitivity to sample order-
ing for a spatial domain with 12 locations shown in Figure 5.
There is a Boolean random variable at each location which
depends on the variables at its neighbouring locations. We
assume a form of exchangeability where each node with the
same connectivity has the same probability dependence on its
neighbours and the neighbours are exchangeable. Thus, each
location depends causally on its neighbours in the same way.
The probability of the variable at each location depends on
the number of its neighbours that are set to true. For the loca-
tions with three neighbours, the causal distribution is defined
by 4 parameters, p0, . . . , p3 where pi is the probability that
the variable at the location is true given that i of its neigh-
bours are set to true and the others are set to false. For the
locations with one neighbour, its causal probability is gov-
erned by two numbers; pt , the probability given is its neigh-
bour is set to true, and p f , the probability given its neighbour
is set to false. Thus this model has six real-valued parame-
ters. These are reasonable assumptions for a spatial domain,
and an acyclic sample ordering (or even a probabilistic mix
of acyclic models, which may be required to preserve sym-
metry) does not adequately reflect the domain.

This is a natural domain to investigate dependence on sam-
ple ordering, because symmetry considerations mean that
some probabilities should be identical. However, a sample
ordering can break the symmetry. Thus by comparing the
probabilities of nodes that are symmetric, we can investigate
the dependence on sample ordering.

To compute the equilibrium, starting from a random state,
we used the iterative method described above. This involved
repeatedly adding a new current stage and summing out the
old previous stage, until the probabilities changed by less than
10−15 and then ran 20% more steps. This entailed represent-
ing a distribution over the 212 states. We then considered any
difference of less than 10−15 to be zero (assuming it to be a
rounding error). Note that the results here are many orders of
magnitude more accurate than could be detected by MCMC
in any reasonable time.

Empirically, over hundreds of runs, in 29.2% of the order-
ings2, L1, L4, L7 and L10 all have the same marginal proba-
bility. The actual parametrization did not affect whether these
were equal. Let’s call the class of ordering where these 4 vari-
ables have the same marginal Class 0, and the class containing
the other orderings Class 1.

For those not in class 0, in 20% of the orderings L1 and

2All statistics in this section are plus or minus 2% with 95% con-
fidence.
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Figure 6: Varying sample order for a fixed parameterization.
See text for a description of the axes.

L10 have the same probability that is different from L4 and
L7. In 6% of all the orderings, L1 and L4 have the same
probability even when the rest of the variables are not equal
to each other. Whether the symmetries arose for a particular
ordering was independent of the parametrization. In none of
the orderings where the locations L1, L4, L7 and L10 were
not all the same did L1 and L7 have the same probability.

To understand the effect of sample ordering, we first in-
vestigated the probability of L1 in relationship to L4, which,
by symmetry should have the same probability, and indeed
have the same probability in approximately 35% of the cases.
Figure 6 shows the variability of sample order for a represen-
tative fixed parametrization3 and 200 sample orderings. First,
we ran the sample order L0,L1, . . . ,L11, to be the reference
order. For each random order, on the x-axis we plot ∆L1, the
value of L1 for the random order minus the value of L1 in the
reference order, and on the y-axis we plot ∆L4, the value of L4
for the random order minus the value of L4 in the reference
order. As L1 and L4 have the same value in the reference
order, this lets us see the variability of predictions, and see
when L1 and L4 gave different predictions (when they are off
diagonal). Note that there are many cases at (0,0), but there is
essentially no structure for the cases where the ordering does
not imply they are identical.

Figure 7 shows a plot with the same mean-
ing, but with a fixed sample ordering, (in this case
[L9,L1,L11,L2,L0,L10,L7,L4,L8,L5,L3,L6]) and 200 ran-
dom parametrizations. For this ordering, no pair of locations
L1, L4, L7 and L10 had identical probabilities. Again there is
no apparent structure in the relationship between L1 and L4.

Next we approached the question of what properties of
the ordering characterize class 0, where the symmetry is
preserved. The network N contains three square arrange-
ments of nodes, namely L1,L2,L7,L8; L2,L3,L8,L9; and
L3,L4,L9,L10. Each ordering of the variables provides a di-
rection to the arcs between the nodes in each of the squares,
where each variable has arcs from its neighbours that are pre-
decessors in the ordering; this provides the belief network of

3 p0 = 0.06680, p1 = 0.64617, p2 = 0.86093, p3 = 0.09159, p f =
0.95610, pt = 0.41803

ΔL4

ΔL1

Figure 7: Varying parameterizations for fixed sample order-
ing

Pattern A Pattern B Pattern C
X X X

Z Z Z

Y Y Y

WWW

Figure 8: All orderings result in just three unique patterns
within each square for network N, up to rotation and mir-
ror images. There are 8 orderings for each pattern; e.g., for
pattern A, there are four choices for X , then comes its oppo-
site node W , then there are two choices as to whether Y or Z
comes next. Similarly for pattern B, there are 4 choices for X
then two choices for its neighbour, then the other neighbour
and the node opposite to X follow. For pattern C there are
4 choices as to which node is the sink, and also a choice of
direction (clockwise or counterclockwise).

the “current” nodes. There are three unique acyclic patterns
that can be induced on a four node cycle, these are shown in
Figure 8.

It turns out empirically that an ordering is in Class 0 if and
only if all of the square patterns induced by the ordering are
of pattern A or pattern B. All orderings that are in Class 1
have at least one instance of pattern C.

When choosing an ordering for the entire network (exclud-
ing the end nodes) each square arrangement of nodes will
have one of these patterns induced upon it. Note that only
orderings which match directions on the overlapping arcs for
(L8,L2) and (L9,L3) are possible. Counting these up for all
assignments, there are 16 ways to choose patterns A or B
for the left square and 8 for each of the other two squares,
as they need to match with (L8,L2) or (L9,L3), so there
are (16 × 8 × 8) = 1024 combinations using only A or B.
To count the total number of consistent assignments we can
choose the first cycle any of 24 ways, then each subsequent
cycle has 12 remaining patterns which are consistent, yield-
ing 24× 12× 12 = 3456 consistent orderings. The expected
proportion of a set of random orderings that would only use
patterns A and B is thus 1024/3456 ≈ 29.6% which is very
close to what we see empirically for Class 0.
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7 Conclusion

If SEMs are the right model for causality in cyclic domains,
they should work for simple cases. In this paper, we have
argued that they impose undesirable dependencies, and pro-
posed MC equilibrium models as an alternative.

The idea that a causal model means the equilibrium of
some sort is not new; Strotz [1960] argued that when there
are variables that are interdependent in a cyclic ordering, the
fixed point in values was a specification error. Others (e.g.,
Fisher [1970]) followed up by giving conditions for the equi-
librium to be well defined. Spirtes [1995] gives the equilib-
rium interpretation but uses SEMs with continuous variables.
There is also a literature on learning cyclic causal models that
focusses on the interpretation that causal cycles are caused
by unmeasured latent variables [Glymour and Spirtes, 1988;
Schmidt and Murphy, 2009]. Lauritzen and Richardson
[2002] give a Markov chain equilibrium semantics for the
feed-back models for chain graphs. They leave the relation-
ship between the ordering and the resulting distribution as an
open problem, which we have made progress on, both theo-
retically in Propositions 3 and 4 and empirically for a class of
parametrized models.

It should also be noted that the counterexample of Neal
[2000] to Pearl and Dechter [1996] does not work for the
equilibrium semantics. D-separation holds with the MC equi-
librium semantics as it uses a directed network.

Users of causal models where cycles over time are possible
should be aware that the causal ordering is important informa-
tion of a different kind than the local causal relations between
variables. In some domains the ordering may seem obvious
in which case a full DBN may be the appropriate representa-
tion. However, if the ordering is in fact arbitrary or unknown,
as with spatial policies or in relational domains, the choice
of ordering can have a large impact on the resulting marginal
distributions. Sample ordering can provide extra flexibility in
fitting interventional data and observational data. Note that
while this paper has assumed a fixed sample ordering, a dis-
tribution over sample orderings will allow for more flexible
modelling (e.g., in Example 6, mixtures of orderings can give
any probability in the range [0.18,0.82] rather than just at the
end points of this range).

Appendix

Proof of Proposition 3

Pick a particular value of c of C. In the ABC ordering, the
DBN uses P(B | do(A) for B and the equilibrium distribution
for A, and analogously for the other ordering. Thus,

PABC(c)−PBAC(c)

= ∑
AB

P(c | AB)((PABC(AB)−PBAC(AB))

= ∑
AB

P(c | AB)(P(A)P(B | do(A))−P(B)P(A | do(B)))

Consider the A= true,B= true case. Using equations (9) and
(10) for P(A) and P(B), let
α = P(a)P(b | do(a))−P(b)P(a | do(b))

=
p1 p4 + p2(1− p4)

1− (p1 − p2)(p3 − p4)
p3 −

p3 p2 + p4(1− p2)

1− (p1 − p2)(p3 − p4)
p1

=
p1(1− p2)(1− p3)p4 − (1− p1)p2 p3(1− p4)

1− (p1 − p2)(p3 − p4)

Similar calculations for the other values gives:
PABC(c)−PBAC(c)

= P(c | ab)α +P(c | a¬b)(−α)

+P(c | ¬b)(−α)+P(c | ¬a¬b)α
Consider the parameters of P(c | AB) as free. This is a linear
equation of these free parameters, and so has maxima and
minima at the extreme values of these parameters (which is
0 and 1). A simple enumeration of these gives a maximum
value of |PABC(c)−PBAC(c)| when P(c | ab) = P(c | ¬a¬b) =
1 and P(c | ¬ab) = P(c | a¬b) = 0. The maximum is 2|α |.
Proof of Proposition 4
If Q is a complex proposition on more than one variable, we
can construct a new variable that is true whenever Q is true.

If Q does not have any variables in the cycle as ancestors,
the proposition trivially holds. Thus the only remaining case
is when Q is represented as a variable where an element of
the cycle is an ancestor.

Suppose the ancestors of Q are X1 . . .Xm (which includes
all of the variables in the cycle). The only conditional proba-
bilities that have different values in the induced DBNs under
σ1 and σ2 are the probabilities defining Xj and Xk. The DBN
induced by σ1 uses the value from the equilibrium for Xj and
uses the causal conditional probability for Xk, and the DBN
induced by σ2 uses the causal conditional for Xj and the equi-
librium distribution for Xk.
Pσ1(Q)−Pσ2(Q)

= ∑
X1...Xm

Pσ1(Q | X1 . . .Xm)Pσ1(X1 . . .Xm)

− ∑
X1...Xm

Pσ2(Q | X1 . . .Xm)σ2P(X1 . . .Xm)

= ∑
X1...Xm

P(Q | πQ)(∏i/∈{ j,k} P(Xi | πXi))
(P(Xj)P(Xk | do(πXk))−P(Xj | do(πXj))P(Xk))

because all of the common factors can be distributed out of
the difference. Summing out the variables in X1 . . .Xm other
than Xj and Xk gives
Pσ1(Q)−Pσ2(Q)

= ∑
Xi,Xk

P(Q | XjXk)
(P(Xj)P(Xk | do(πXk))−P(Xj | do(πXj))P(Xk))

which is the same case as in the proof of Proposition 3. Note
that summing out variables does not always result in a condi-
tional probability, but it does in this case. As in the proof
of Proposition 3, treating (P(Xj)P(Xk | do(πXk))− P(Xj |
do(πXj))P(Xk)) as fixed, this is a linear equation of the pa-
rameters for Q, and so is bounded at the extreme values. Enu-
merating the cases gives the bound in the proposition.
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